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Retrieval of gas concentrations in optical spectroscopy with deep learning 
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A B S T R A C T   

A novel direct absorption spectroscopy gas sensing system based on end-to-end deep neural networks was 
proposed for measurements of gas concentration. One-dimensional convolutional neural network and deep 
multi-layer perceptron were explored to measure the concentrations of methane and acetylene. The accurate 
measurement results for both gases demonstrated that deep neural networks based direct absorption spectros-
copy technique can be reliably applied to different gas molecules. The developed gas sensing system achieved 
more precise concentration retrieval compared with that of wavelength modulation spectroscopy, and fast 
computation speed as well as robustness to noisy conditions, laser aging and circuit parameter variation 
simultaneously. The combination of deep neural networks and direct absorption spectroscopy provides new ideas 
for the further research of gas absorption spectroscopy.   

1. Introduction 

Tunable diode laser absorption spectroscopy (TDLAS) has been 
developed and exploited by researchers for various applications that 
require gas sensing, such as industrial process emission monitoring 
[1–3], combustion field diagnosis [4–6], and breath analysis [7,8], 
because of its high sensitivity, fast response speed, non-invasive, and 
simple measurement system. Direct Absorption Spectroscopy (DAS) 
[9,10] and Wavelength Modulation Spectroscopy (WMS) [11–16] are 
the two most commonly used and representative technologies. Although 
the WMS has attracted wide attention owing to its effective noise sup-
pression and enhanced robustness through detecting harmonic signals, 
the DAS is still unbreakable in various detection scenarios such as iso-
topic abundance computation [17], temperature [6] and concentration 
retrieval [9] because of its advantages of low-cost detection system and 
intuitive acquisition of absorption features. 

However, the accuracy of DAS has always been limited by issues such 
as baseline fitting, background noise, and the derivation from absor-
bance profiles to concentrations. Some efforts have been made to solve 

these troublesome problems for the more accurate measurements. As the 
most important procedure in extracting absorption features, high- 
precision baseline fitting is required to ensure correct processing of 
DAS transmitted signal. Traditionally, the baseline is defined by directly 
fitting low-order polynomials of the data in the non-absorbing region. 
Du et al. proposed to use sine wave instead of triangular wave or 
sawtooth wave to reduce the bandwidth requirements of the detection 
system and simultaneously developed a time-domain fitting routine to 
derive the sinusoidal baseline for achieving high-precision measurement 
[18]. Zhou et al. developed a Kalman filter based on BP neural network 
to suppress background noise of gas absorption spectra and performed 
high precision on-line measurements [19]. In the study of Liu et al., 
wavelet denoising was utilized to preprocess the DAS transmitted signal. 
The performance of two algorithms, linear regression and neural 
network, in establishing the mapping relationship between absorbance 
profile and gas concentration, was compared [17]. Although Liu’s 
method replaces the derivation from absorbance profiles to concentra-
tions, the absorbance profile is still obtained by baseline fitting of the 
DAS transmitted signal. Obviously, the whole process, from baseline 
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fitting to the concentration retrieval, is done or designed by human re-
searchers at present, where the detection precision is inevitably 
restricted by manual intervention. 

So far, deep learning (DL) has established state-of-the-art achieve-
ments in absorption and excitation spectroscopy [17,20], hyperspectral 
image classification [21–25], reconstruction of ultrashort pulses [26,27] 
and material discovery [28–30], consistently outperforming those 
techniques which use hand-crafted features. However, the efficiency of 
DL approaches is often questioned because the quality of training de-
pends on the quantity of the dataset. In the field of gas absorption 
spectroscopy, it is extremely time-consuming and laborious to obtain the 
adequate data for deep learning training through experiments. There-
fore, the limited experimental data are commonly used for training the 
models with simple structures, resulting in the limited detection accu-
racy. In this case such model is not suitable for the high sensitivity and 
precision detection of trace gases [17]. 

