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Abstract: Stripe noise is a common condition that has a considerable impact on the quality of the
images. Therefore, stripe noise removal (destriping) is a tremendously important step in image
processing. Since the existing destriping models cause different degrees of ripple effects, in this paper
a new model, based on total variation (TV) regularization, global low rank and directional sparsity
constraints, is proposed for the removal of vertical stripes. TV regularization is used to preserve
details, and the global low rank and directional sparsity are used to constrain stripe noise. The
directional and structural characteristics of stripe noise are fully utilized to achieve a better removal
effect. Moreover, we designed an alternating minimization scheme to obtain the optimal solution.
Simulation and actual experimental data show that the proposed model has strong robustness and is
superior to existing competitive destriping models, both subjectively and objectively.

Keywords: destriping; low-rank; sparse; total variational (TV); remote sensing

1. Introduction

The non-uniform photoresponse of image detectors causes stripe noise with distinct
directional and structural features. It will reduce the subjective quality of images and limit
their subsequent application in many fields. Therefore, the purpose of our research is to
estimate potential prior components to separate the clear image from the degraded image.

In the past few decades, many researchers have carried out related work, which can be
roughly divided into two categories: one relies on radiometric calibration and the other is
based on image processing. The former establishes a mathematical model between spectral
radiation and the response of the image sensor with radiation sources of varying degree
generated by the integrating sphere. The latter analyzes the causes of stripe noise and
establishes a degradation model to achieve destriping. Since there are many limitations of
the method based on calibration, this paper adopts an idea, based on image processing,
for removing stripe noise. At present, there are three kinds of destriping methods based
on image processing: methods based on filtering, methods based on statistical theory and
methods based on optimization.

The first method filters the degraded image in the transform domain by designing
different filters [1–8]. In [3], wavelet analysis was used to remove stripe noise from satellite
imagery. In [4], an FIR filter was proposed to filter the image in the frequency domain.
In addition, Münch et al. [6] proposed a combination filter that uses wavelet decomposition
to improve filtering accuracy to separate stripes. This method is simple in operation and
fast in processing, but it can not remove non-periodic stripes completely.

The second method usually considers using the statistical characteristics of the sensors
to remove stripe noise [9–16]. Histogram matching and moment matching are two typical

Remote Sens. 2021, 13, 5126. https://doi.org/10.3390/rs13245126 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-1860-0920
https://orcid.org/0000-0003-0820-6161
https://doi.org/10.3390/rs13245126
https://doi.org/10.3390/rs13245126
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13245126
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13245126?type=check_update&version=1


Remote Sens. 2021, 13, 5126 2 of 20

methods. The former is usually matched with a histogram of the reference signal to remove
the stripe noise. The latter generally assumes that each image sensor has the same standard
deviation and mean value, then selects the ideal reference data, using moment matching
to restore the image. In [9], histogram matching was used. Wegener et al. [10] introduced
a process of calculating homogeneous regions before histogram matching. The author
also used moment matching in [12]. In [14], local-least-squares fitting was considered
for combination with histogram matching to restore the image. Limited by previous
assumptions, the destriping effect of this method shows great variation , which indicates
that the model has poor reliability and robustness.

In recent years, lots of models based on optimization [17–27] have been proposed that
regard the destriping issue as an ill-posed inverse problem. To find the optimal solution,
constructing a proper regularized model for the underlying prior information of the image
is necessary. Therefore, this method focuses on finding potential prior information and
corresponding regularization terms. In [17], the Huber–Markov variation model was
proposed, firstly. In [18], the author proposed a complex single-term total variation model
(UTV), which used stripes’ structure and direction characteristics to preserve image details.
Chang et al. [22] adopted the idea of image decomposition, proposing the low-rank single
image destriping (LRSID) model to estimate two priors simultaneously. Liu et al. [23]
separated stripe noise from degraded images by considering global sparsity and local
variational (GSLV) properties. In [24], the author used a regularized model that combines
the total variation and global sparse (TVGS) constraint. In [27], a destriping model based
on hybrid total variation and nonconvex low-rank (HTVLR) regularization was proposed
to reduce the staircase effect caused by the TV model.

In general, the mentioned models can remove stripe noise in most cases, but they still
have some drawbacks when dealing with different remote sensing images. For instance,
in the low-rank constrained model proposed in [22], the structural and directional charac-
teristics of the stripes are not fully utilized. In [23], the author only focuses on the stripe
noise components in the degraded image, ignoring the properties of the underlying image
information, which will destroy the smoothness of the restored image. The TVGS model
proposed in [24] lacks a constraint term perpendicular to the stripe direction and may
result in ripple effects. In [27], the HTVLR model could reduce the staircase effect caused
by the TV model but could not maintain well its destriping performance when dealing
with different stripes.

Focusing on the problems in the above methods, we apply image decomposition and
propose a destriping model based on total variation and the low-rank direction sparse
constraint. The TV model and low rank are taken to constrain the image prior and the stripe-
noise prior globally. Different directional sparse constraints are adopted along and cross the
stripe direction after taking full advantage of the structural and directional characteristics
of the stripe noise. l1 norm and l0 norm are respectively taken to constrain the gradient
matrix perpendicular to and along the stripe direction. Since the proposed model should
estimate two factors simultaneously, an alternating minimization scheme is taken to find
the optimal solution effectively. The specific framework of the solution is shown in Figure 1.
Simulation and actual experimental data indicate that the proposed model shows better
destriping performance compared with the five typical models. The main research work
and innovative content of this article are summarized as follows:

(a) Under the destriping model of image decomposition, a sparsity constraint, perpen-
dicular to the stripes, is added to reduce the ripple effects of the output image.

(b) After thoroughly analyzing the potential properties of stripe noise, we propose a
regularization model combining low-rank and directional sparsity, enhancing the
robustness of the stripe noise-removal model.

(c) An alternate minimization scheme to the model is designed to estimate both potential
priors in degraded images.
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Figure 1. Illustration of proposed model.