To address the above problems, we proposed our gas sensing tech-
nique with the deep neural networks (DNNs) to establish an end-to-end 
system which retrieves the DAS transmitted signal to the gas concen-
tration directly without intermediate manual operation. Also, we 
exploited transfer learning to tackle the problem of limited number of 
experimental gas absorption spectra data. In this study two different 
gases were processed separately, and the accurate measurement results 
showed that the proposed technique could be reliably implemented to 
different gas molecules. We performed the quantitative comparison of 
our DNNs with three typical machine learning algorithms (MLs) (k- 
nearest neighbor, adaptive boost decision tree, decision tree) to prove 
the superiority of our DNNs. Besides, we compared the pre-trained DNNs 
that were fine-tuned on experimental data with the DNNs that were 
trained only on experimental data to verify the significance of transfer 
learning in improving model performance. The results indicated that the 
transfer learning scheme can effectively solve the dilemma of experi-
mental data shortage. In addition, we compared the performance of our 
DNNs based DAS gas sensor and the state-of-the-art WMS technique. 
Without complicated system arrangement and high-speed electronics, 
the proposed technique achieved better performance than the WMS in 
an extremely short period of time (0.5 ms for each computation). 
Finally, the proposed technique can resolve the problem of laser ageing 
and optimize gas sensing systems to avoid the influence of different 
circuit parameters and light intensity variations, which reflects the 
prospect of engineering application of this technique. More specifically, 
the main contributions of this paper are three-fold:  

1. The main contribution of this study is to establish a basis for further 
research on the contacts between the deep learning algorithms with 
trace gas diagnosis, blended absorption features identification and 
separation, and so on.  

2. An end-to-end deep neural networks (DNNs) based direct absorption 
spectroscopy (DAS) gas sensing system is developed for methane and 
acetylene concentrations retrieval without intermediate manual 
intervention. The precise detection results of both gases as repre-
sentative gases in chemical production, industrial monitoring as well 
as atmospheric monitoring indicating the feasibility of applications 
to other gas molecules. 

3. We exploited the transfer learning to solve the problem of insuffi-
cient experimental data. We verified the significance of transfer 
learning by employing the Wilcoxon signed test between the trans-
ferred models and the models that were only trained over small 
experimental dataset. 

The full implementation (our deep neural network architectures, pre- 
training and transfer learning) and the supplementary material (statis-
tical test results) are available at https://github.com/Popsama/gas_retri 
eval_with_deep_learning. 

The section 2 discusses the design of the gas sensor. We explicate the 
results of the proposed technique in section 3. The conclusion and 

prospects for the future work are talked about in section 4. 

2. Design of gas sensor 

2.1. Spectral selection 

TDLAS technology is based on the theory of molecular absorption 
spectroscopy. When a laser beam with an optical frequency ν and in-
tensity I0 passes through the gaseous medium to be analyzed, the beam 
will be absorbed due to stimulated optical transitions of gas molecules 
corresponding to the optical frequency ν. The incident optical intensity 
I0, and the transmitted optical intensity It satisfy the Beer-Lambert law 
[31]: 

α(v) = − ln[
It(v)
I0(v)

] = S(T)ϕ(v)PyjL (1) 

Here α(ν) is the absorbance, S(T) is the temperature-dependent line 
intensity of the transition, ϕ(ν) is the normalized line-shape function of 
the molecular absorption, P is the pressure, yj is the mole fraction 
(concentration) of the absorbing species j, and L is the pathlength. 

In order to verify the feasibility of our proposed gas sensor based on 
DNNs applied in the various gas molecules, acetylene and methane were 
selected since their representativeness in chemical production, indus-
trial monitoring as well as atmospheric monitoring. Based on HITRAN 
database [32], the absorption lines of acetylene and methane in the 
near-IR region are shown in Fig. 1. The absorption lines marked in red in 
Fig. 1 are the ones under study in this paper. They are the P(13) ab-
sorption line of acetylene near 6523.8792 cm− 1 and the R(3) absorption 
line of methane near 6046.9636 cm− 1. 

2.2. Sensor system configuration 

Our experimental arrangement of DAS technology is shown in Fig. 2 
(a) without the WMS unit. The two distributed feedback laser diodes 
(DFB-LDs) (BF14-DFB-1532, Wuhan 69 Sensor Technology, China and 
SWLD-165310S22-01, Allwave, China) were utilized to scan the ab-
sorption lines of acetylene and methane, respectively. The DFB-LDs were 
controlled by a driving module consisting of a home-made LD driver 
circuit and ARM7 (LPC1758, NXP, Netherlands), which was used to 
generate a ~ 1 Hz scanning ramp signal. The output beam of the DFB-LD 
was coupled into the optical fiber, and then transmitted to the fiber- 
coupled Herriott cell (300 cm path-length). 1000 sets of various con-
centrations (ranging from 0 to 1000 ppm) of methane and 1000 sets of 
various concentrations (ranging from 0 to 500 ppm) of acetylene gases 
were obtained by separately blending with nitrogen through a gas 
mixing dynamic distribution system (SFD-Y500, Nanjing Shuntai Tech-
nology, China), and were introduced into the Herriott cell. The output 
beam from the Herriott cell was converted to the DAS transmitted sig-
nals by a photodetector (BF14-PD300-F-N, Wuhan 69 Sensor Technol-
ogy, China) and pre-amplifier in the photo-detector module. As the 
process shown in Fig. 2 (b), the DAS transmitted signals were fed into 
the DNNs in a PC and the corresponding concentrations were directly 
retrieved. 

The WMS technology was selected for simultaneous comparison with 
gas sensors based on DNNs. The arrangement of its experimental system 
is shown in Fig. 2(a), which includes the WMS unit. The two DFB-LDs 
were controlled by a driving module consisting of an ARM7, a signal 
generator (FY2300A, Feel Tech, China), and a home-made LD driver 
circuit. ARM7 was used to generate a ~ 1 Hz scanning ramp signal and 
the signal generator was used to generate a 2 kHz sinusoidal signal for 
modulation. The two signals were mixed at the adder as the driving 
signal for the DFB-LDs. The construction of the entire optical path and 
preparation of methane and acetylene gases were exactly the same as the 
DAS experimental system. In the demodulation part, a lock-in amplifier 
(HF2LI, Zurich Instruments, Zurich, Switzerland) with a reference signal 
of 4 kHz sinusoidal signal generated by the signal generator was 
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employed to extract the harmonic signals. The obtained second har-
monic signals were processed in the PC to infer the corresponding 
concentrations. 

2.3. The deep learning neural network construction 

Here we introduce two neural network architectures illustrated in 
Fig. 3 and Fig. 4 to retrieve directly the gas concentrations from their 
corresponding DAS transmitted signal without baseline fitting and other 
manual process. 

The 1D-CNN was designed as a convolutional blocks structure where 
each block consisted of two convolutional layer and a max-pooling 

layer. Such blocks transformed the input with learnt convolutional 
kernels in a convolutional layer and passed the output through a 
nonlinear pooling operation in a max-pooling layer. Several such blocks 
were stacked and the final output was obtained by flattening the output 
of the last global-average-pooling layer via the fully connected layers. 
The hyperparameters of our 1D-CNN is illustrated in Fig. 3. 

The second DNNs model was based on the deep feedforward network 
(also called DMLP). The initial networks were composed of parameter-
ized layers where the initialized parameters (or weights) were optimized 
via backpropagation algorithm with the goal of minimizing the loss 
function. Despite its architectural simplicity, the DMLP has been 
deployed in many scenarios because of its powerful universal 
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Fig. 1. The absorbance profiles of (a) acetylene and (b) methane under the conditions of yj = 1000 ppm, T = 296 K, P = 1 atm, L = 300 cm.  