The subsequent contents are arranged as follows: the image-degradation model and
the destriping model are introduced in Section 2. In Section 3, an alternating minimization
algorithm is designed. The Section 4 verifies the destriping performance of the proposed
model through many related experiments. In Section 5, the parameter value determination
and future research are discussed. Section 6 is the conclusion of this paper.

2. Degradation Model and Proposed Model

Stripe noise, in remote sensing images, usually contains additive and multiplicative
noise components [17]. Since multiplicative noise can be converted into additive noise
through a logarithmic operation [15], stripe noise is usually treated as additive noise.
Therefore, this type of image degradation model can be summarized as

o(x, y) = i(x, y) + s(x, y) (1)

where o(x, y), i(x, y) and s(x, y) represent the original noisy image, clear image and stripe-
noise image.

For convenience in the subsequent work, the formula (1) can be rewritten as follows:

O = I + S (2)

where O, I and S represent the matrix forms of o(x, y), i(x, y) and s(x, y), respectively.
Both clear image, I, and stripe noise image, S, are the data we want to obtain from

the degraded image, O, and the regularization can be considered to solve this typical
ill-posed problem.

Taking into account the image decomposition model in [22], the constrained model
for destriping can be expressed as:

arg min
I,S

1
2
‖O− I − S‖2

F + λR(I) + γR(S) (3)

where 1
2‖O− I − S‖2

F denotes the item representing the closeness between the degraded
image and the sum of the clear image and the stripe noise. R(I) and R(S) are regularization
terms, representing the information of the image prior and the stripe-noise prior. λ and γ
are positive penalty parameters that are used to balance the constraint model. To obtain
a better separation effect, it is necessary to select the appropriate regularization term
and method.

2.1. The Regularization Term and Regularization Method of the Real Image

The most extensively used regularization methods in image processing are Tikhonov-
like regularization [28] and TV-based regularization [29]. This paper adopts TV-based
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regularization to constrain the image prior due to its better performance in preserving
image details.

For a two-dimensional image, TV constraint model can be expressed as:

‖I‖TV = ∑i |Dx I|+
∣∣Dy I

∣∣ (4)

we take the vertical and the horizontal direction as the y and x direction respectively in
this paper; then, the regularization constraint of the clear image can be expressed as [30]:

R(I) = λ1‖Dx I‖1 + λ2
∥∥Dy I

∥∥
1 (5)

where Dx and Dy represent the first derivative operator in the corresponding direction.

2.2. The Regularization Term and Regularization Method of the Stripe Noise Image

Singular value decomposition and eigenvalue decomposition can both be used to
extract the matrix’s features. The difference is that eigenvalue decomposition only works
with square matrices, but singular value decomposition works with any matrix. We
can divide the original matrix into the product of three matrices using singular value
decomposition. The second matrix is diagonal and its diagonal elements are the matrix’s
singular values. We use the SVD function to perform singular value decomposition on the
stripe image and plot its singular values in columns (see Figure 2). It can be found that
the singular value quickly drops to 0 in the first few columns, which indicates that the
stripe-noise prior can be regarded as a low-rank matrix [22]. In addition, the stripe noise
image can also be viewed as a matrix with lots of zero elements. However, considering
that the sparsity characteristic will disappear when stripes are too dense, we use the kernel
norm to constrain the global low rank of the stripe noise. Therefore, this regularization
term can be formulated as:

R1(S) = ‖S‖∗ (6)

Figure 2. Stripe image and its singular values.

For stripe noise images, we assume that the direction of the stripes is the same as the y
direction. The gradient matrix along the stripe direction is an obvious sparse matrix due to
the sameness of intensity of each column, so this regularization term can be formulated as:

R2(S) =
∥∥DyS

∥∥0 (7)

In addition, a constraint along the x-direction is needed to minimize the first derivative
along the horizontal direction to ensure the continuity and smoothness of the clear images.
According to formula (2), this constraint is added to the stripe-noise prior, and then this
regularization term can be formulated as:

R3(S) = ‖Dx(O− S)‖1 (8)
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Based on the above analysis, the regularization term of the stripe-noise prior can be
summarized as:

R(S) = γ1‖S‖∗ + γ2
∥∥DyS

∥∥
0 + γ3‖Dx(O− S)‖1 (9)

Finally, the destriping model in this paper can be summarized as:

arg min
I,S

1
2
‖O− I − S‖2

F + λ1‖Dx I‖1 + λ2
∥∥Dy I

∥∥
1 + γ1‖S‖∗ + γ2

∥∥DyS
∥∥

0 + γ3‖Dx(O− S)‖1 (10)

where λ1, λ2, γ1, γ2 and γ3 represent regularization parameters used to adjust the weight
of each item to balance the model.

3. ADMM Optimization

The alternating direction multiplier method (ADMM) is usually considered to estimate
the optimal value of this type of optimization problem. Therefore, we can decompose the
above problem into two optimization sub-problems: the sub-problem of solving stripe-
noise prior, S, and the sub-problem of solving image prior, I .

3.1. Image Prior Optimization Process

First, we fixed the stripe-noise prior, S, solving the image prior, I. The optimization
model of I can be expressed as:

Î = arg min
I

1
2
‖O− I − S‖2

F + λ1‖Dx I‖1 + λ2
∥∥Dy I

∥∥
1 (11)

For convenience in the subsequent work, two auxiliary variables, M = Dx I and
N = Dy I, are introduced to transform the above equation into the following form:

Î = arg min
I,M,N

1
2
‖O− I − S‖2

F + λ1‖M‖1 + λ2‖N‖1 (12)

Subject to M = Dx I , N = Dy I

Next, according to [31,32], the augmented Lagrangian equation, formula (12) can be
expressed as:

arg min
I,M,N

1
2‖O− I − S‖2

F + λ1‖M‖1 + λ2‖N‖1+ < L1, M− Dx I >

+ < L2, N − Dy I > + β
2 (‖M− Dx I‖2

F +
∥∥N − Dy I

∥∥2
F)

(13)

where L1, L2 and β respectively represent the Lagrange multipliers and the positive penalty
parameter. The problem of formula (13) can be considered to be divided into the following
three sub-problems:

(1) The M sub-problem can be summarized as

arg min
M

λ1‖M‖1+ < L1, M− Dx I > +
β

2
‖M− Dx I‖2

F (14)

Soft threshold shrinkage is an effective way to solve this type of optimization prob-
lem [33]. Therefore, we can obtain the solution as follows:

Mk+1 = so f t_S(Dx Ik −
Lk

1
β

,
λ1

β
) (15)

where:
so f t_S(T, ϑ) =

T
|T| ∗max(T − ϑ, 0) (16)
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(2) The N sub-problem can be summarized as

arg min
N

λ2‖N‖1+ < L2, N − Dy I > +
β

2

∥∥N − Dy I
∥∥2

F (17)

Same as the M sub-problem, we can get the solution as follows:

Nk+1 = so f t_S(Dy Ik −
Lk

2
β

,
λ2

β
) (18)

(3) The I sub-problem can be described as

Î = arg min
I

1
2‖O− I − S‖2

F+ < L1, M− Dx I > +

< L2, N − Dy I > + β
2 (‖M− Dx I‖2

F +
∥∥N − Dy I

∥∥2
F)

(19)

This equation is a typical quadratic optimization problem from which an optimal
solution can be obtained. By differentiating the above equation, the formula (19) is con-
verted to:

(1 + βDT
x Dx + βDT

y Dy)Ik+1 = (O− Sk) + βDT
x (Mk+1 + L1

β ) + βDT
y (Nk+1 + L2

β ) (20)

The two-dimensional Fourier transform is an effective method to solve the above prob-
lem [34]. Therefore, we update the image prior, I, as follows:

Ik+1 = F−1

(
B

F (1 + βDT
x Dx + βDT

y Dy)

)
(21)

where
B = F (O− Sk) +F (DT

x (βMk+1 + L1)) +F (DT
y (βNk+1 + L2)) (22)

F and F−1 represent the fast Fourier transform and the inverse fast Fourier transform.
Finally, we make the following update to the Lagrange multipliers L1 and L2:

Lk+1
1 = Lk

1 + β(Mk+1 − Dx Ik+1) (23)

Lk+1
2 = Lk

2 + β(Nk+1 − Dy Ik+1) (24)

3.2. Stripe-Noise Prior Optimization Process

Second, we fix the image prior, I, solving the stripe-noise prior, S. The optimization
model of S can be expressed as:

Ŝ = arg min
S

1
2‖O− I − S‖2

F + γ1‖S‖∗ + γ2
∥∥DyS

∥∥
0 + γ3‖Dx(O− S)‖1 (25)

Similarly, three auxiliary variables, W = S, H = DyS, K = Dx(O− S), are introduced
to transform the above equation into the following constrained optimization problem:

arg min
S,H,W,K

1
2‖O− I − S‖2

F + γ1‖W‖∗ + γ2‖H‖0 + γ3‖K‖1 + P1 + P2 (26)

where:

P1 =< L3, W − S > + < L4, H − DyS > + < L5, K− Dx(O− S) > (27)

P2 = µ
2 (‖W − S‖2

F +
∥∥H − DyS

∥∥2
F + ‖K− Dx(O− S)‖2

F) (28)

L3, L4, L5 and µ are Lagrange multipliers and a positive penalty parameter. Similar to
the formula (11), the problem of formula (25) can be considered to be divided into the
following four sub-problems:
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(1) The W sub-problem can be summarized as

arg min
W

γ1‖W‖∗+ < L3, W − S > +
µ

2
‖W − S‖2

F (29)

Singular value soft threshold shrinkage can be used to solve this type of optimization
problem [35]:

Wk+1 = U(so f t_S(∑, γ1))VT (30)

where:

so f t_S(∑, γ1) = diag

{
max(∑

ii
−γ1, 0)

}
i

(31)

(2) The H sub-problem can be summarized as

arg min
H

γ2‖H‖0+ < L4, H − DyS > +
µ

2

∥∥H − DyS
∥∥2

F (32)

This sub-problem can be solved by hard threshold shrinkage [36,37]:

Hk+1 = hard_S(DySk − L4

µ
,

√
2γ2

µ
) (33)

where:

hard_S(α, T) =
{

α, |α| ≥ T
0, |α| < T

(34)

(3) The K sub-problem can be summarized as

arg min
K

γ3‖K‖1+ < L5, K− Dx(O− S) > + µ
2 ‖K− Dx(O− S)‖2

F (35)

Soft threshold shrinkage can be used to solve this type of optimization problem:

Kk+1 = so f t_S(DxO− DxSk − L5

µ
,

γ3

µ
) (36)

(4) The S sub-problem can be summarized as

arg min
S

1
2‖O− I − S‖2

F+ < L3, W − S > + < L4, H − DyS > +

< L5, K− Dx(O− S) > + µ
2 (‖W − S‖2

F +
∥∥H − DyS

∥∥2
F + ‖K− Dx(O− S)‖2

F)
(37)

Similar to the I sub-problem, the solution of this problem is:

Sk+1 = F−1

(
A

F (1 + µ + µDT
y Dy + µDT

x Dx)

)
(38)

where:

A = F
(

O− Ik+1 + L3 + µWk+1
)
+ µF

(
DT

y (Hk+1 +
L4

µ
)

)
− µF

(
DT

x (K
k+1 − DxO +

L5

µ
)

) (39)

Finally, we will make the following update to the Lagrange multipliers L3, L4 and L5:

Lk+1
3 = Lk

3 + µ(Wk+1 − Sk+1) (40)

Lk+1
4 = Lk

4 + µ(Hk+1 − DySk+1) (41)

Lk+1
5 = Lk

5 + µ(Kk+1 − (DxO− DxSk+1)) (42)

The solution process of the model can be summarized in Algorithm 1:
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Algorithm 1: The proposed destriping model

Input: degraded image O, parameters λ1, λ2, γ1, γ2, γ3, β and µ.
1: Initialize.
2: for k= 1: N do
3: update image prior:
4: solve Mk+1, Nk+1 and Ik+1 via(15), (18) and (21).
5: update Lagrange multiplier Lk+1

1 and Lk+1
2 by (23) and (24).