Fig. 2. (a) Schematic diagram of the experimental system. The DAS experimental system does not include the WMS unit, while the WMS system does. (b) Diagram of 
the retrieval process from the DAS transmitted signal to the predicted concentration. Our DNNs as a black box for predicting the concentration corresponding to the 
input DAS transmitted signal. 
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approximation. For more details about the DMLP architecture see Fig. 4. 
We exploited the transfer leaning to overcome the dilemma of 

experimental data shortage, the whole scheme is shown in Fig. 5. First, 
we trained the DNNs over a source dataset which was composed of a 
large number of simulated DAS transmitted signals and their corre-
sponding concentration ground truth, and then we fine-tuned the pre- 
trained models on a small experimental dataset to obtain the final 
model which can be well-generalizing under real data distribution. 
Specifically, we froze the weights of previous layers except the output 
layer of DNNs, only the weights of the output layer were optimized by 
the new data. The reason it works is that the initial layers focus on 
simple and generic features, while the deeper layers focus on more 

specific tasks, such as performing the concentration retrieval. 

3. Experiments 

3.1. Training and evaluation of concentration retrieval algorithms 

3.1.1. A. Pre-training stage 
The initial DNNs and MLs were first trained by simulated methane 

and acetylene data. To improve the robustness of the model in the 
presence of noise, we have enriched the diversity of gas concentrations 
(ranging from 0 to 1000 ppm, concentration interval is 0.1 ppm) under 
various SNR conditions (no noise, 10 dB, 15 dB and 20 dB). To get closer 

Fig. 3. The 1D-CNN architecture. The first 1D Conv layer comprises 16 kernels (the dimensions of (9, 1) applied to each kernel), so that 16 convolutional outputs can 
be produced. The dimensions of the input data fed into the first Conv layer is (4097, 1). The kernels will slide through the data for 2045 steps to conduct con-
volutional and activation operations, resulting in a (2045, 16) output. The second Conv layer with 16 kernels (dimensions of (9, 16)) results in the output with the 
dimensions (1019, 16). The max-pooling layer prevents overfitting of the learned features by taking the max value among multiple features and downsizing the size 
of the tensor to (504,16). The second and third Conv blocks were applied following the same concepts as the first block. The first dimension of kernels is still 9, while 
the second dimension doubled to be 64 and 128. The last Conv layer was connected to a global average pooling layer to decimate the dimensions to be (256, 1). The 
last two layers were fully-connected-layers (Dense layers). The output layer implements a sigmoid activation function rather than Relu to produce a concentration 
distribution within [0, 1]. 

Fig. 4. The DMLP architecture. One input layer, 8 hidden layer and one output layer. The number of neurons in each layer are shown in figure. We added dropout 
operation in the 6-th and the 7-th hidden layer. 
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to the experimental conditions, we set the ambient temperature at 296 
K, the gas cell pressure of 1 atm, and the effective absorption optical 
path of 300 cm. 30,000 training samples, consisted of the pairs of inputs 
(transmitted signals) and labels (the corresponding ground truth con-
centrations), were collected for each gas during the pre-training stage. 
The ground truth concentrations were set in the simulation software. 

Recent research [33,34] shows that the traditional cross validation 
(CV) or hold-out test tend to over-estimate the explorative prediction 
performance of machine learning models. K-fold cross validation is not 
only unable to effectively and accurately evaluate the exploration power 
of the models, but also unable to differentiate high explorative models 
from lower ones. Therefore, we used a data redundancy controlled cross 
validation method as reported in [33] to fix such problems. K-fold-for-
ward cross validation (FCV) is a novel measure to more objectively 
evaluate the exploration power rather than interpolation power for the 
gas concentration retrieval models (the performed k-fold-forward cross 
validation scheme is illustrated in Fig. 6). 

To conduct FCV, the dataset was first sorted by ascending concen-
tration values and then split evenly into k subsets S1, S2, …, Sk. Con-
cerning the first round, the models were trained on S1 and the S2 was set 
as validation set. In the next round, the models were trained on S1 and 
S2, and set the S3 as validation set. This step was performed iteratively 
until all subsets were evaluated and the overall performance of all 
models was calculated. In this study, we experimented a series of k 
values ranging from 10 to 500 with step of 50. We set k to 100 for all the 
following experiments since the FCV results started oscillating within 
small limits when k was larger than 100. 

We carried out an extensive search for the best DNNs architecture as 
well as in the hyper-parameters space. With respect to DMLP, we started 
from a two-layered architecture and incrementally increasing the depth 
to improve the learning capacity until a saturation point was reached. 
We explored with different combinations of the number of neurons units 
per layer. Two dropout layers were also added to avoid overfitting. The 
validation error converged at 9 layers (8 hidden layers and 1 output 

layer). Similarly, we experimented with a set of architectures for 1D- 
CNN. In addition, we started with a small range of values for each 
hyperparameter based on our intuition, rather than performing a grid 
search which would have been infeasible due to time and computational 
resource constraints. Learning rate values from 0.001 to 10-6 were tried. 
A search for dropout rate values ranging from 0.1 to 0.9 was carried for 
each of the two dropout layers. Other hyperparameters were also 
experimented in the same way. The best model architectures are shown 
in Fig. 3 and Fig. 4. The DNNs were implemented in Python 3.7 on a 
standard PC with a Nvidia Titan X GPU. The Keras framework [35] was 
employed to support the construction of DNNs (ADAM optimizer, 
learning rate of 10-5, β1 = 0.9, β2 = 0.999, 2000 epochs). 

By comparing the FCV results of all evaluated models, we can have 
an overview of the explorative power of our DNNs as well as traditional 
MLs. We performed the quantitative comparison of our DNNs with three 
typical machine learning algorithms (MLs) (k-nearest neighbor, adap-
tive boost decision tree, decision tree). We computed the absolute error 
(|ground truth-predicted concentration|) and the relative error (|ground 
truth-predicted concentration|/ground truth) as metrics to carry out the 
performance assessment. The FCV comparison results in terms of all 
models are shown in Table 1. Both DNNs proposed by us were signifi-
cantly outperformed the MLs with respect to both gases. The best per-
formance was achieved with the relative error of 0.1589% and the 
absolute error of 0.1167 ppm by DMLP while the worst performance 
belongs to DT with the relative error of 14.323% and the absolute error 
of 8.6788 ppm. In terms of absolute errors, the performance of our DNNs 
were an order of magnitude higher than that of the chosen machine 
learning models, which proved the superiority of our deep learning 
models. 

4. B. Transfer learning stage 

We employed transfer learning to fine-tune the DNNs that pre- 
trained over simulated data. As mentioned in the section 2, we 
adjusted the gas dynamic distribution system to produce mixed gases 

Fig. 5. Model training strategy (a) Pre-training stage, (b) Transfer learning stage.  

1 2 3 4 5 ··· k-1 k

1 2 3 4 5 ··· k-1 k

1 2 3 4 5 ··· k-1 k
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···

Fig. 6. Schematic representation of k-fold-forward cross validation.  

Table 1 
Performance evaluation of pre-training models. DT stands for decision tree re-
gressor, ABDT stands for adaptive boosted decision tree regressor, KNN stands 
for K-nearest neighbor regressor.   