6: stripe component update:
7: solve Wk+1, Hk+1, Kk+1 and Sk+1 via(30), (33), (36) and (38)
8: update Lagrange multiplier Lk+1

3 , Lk+1
4 and Lk+1

5 by (40), (41), (42)
9: end for
Output: image I and stripe S.

4. Simulation and the Actual Destriping Experiment

In order to accurately evaluate the destriping performance of the proposed model,
we carried out the simulation experiments and actual destriping experiments at the same
time, assessing the destriping results both subjectively and objectively. Different indexes
are chosen to evaluate the results, considering the differences between the simulation and
actual destriping experiments.

Furthermore, five typical destriping methods, SLD [15], LRSID [22], GSLV [23],
TVGS [24] and HTVLR [27], are selected as references to evaluate the proposed model.
All methods have adjusted parameters to make the destriping effect suitable for com-
parison, except for LRSID, whose source code is published by the author on his website
homepage. To compare the destriping effect intuitively, we make special remarks for the
obvious differences.

4.1. Simulation Experiment

During the simulation experiments, we selected two typical image evaluation indica-
tors, peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [38], to objectively
evaluate the processing results. These indexes are as follows,

PSNR = 10 log10
2552 × n

‖û− u‖2 (43)

where û and u are, respectively, the restored and the undegraded image, while n is the
number of pixels.

SSIM =
(2m_ûm_u + J1)(2δxy + J2)

m_û2 + m_u2 + J2
(44)

where m_û and m_u denote the mean value of the two images, δxy represents the covariance,
J1 and J2 are constants that can be calculated in the following way: J1 = (k1L)2, J2 = (k2L)2,
L represents the dynamic range of a pixel, and k1 = 0.01, k2 = 0.03.

There are two parts of the simulation experiments: simulation experiments under
periodic and non-periodic stripe noise. The degree of image degradation is determined by r
and I. Here, r denotes the proportion of the degraded region, and I represents the intensity
of the added stripe noise . During the simulation experiments, we select noise ratios of 0.3,
0.5, 0.7 and 0.9, and intensities of 30, 50, 70 and 90. We treat these two parameters as an
array for the convenience of expression. For example, (0.3, 50) represents the stripe ratio of
0.3 and the intensity of 50.

For periodic stripe noise, MODIS image band 32 and one typical region of the hyper-
spectral image of Washington DC Mall are selected to carry out the destriping experiment.
The former is available from https://ladsweb.nascom.nasa.gov/, (accessed on 5 September
2021) and the latter can be downloaded from https://engineering.purdue.edu/~biehl/
MultiSpec/ (accessed on 5 September 2021). Since the existing destriping methods all

https://ladsweb.nascom.nasa.gov/
https://engineering.purdue.edu/~biehl/MultiSpec/
https://engineering.purdue.edu/~biehl/MultiSpec/
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have a good removal effect in this case, we have only selected the results with noticeable
differences for comparison. The partial destriping results of MODIS data are shown in
Figure 3. The complete simulation data and results can be obtained from Tables 1 and 2,
and the best performance indexes are shown in bold.

Figure 3. Destriping results of MODIS image under periodic stripes (From top to bottom, the noise
attributes of ratio and intensity are respectively (0.3, 70), (0.5, 90), (0.7, 50), (0.9, 30). From left to right
are the original image, degraded image, the destriping results of SLD, LRSID, TVGS, GSLV, HTVLR
and the Proposed).

Table 1. PSNR of different models under periodic stripe noise.

Image Method

r = 0.3 r = 0.5 r = 0.7 r = 0.9

Intensity Intensity Intensity Intensity

30 50 70 90 30 50 70 90 30 50 70 90 30 50 70 90

Hyperspectral image

SLD 40.7623 40.3565 39.7621 33.1389 39.9614 38.6069 37.2848 35.9059 39.5197 37.6037 35.5704 14.6173 39.5197 37.6037 35.5040 14.6713

LRSID 35.3815 35.6900 35.7350 35.7470 35.8817 35.9247 35.9308 35.9474 35.8469 35.9239 35.9254 35.8749 35.8469 35.9239 35.9254 35.8749

TVGS 39.0808 39.0958 39.0875 38.7651 38.4572 38.3999 38.4197 38.4480 37.8913 37.8211 37.7227 37.5384 37.8913 37.8211 37.7227 37.5384

GSLV 35.7031 35.7143 35.7560 35.7098 35.6710 35.6377 35.6268 35.5980 35.6287 35.5391 35.4226 35.2289 35.6287 35.5391 35.4226 35.2289

HTVLR 35.9175 32.8299 30.4946 28.6029 35.8070 32.8267 30.5155 28.6380 35.8323 32.8756 30.5558 28.6825 35.6965 32.7996 30.5307 28.6519

Proposed 39.9943 39.2962 38.9919 38.8458 39.4150 38.6377 38.6793 38.9331 39.2052 38.6535 38.4616 38.1107 39.2052 38.6535 38.4616 38.1107

MODIS

SLD 52.1371 51.4041 50.4967 49.5176 50.9999 48.9686 47.0117 45.2834 49.0407 47.5429 45.3456 43.4824 47.0761 44.8401 42.3219 40.3089

LRSID 39.9467 39.9152 39.9967 40.1257 40.1165 40.1547 40.1851 40.2119 40.1399 40.2250 40.3121 40.4414 39.7306 39.6969 39.6988 39.6793

TVGS 47.9489 47.2767 47.0315 46.9728 48.9832 48.9284 48.7219 48.3933 47.5304 47.1522 47.2241 47.2893 44.2714 43.8235 42.9537 42.3731

GSLV 40.3947 40.5206 40.7104 40.8861 41.0941 41.3768 41.6219 41.8463 40.9006 41.3199 41.8689 42.4452 40.2217 40.2402 40.4891 40.6818

HTVLR 38.4765 34.1368 31.2640 29.0932 37.8805 33.9375 31.1168 28.9884 38.1052 33.9021 31.1079 28.9878 38.0341 33.8598 31.1145 28.9840

Proposed 48.6227 46.9238 46.1389 45.9567 51.2011 50.9063 50.7519 50.6098 49.8948 49.4367 49.4704 49.7446 46.9948 44.9491 43.1214 42.8721
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Table 2. SSIM of different models under periodic stripe noise.

Image Method

r = 0.3 r = 0.5 r = 0.7 r = 0.9

Intensity Intensity Intensity Intensity

30 50 70 90 30 50 70 90 30 50 70 90 30 50 70 90

Hyperspectral image

SLD 0.9955 0.9946 0.9932 0.9911 0.9949 0.9926 0.9902 0.9841 0.9930 0.9876 0.9791 0.4314 0.9930 0.9876 0.9791 0.4314

LRSID 0.9918 0.9927 0.9930 0.9930 0.9939 0.9939 0.9939 0.9939 0.9934 0.9937 0.9937 0.9935 0.9934 0.9937 0.9937 0.9935

TVGS 0.9964 0.9964 0.9963 0.9963 0.9960 0.9960 0.9960 0.9960 0.9953 0.9953 0.9953 0.9952 0.9953 0.9953 0.9953 0.9952

GSLV 0.9910 0.9909 0.9908 0.9905 0.9910 0.9908 0.9899 0.9899 0.9908 0.9905 0.9900 0.9891 0.9908 0.9905 0.9900 0.9891

HTVLR 0.9942 0.9917 0.9816 0.9836 0.9937 0.9911 0.9878 0.9832 0.9938 0.9914 0.9880 0.9836 0.9935 0.9912 0.9879 0.9831

Proposed 0.9964 0.9964 0.9964 0.9963 0.9962 0.9962 0.9961 0.9961 0.9957 0.9956 0.9955 0.9955 0.9957 0.9956 0.9955 0.9953

MODIS

SLD 0.9987 0.9982 0.9975 0.9966 0.9979 0.9959 0.9930 0.9892 0.9967 0.9926 0.9866 0.9785 0.9975 0.9949 0.9911 0.9860

LRSID 0.9983 0.9983 0.9983 0.9984 0.9983 0.9983 0.9983 0.9983 0.9983 0.9984 0.9984 0.9985 0.9983 0.9983 0.9983 0.9983

TVGS 0.9991 0.9991 0.9991 0.9991 0.9991 0.9991 0.9991 0.9991 0.9990 0.9990 0.9990 0.9990 0.9989 0.9989 0.9988 0.9988

GSLV 0.9982 0.9982 0.9981 0.9979 0.9982 0.9982 0.9981 0.9980 0.9982 0.9982 0.9981 0.9979 0.9981 0.9979 0.9976 0.9973

HTVLR 0.9995 0.9989 0.9981 0.9944 0.9991 0.9982 0.9978 0.9967 0.9993 0.9987 0.9978 0.9967 0.9993 0.9986 0.9978 0.9967

Proposed 0.9996 0.9996 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9995 0.9994 0.9993 0.9992

According to the data in Table 1, SLD performs better when dealing with low-ratio and
-intensity stripes; the proposed model shows a better destriping effect for the high-ratio and
-intensity stripes. However, it can be found in Figure 3 that some residual stripes remain
in the images restored by SLD, which shows a different result from Table 1. Furthermore,
the results of the hyperspectral image show that the PSNR of SLD decreased rapidly with
the noise ratio and intensity of (0.7, 90) and (0.9, 90), which indicates that it lost the original
destriping effect. In terms of structural similarity (SSIM), the proposed model always
performed best.

MODIS image band 20 and two typical regions of a hyperspectral image of the
Washington DC Mall were chosen to carry out the destriping experiment with non-periodic
stripes. The partial destriping results are shown in Figures 4 and 5, with rectangular boxes
in the images marking regions with obvious differences. Tables 3 and 4 show PSNR and
SSIM, respectively, with the best-performing indices highlighted in bold.

Figure 4. Destriping results under non-periodic stripes (From top to bottom are hyperspectral
image01 (0.5, 50), MODIS01 (0.3, 70), hyperspectral image02 (0.5, 90), MODIS02 (0.9, 30). From left
to right are the original image, degraded image, the destriping results of SLD, LRSID, TVGS, GSLV,
HTVLR and the Proposed).
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Figure 5. Stripe noise separated from the degraded image (From top to bottom are stripe noise of
hyperspectral image01 (0.5, 50), MODIS01 (0.3, 70), hyperspectral image02 (0.5, 90), MODIS02 (0.9,
30). From left to right are the added stripe noise, the separation result of SLD, LRSID, TVGS, GSLV,
HTVLR and the Proposed).

Table 3. PSNR of different models under non-periodic stripe noise.

Image Method

r = 0.3 r = 0.5 r = 0.7 r = 0.9

Intensity Intensity Intensity Intensity

30 50 70 90 30 50 70 90 30 50 70 90 30 50 70 90

Hyperspectral
image (01)

SLD 35.3447 31.7048 29.0013 26.8673 32.0895 30.1640 27.4199 20.6502 32.2696 28.0868 23.0584 14.9193 30.6777 26.3734 19.3105 10.6051

LRSID 33.8233 31.4653 29.1579 27.0463 31.5824 30.3996 27.8443 25.5226 31.8777 28.2986 25.2156 22.5195 30.7139 26.5208 23.1218 20.3287

TVGS 38.7072 36.2829 33.4100 30.6928 34.2652 33.9721 31.0179 28.3584 34.0143 30.0883 26.9076 24.2418 31.5150 27.7069 24.3439 21.4300

GSLV 34.6330 32.8944 30.9638 29.0401 32.6877 31.6578 29.5419 27.5285 33.4977 30.3310 27.5669 25.0776 32.8353 29.7059 26.4824 23.4092

HTVLR 35.0508 31.2176 28.9420 28.8632 33.5651 31.4572 27.5688 26.6761 33.0854 29.2073 25.5829 22.9086 31.8186 28.4824 24.1032 20.4523

Proposed 35.1447 34.5641 33.9571 33.2269 33.4716 33.6839 32.7429 31.7382 34.8838 33.6992 32.2696 30.8142 34.2725 33.5532 32.6933 31.6803