CH4 C2H2 

Relative errors 
(mean)/% 

Absolute errors 
(mean)/ppm 

Relative errors 
(mean)/% 

Absolute errors 
(mean)/ppm 

DT 14.323 8.6788 13.761 8.2202 
ABDT 10.997 6.4236 10.792 6.4082 
KNN 12.378 7.0836 12.029 7.0553 
1D- 

CNN 
0.2474 0.6591 0.2426 0.6029 

DMLP 0.1589 0.1167 0.1216 0.1241  
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with different concentrations of CH4 and C2H2 with buffer gas N2. The 
configured gases were detected by our DAS system and 1,000 sets of 
methane and 1,000 sets of acetylene transmitted signals were experi-
mentally collected as input data, while the preset gas concentrations of 
the mix gas dynamic distribution system were regarded as the labels 
(ground truth). The experimental data were also split into training set 
and validation set according to the FCV scheme for fine-tuning and 
evaluation of the models’ performance. We compared the performance 
of (1) the DNNs trained only by the small number of experimental data 
and (2) the DNNs only pre-trained by simulated data without transfer 
learning and (3) the pre-trained DNNs in which transfer learning has 
been applied as shown in Table 2. 

The positive effect of transfer learning is illustrated when comparing 
the PT + TF and TED. For both DNNs, the Wilcoxon signed rank tests 
were statistically significant at p < 0.001 for all 1D-CNNs and DMLPs, 
which indicating that the DNNs fine-tuned by the transfer learning 
significantly outperformed those trained only on the experimental data 
(Table 2). The observation results proved the importance of transfer 
learning to overcome the scarce experimental data problem and to help 
improve the models’ performance on small experimental dataset. On the 
other hand, through transfer learning, the DNNs trained over simulated 
data allowed for obtaining the better generalization over the experi-
mental dataset, in which the DMLPs got better performance than the 1D- 
CNNs, indicating that transfer learning improved DMLPs more signifi-
cantly. In addition, the pre-trained models without being transferred on 
the experimental data (PT) achieved the worst performance, which was 
mainly due to the domain discrepancy between the simulated data dis-
tribution in ideal circumstance and the experimental data distribution in 
complex environment. This also explains why a small number of real 
experimental dataset is still needed, rather than completely using 
simulated data for training. 

We further compared the performance of our DNNs with the typical 
MLs (see Table 2). When comparing the performance of the models that 
trained only on experimental data, although the performance of DNNs is 
not as good as that trained on a large simulated dataset, the performance 
of MLs is still worse. Besides, the transferred DNNs outperformed the 
MLs significantly (p < 0.001). In contrast with 1D-CNN, it is worth 
noting that the DMLPs trained only by experimental data performed 
worse in terms of both gases because of its large number of trainable 
weights that require large amounts of data to optimize. In this case, the 
reason for insufficient exploration capability of these MLs is due to its 
underlying mechanism, which is different from the reason for DMLPs. 
[33] explained this mechanism in details and showed that the DT, ABDT 
and KNN can be viewed as weighted neighborhoods schemes. By 
contrast, our DNNs show better exploration capability to predict vali-
dation samples outside the same domain as the training set. 

To further evaluate the out-of-domain generalization performance of 
our DNNs, we introduced forward-holdout validation (FH) [33]. We 
sorted the experimental data by ascending the experimental dataset and 
then split it into training and validation sets in the proportion of 75% 
and 25%. Since the low concentration limit of detection is more concern 
in gas sensing, the pre-trained DNNs were fine-tuned on the 75% high 

concentration samples and tested on the 25% low concentration samples 
accordingly. In this way, we can evaluate whether the models that 
trained on the transmitted signals corresponding to high gas concen-
trations can correctly respond to the out of domain transmitted signals of 
low concentrations. Both figures in Fig. 7 shows that both models remain 
low errors in the training area while the test error increases gradually in 
the test area. Although the test error has an upward trend, it is still in the 
acceptable range compared with training error, which demonstrates that 
our DNNs meet the requirement for trace gas detection with a certain 
out-of-domain generalization ability. Furthermore, the error increases 
dramatically at extremely low concentration area where the weak 
transmitted signals corresponding to the low concentration are 
completely submerged in the system noise. In this case, it is encouraging 
that the models still controlled the prediction error of the noise domi-
nated signals under 2 ppm. We plan to carry out the research of filtering 
algorithm in the future to improve the signal-to-noise ratio (SNR) of the 
system as well as the limit of detection for trace gases. 