MODIS(01)

SLD 37.3381 33.2820 30.4637 28.3107 34.3412 29.9283 26.9709 24.7386 32.2575 27.8777 24.9191 18.5936 31.9292 27.5246 24.5699 12.1103

LRSID 35.0517 32.4045 29.9019 27.7256 32.8137 29.0122 26.0444 23.6232 31.3061 26.9440 23.6602 21.0059 31.1085 26.9318 23.6982 20.9615

TVGS 42.0600 38.6558 35.1310 32.1397 36.6404 31.9843 28.4645 25.7084 33.4679 28.9072 25.4481 22.6511 31.3206 27.4750 24.5042 22.0021

GSLV 37.3673 34.8319 32.4582 30.3732 35.0774 31.5064 28.5077 25.9658 33.1705 30.1618 26.8225 23.9861 31.9486 28.9601 25.8517 23.2652

HTVLR 34.7274 32.9110 29.5728 26.8078 32.2557 30.2083 28.2044 25.2784 33.0159 28.2989 25.7874 22.3446 31.8347 27.0853 23.9765 22.4003

Proposed 34.3651 33.9262 33.3634 32.6629 33.2117 32.1403 31.0206 29.8827 33.7232 33.1588 32.4502 31.5701 32.3019 30.6507 29.0172 27.4448

Hyperspectral
image (02)

SLD 36.2916 31.9875 29.0546 26.8216 35.3499 31.0813 28.1446 20.0484 32.9993 28.6127 22.3813 13.4758 31.0791 26.6511 17.7244 10.3148

LRSID 35.7304 32.4357 29.7151 27.4146 35.5710 31.9302 28.9187 26.3609 33.3114 29.3193 26.1621 23.4309 31.7662 27.0848 23.5241 20.6438

TVGS 43.9596 39.5005 35.1955 31.7593 42.8190 37.4688 33.1838 29.9043 35.2863 30.9347 27.7148 25.0720 32.8635 28.3649 24.7524 21.7456

GSLV 38.9853 35.2414 32.2460 29.7611 38.1829 34.5052 31.5713 29.1273 35.9022 31.8174 28.6891 26.0784 36.1973 31.3977 27.3928 23.9869

HTVLR 36.4678 33.5402 31.8486 28.3441 36.2421 32.8050 29.4345 25.6534 34.8462 29.8140 25.6910 22.6884 33.6814 28.8084 24.0925 22.1252

Proposed 39.2506 37.5226 35.8696 34.3269 39.3499 38.1468 36.7722 35.3357 37.3850 35.3551 33.4955 31.8256 38.0805 36.6378 35.1649 33.6987

MODIS(02)

SLD 37.5798 33.4708 30.6264 28.4564 33.8344 29.6296 26.7684 24.5903 32.3259 27.9541 24.1494 18.4432 32.0122 27.6443 24.2635 11.8774

LRSID 34.8305 32.1984 29.7625 27.6320 32.7221 28.9821 26.0387 23.6293 31.3837 27.0681 23.7680 21.0766 31.7608 27.4014 24.0023 21.1461

TVGS 40.0048 37.1845 34.1550 31.5341 35.7214 31.5371 28.2808 25.6356 33.4506 29.0122 25.6242 22.8340 32.3990 28.2698 25.0687 22.3843

GSLV 35.0578 33.2712 31.4417 29.7087 33.7419 30.8448 28.1933 25.8462 33.6929 29.2312 26.9986 24.1839 33.3650 29.6181 26.4697 23.7723

HTVLR 36.1366 31.1110 29.7969 27.3224 34.9065 30.9915 26.9208 24.6307 33.3510 30.5450 24.1067 22.8506 32.4660 26.7465 25.0747 23.1931

Proposed 31.2816 30.5062 29.8869 29.3222 31.6262 30.9520 30.2050 29.3541 30.8442 29.9709 29.1658 28.3991 31.1998 30.1065 28.8306 27.5111
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Table 4. SSIM of different models under non-periodic stripe noise.

Image Method

r = 0.3 r = 0.5 r = 0.7 r = 0.9

Intensity Intensity Intensity Intensity

30 50 70 90 30 50 70 90 30 50 70 90 30 50 70 90

Hyperspectral
image (01)

SLD 0.9921 0.9844 0.9728 0.9570 0.9879 0.9770 0.9601 0.8346 0.9875 0.9707 0.9066 0.5559 0.9810 0.9546 0.8046 0.1775

LRSID 0.9917 0.9882 0.9813 0.9698 0.9889 0.9850 0.9747 0.9568 0.9889 0.9785 0.9563 0.9119 0.9853 0.9647 0.9254 0.8630

TVGS 0.9959 0.9945 0.9917 0.9864 0.9934 0.9922 0.9879 0.9805 0.9923 0.9863 0.9745 0.9534 0.9881 0.9755 0.9487 0.9021

GSLV 0.9903 0.9884 0.9852 0.9797 0.9890 0.9868 0.9827 0.9763 0.9890 0.9839 0.9751 0.9603 0.9886 0.9825 0.9677 0.9362

HTVLR 0.9922 0.9876 0.9788 0.9772 0.9902 0.9861 0.9657 0.9649 0.9913 0.9791 0.9623 0.9294 0.9874 0.9748 0.9341 0.8770

Proposed 0.9907 0.9902 0.9897 0.9890 0.9900 0.9895 0.9886 0.9874 0.9905 0.9895 0.9881 0.9860 0.9901 0.9895 0.9886 0.9875

MODIS(01)

SLD 0.9912 0.9796 0.9634 0.9436 0.9850 0.9625 0.9322 0.8968 0.9757 0.9403 0.8955 0.7501 0.9782 0.9463 0.9043 0.3482

LRSID 0.9931 0.9851 0.9708 0.9486 0.9875 0.9643 0.9273 0.8767 0.9796 0.9382 0.8757 0.7974 0.9846 0.9509 0.8828 0.7828

TVGS 0.9979 0.9958 0.9917 0.9848 0.9946 0.9856 0.9663 0.9355 0.9896 0.9685 0.9276 0.8693 0.9889 0.9712 0.9361 0.8759

GSLV 0.9949 0.9925 0.9888 0.9833 0.9935 0.9870 0.9740 0.9510 0.9908 0.9792 0.9564 0.9154 0.9586 0.9821 0.9631 0.9270

HTVLR 0.9907 0.9856 0.9694 0.9452 0.9848 0.9724 0.9508 0.9101 0.9878 0.9597 0.9254 0.8656 0.9810 0.9529 0.9065 0.8160

Proposed 0.9947 0.9942 0.9936 0.9930 0.9945 0.9937 0.9926 0.9911 0.9945 0.9939 0.9931 0.9920 0.9940 0.9925 0.9902 0.9869

Hyperspectral
image (02)

SLD 0.9757 0.9401 0.8936 0.8427 0.9710 0.9330 0.8814 0.6978 0.9462 0.8703 0.7073 0.2751 0.9270 0.8403 0.5567 0.0625

LRSID 0.9804 0.9533 0.9131 0.8648 0.9818 0.9586 0.9205 0.8648 0.9596 0.8989 0.8184 0.7155 0.9455 0.8670 0.7638 0.6477

TVGS 0.9949 0.9871 0.9676 0.9347 0.9943 0.9858 0.9696 0.9422 0.9710 0.9302 0.8702 0.7975 0.9536 0.8967 0.8125 0.7134

GSLV 0.9874 0.9737 0.9489 0.9114 0.9855 0.9720 0.9518 0.9238 0.9736 0.9397 0.8906 0.8287 0.9756 0.9396 0.8783 0.7906

HTVLR 0.9756 0.9632 0.9421 0.8749 0.9794 0.9477 0.9042 0.8063 0.9709 0.8986 0.8041 0.7174 0.9642 0.9113 0.7597 0.6956

Proposed 0.9864 0.9828 0.9778 0.9713 0.9865 0.9835 0.9790 0.9726 0.9793 0.9697 0.9564 0.9395 0.9830 0.9771 0.9686 0.9572

MODIS(02)

SLD 0.9732 0.9481 0.9223 0.8957 0.9568 0.9204 0.8800 0.8367 0.9489 0.9056 0.8354 0.6898 0.9508 0.9083 0.8485 0.3042

LRSID 0.9795 0.9535 0.9250 0.8941 0.9641 0.9239 0.8741 0.8132 0.9549 0.9047 0.8325 0.7407 0.9570 0.9068 0.8312 0.7263

TVGS 0.9973 0.9921 0.9826 0.9639 0.9849 0.9686 0.9325 0.8879 0.9694 0.9408 0.8979 0.8341 0.9669 0.9354 0.8868 0.8148

GSLV 0.9855 0.9768 0.9644 0.9466 0.9781 0.9633 0.9390 0.8997 0.9674 0.9461 0.9185 0.8754 0.9700 0.9501 0.9206 0.8705

HTVLR 0.9779 0.9326 0.9177 0.8988 0.9740 0.9385 0.9068 0.8515 0.9607 0.9252 0.8607 0.8199 0.9552 0.9055 0.8469 0.7995

Proposed 0.9740 0.9733 0.9721 0.9697 0.9750 0.9694 0.9597 0.9485 0.9645 0.9589 0.9538 0.9488 0.9625 0.9549 0.9461 0.9357

The objective evaluation indexes in Tables 3 and 4 show that the TVGS performs better
in some cases, but the proposed model shows stronger robustness over different noise
intensities and ratios. HTVLR shows a good destriping effect at low intensity, but, as the
noise gradually intensity increased, it was difficult for HTVLR to maintain good destriping
performance. Subjectively, residual stripes and gray-scale loss are observed in the images
restored by SLD, LRSID and HTVLR. TVGS and GSLV can remove the most noticeable
stripes, but ripple effects influence the smoothness of the images. According to Figure 5,
it can be found that the structure of the stripes is clear and there is no obvious image
information. Additionally, the stripe image separated by the proposed model is much more
similar to the added stripe when we focus on the region marked by the red rectangle.

During the experiments, it was found that the existing methods showed worse removal
effects when dealing with the stripes of high intensity and ratio, while the proposed model
still maintained excellent performance. In this paper, related simulation experiments were
carried out with MODIS data. We conducted experiments on a degraded image with
a noise ratio of 0.9 and a noise intensity of 80, and the destriping results are shown in
Figure 6. It shows that there are lots of residual stripes in the images restored by other
methods. Additionally, we compared the column mean value of the restored images and
the undegraded image; the results are shown in Figure 7. The curve in blue is the column
mean value of the undegraded image, while the curve in orange represents that of restored
images in Figure 6. We can find that the curve restored by the proposed model is generally
consistent with the original curve.
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Figure 6. Destriping results under high-intensity stripes (0.9, 80) (From left to right: the first row
are the degraded image and the destriping results of SLD, LRSID, TVGS, GSLV, HTVLR and the
Proposed; the second row are the added stripe noise and the stripe noise separated by SLD, LRSID,
TVGS, GSLV, HTVLR and the Proposed).

Figure 7. Comparison of the column mean value of the undegraded image and restored images in
Figure 6 (From left to right: the first row are the results of the images restored by SLD and LRSID;
the second row is the results of the images restored by TVGS and GSLV; the third row is the results of
the images restored by HTVLR and the Proposed).

Remote sensing images usually contain other random noise types that may affect the
removal of stripe noise, so we conducted a simple simulation experiment on this situation.
We added stripe noise with a ratio of 0.5 and an intensity of 50 to an image containing
Gaussian noise, Poisson noise, salt-and-pepper noise and speckle noise to carry out the
destriping experiment. The results are shown in Figure 8, from which we can find that
the proposed model could still remove the stripes, but the removal effect was be affected
by other random noise types. There is a certain degree of rippling effect in the processed
results of the images containing Gaussian noise, Poisson noise and speckle noise, and there
are some residual stripes in the image containing speckle noise.
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Figure 8. Destriping results under different random noise forms (From top to bottom are the results of
images containing Gaussian noise, Poisson noise, salt and pepper noise and speckle noise. From left
to right are the degraded image, the destriping results of SLD, LRSID, TVGS, GSLV, HTVLR and
the Proposed).