4.1. Evaluation of gas sensor 

The spectroscopic sensor which consisted of DNNs-based concen-
tration retrieval model and DAS-based hardware system was further 
evaluated and compared with the state-of-the-art WMS technique for the 
detection of both gases. We collected 15 typical concentrations for 
methane data ranging from 0 to 1000 ppm and for acetylene data 
ranging from 0 to 500 ppm, respectively. The concentration prediction 
comparison results are plotted in Fig. 8. Fig. 8(a) provides a global view 
and Fig. 8(b) shows more details of low concentration section. Con-
cerning methane, the DNNs based sensor outperformed the WMS sensor 
especially in higher concentration region. On the other hand, the co-
efficients of determination (R2) of DMLP based DAS sensor were higher 
than that of WMS setup for both gases, while 1D-CNN did slightly worse 
in terms of acetylene in low concentration region. 

We made the error comparison analysis between WMS and the DNNs 
based DAS, as shown in Table 3. For both gases, DMLP based DAS 
techniques showed the best performance among all sensors (minimum 
absolute error and relative error). Both DNNs based DAS sensor achieved 
better results compared with WMS sensor in terms of methane. In the 
low concentration region of acetylene, the performance of 1D-CNN 
based DAS sensor suffered fluctuation due to the low SNR samples, in 
which it is difficult to extract features from noise. In addition, all the 
transferred models produced concentration retrieval computation 
within 0.5 ms, which is equivalent to 1/20 of the time required for DAS 
technology to complete the averaging of 10 k samples at a scanning 
frequency of 1 MHz [10]. 

To investigate the influence of laser aging on the proposed sensor 
system, the laser output light intensity was continuously attenuated to 
simulate the aging process. 500 ppm methane and 100 ppm acetylene 
were obtained by the gas mixing dynamic distribution system. By 
adjusting the optical attenuator, the laser output intensity was contin-
uously reduced to 5% of the original intensity, while the transmitted 
signals were simultaneously fed into DNNs for concentration retrieval. 

Table 2 
FCV results of all schemes: PT + TF (pre-training + transfer learning), TED (Trained only on experimental data), PT (pre-trained models without transfer learning).   

CH4 C2H2 

R2 Relative errors (mean)/% Absolute errors (mean)/ppm R2 Relative errors (mean)/% Absolute errors (mean)/ppm 

1D-CNN PT + TF 0.9858 0.6332 1.2523 0.9878 0.5848 1.0632 
TED 0.8723 5.7835 3.8923 0.8974 5.3082 3.4972 
PT 0.7223 12.7842 7.1783 0.7268 12.8063 7.0896 

DMLP PT + TF 0.9879 0.4675 1.0841 0.9890 0.4518 1.0274 
TED 0.8012 8.6792 5.8964 0.8038 8.6437 5.3944 
PT 0.6873 15.7892 9.7384 0.6881 15.3273 9.4672 

DT TED 0.6967 15.7648 8.9535 0.6922 15.6823 8.5129 
ABDT TED 0.7481 11.6210 6.7482 0.7682 11.4821 6.5723 
KNN TED 0.7043 13.1143 7.2893 0.7194 13.0385 7.0823  
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The mean retrieved concentrations for both gases were close enough to 
the ground truth, as shown in Fig. 9(a) and (b). The reason for the 
fluctuation of retrieval results was that the actual gas concentration in 
the gas cell was not always maintained at the concentration we set due 
to the influence of the gas flow variation, which led to a deviation be-
tween pre-set concentration and actual concentration. Concerning the 
impact of light intensity attenuation on the proposed system, even the 
worst result still looks good to a spectroscopist, as the mean retrieved 
concentrations are approximate to the actual values and standard de-
viations are small. 

We finally tested the robustness of the proposed DNNs based DAS 

technique to circuit parameters variations by changing the amplifier 
gain. Keeping the concentrations of methane and acetylene unchanged, 
the gain of the post-amplifier is adjusted from 1 to 50 times by adjusting 
the feedback resistance in the amplifier circuit. The quantitative results 
are shown in Fig. 9(c) and (d). The results show that the proposed 
technique has robustness to the moderate amplitude increase of the 
amplifier gain. 

5. Conclusion and discussion 

In summary, the main contribution of this study is to establish a basis 
for further research on the contacts between the deep learning algo-
rithms with trace gas diagnosis, blended absorption features identifi-
cation and separation, and so on. We demonstrate that adequate 
network architectures can be used to directly compute the concentration 
by its corresponding transmitted signal without the need for compli-
cated optical system arrangement (e.g. WMS system) and data pro-
cessing workflow (e.g. baseline fitting). Benefiting from employing the 
transfer learning, we tackle the difficulty of training deep learning 
models with limited experimental data. By comparing the performance 
of DNNs based DAS technique with WMS technique, we verified the 
satisfactory accuracy of the DNNs based gas sensor through novel 
evaluation methods (e.g. FCV and FH). Besides, all the DNNs based 
systems can deal with the problem of laser ageing and adapt to different 
detection systems regardless of the influence of different circuit 

Fig. 7. Exploration errors of both DNNs for (a) methane and (b) acetylene.  

Fig. 8. The coefficients of determination comparison for (a) methane and (b) acetylene.  

Table 3 
Performance evaluation of DNNs based DAS gas sensor and WMS.    

1D-CNNs DMLPs WMS 

CH4 R2 0.9808 0.9845 0.9799 
Relative errors (mean)/% 0.6526 0.5783 0.6826 
Relative errors (σ)/% 1.2423 1.2074 1.5888 
Absolute errors(mean)/ppm 1.2689 1.1794 1.2843 
Absolute errors(σ)/ppm 1.5982 1.0763 1.9627 

C2H2 R2 0.9582 0.9821 0.9801 
Relative errors (mean)/% 0.8895 0.5871 0.6081 
Relative errors (σ)/% 5.1555 1.2183 1.3749 
Absolute errors(mean)/ppm 1.5132 1.3827 1.4083 
Absolute errors(σ)/ppm 1.9823 1.1842 1.2073  
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parameters and light intensity variations. Notably, the fast computation 
speed and high prediction accuracy reflect the prospect of engineering 
application of the proposed technique. The demonstrated success of the 
application of deep learning in DAS indicates that the DNNs can be 
widely applied to various absorption spectroscopies in different context. 

We believe that the application of DNNs can improve the perfor-
mance of many technologies used in the diagnostics of gas spectroscopy, 
including blended gas recognition and trace gas measurements. 
Although the demand for data amount is a major drawback, we plan to 
further investigate the generative model[36], namely to generate more 
data by learning the data distribution of measured spectra. So far, the 
end-to-end model is the main trend of the deep learning community, the 
significant anticipated benefit in these cases is that it would be unnec-
essary to have extensive spectroscopic information as a prerequisite of 
the practical determination of gas detection since the DNNs should 
search the optimal mapping function between the input and the target 
automatically and minimize human intervention. But this greatly re-
duces the interpretability of the intermediate process in the neural 
networks (e.g. the proposed models in this paper can detect signals 
under noisy conditions accurately, unlike the filtering algorithm, the 
contribution to the de-noise process is not characterized). Through FCV, 
we also found that the current machine learning algorithms struggle to 
meet the requirement of gas concentration retrieval. Although our DNNs 
have a certain explorative power, they perform poorly in the face of low 
concentration signal with respect to low SNR. We hope to introduce 
deep learning into each gas sensing workflow in future research, so as to 
improve the interpretability of DNNs based gas sensing techniques as 
well as the robustness to noisy signals. 
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