We also tested the destriping performance on non-remote sensing images using data
from the SIDD dataset, which can be found at https://paperswithcode.com/dataset/sidd,
(accessed on 15 November 2021). Figure 9 shows these destriping results, which indicate
that the stripes are properly separated and there are no residual stripes in the restored
images. The proposed model also works well with non-remote sensing data.

Figure 9. Destriping results of non-remote sensing images (From top to bottom are the different
images. From left to right are the original image, degraded image, the restored image and stripes
separated by the proposed model).

4.2. Actual Destriping Experiment

During the actual destriping experiments, MODIS and our data were selected for
verification of the destriping performance and applied effects of the proposed model.
The decrease of the standard deviation and the photo response non-uniformity (PRNU)
of the image’s uniform region were selected to evaluate the processing results objectively.
The PRNU is as follows:

PRNU =
σ

m_u
(45)

where σ and m_u represent the standard deviation and the mean value of the image u.

https://paperswithcode.com/dataset/sidd
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Figure 10 displays our data, with the uniform region utilized to calculate the PRNU,
itself denoted by the rectangular box in the bottom-right corner. Table 5 depicts the
PRNU. The proposed model is found to have the best performance, and the image’s PRNU
decreases by 4.2%.

Table 5. PRNU of uniform region.

Method Original SLD LRSID TVGS GSLV HTVLR Proposed
PRNU 0.1039 0.0939 0.0675 0.0762 0.0795 0.1009 0.0619

Figure 10. Real remote sensing image and uniform region.

Additionally, we can get an intuitive comparison of MODIS data from Figure 11,
and the red ellipses are used to mark the residual stripes in the images. Figure 12 is the
enlarged processing effect of the rectangular region. Figure 13 shows the destriping results
of our data, wherein ellipses are used to mark regions with a very poor removal effect.
Figure 14 shows the partial enlargement of the rectangular region in the upper-right corner
of Figure 10. The standard deviations of the images are shown in Table 6.

Figure 11. Destriping results of MODIS remote sensing images (From top to bottom are MODIS01,
MODIS02, MODIS03. From left to right are original image, the destriping results of SLD, LRSID,
TVGS, GSLV, HTVLR and the Proposed).
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Table 6. Standard deviations of images (sigma).

Original SLD LRSID TVGS GSLV HTVLR Proposed

MODIS01 49.6308 48.7199 46.7413 47.4065 45.5546 48.2170 39.8696
MODIS02 30.3869 30.1396 29.7943 30.0316 30.0455 30.1504 29.9884
MODIS03 32.4919 32.2129 30.7052 31.2176 30.0831 32.0267 30.0383
Our data 42.6685 42.4436 41.9675 42.3616 42.1085 42.5861 41.3120

Figure 12. Partially enlarged view of the destriping results of MODIS remote sensing images.
(From top to bottom are MODIS01, MODIS02, MODIS03. From left to right are original image,
the destriping results of SLD, LRSID, TVGS, GSLV, HTVLR and the Proposed).

Figure 13. Destriping result of the real remote sensing image (From left to right, the first row are
the destriping results of SLD, LRSID and TVGS; the second row are the destriping results of GSLV,
HTVLR and the Proposed).

Considering the influence of excessive smoothing, it is necessary to integrate subjective
and objective factors to evaluate models.

Table 6 demonstrates that the LRSID performs better on MODIS02. However, it is clear
from the view of the destriping results in Figure 12 that SLD and LRSID do not completely
remove stripes. Besides, the results in Figures 11 and 12 show that the proposed model
removes stripe noise more thoroughly, and the restored image is clearer, though there
are still a few residual stripes in the regions marked by the red ellipse. From the results
of processing our data, TVGS and the proposed model performed better; however, the
proposed model obtained a clearer image with no ripple effects or residual stripes.
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Figure 14. Local processing results of real remote sensing images (From left to right, the first row are
the destriping results of SLD, LRSID and TVGS; the second row are the destriping results of GSLV,
HTVLR and the Proposed).

5. Discussion
5.1. Parameter Value Determination

The selection of appropriate parameters is very critical to the optimization model.
There are five regularization parameters λ1, λ2, γ1, γ2, γ3 and two positive penalty pa-
rameters, β and µ, in the proposed model. Empirical adjustment is the most commonly
used method to determine the range of parameters. Over a large number of simula-
tion experiments, the proposed model showed better robustness when the parameters
change within a smaller range. We determined the range of parameter changes as follows:
λ1 ∈ (10−3, 10−2), λ2 ∈ (10−5, 10−4), γ1 ∈ (10−3, 10−2), γ2 ∈ (0.1, 1). As for the γ3, we se-
lected γ3 ∈ (10−5, 10−4) for periodic stripes, and γ3 ∈ (10−3, 10−2) for non-periodic stripes.

5.2. Result Discussion

According to the results of all experiments, the proposed model can remove the stripe
noise in most cases, but there are still some issues worth discussing. As can be seen from
Tables 1 and 3, the PSNR of the proposed model is always lower than that of other models
when dealing with stripe noise of low intensity and ratio; in some cases, the gap is still large.
It means that it cannot fully constrain the image prior and the stripe-noise prior in such case.
The proposed model has several parameters that influence the destriping performance
in various conditions, by determining the weight of each constraint item. When dealing
with low-ratio and -intensity stripe noise, the low-rank feature can successfully constrain
the stripe noise components; however, when dealing with high-noise-ratio and -intensity
stripe noise, the sparsity feature constrains the stripe noise more effectively. We utilized
the same parameters to achieve the destriping effect in different conditions during the
experiments, to ensure the model’s reliability and practicability. This limited the weight of
each constraint item, making it difficult to reach optimal constraints in some cases. Where
stripes can be detected before removal, we can choose a more reasonable destriping model
to achieve a better removal effect. Additionally, there is another problem in Figure 7. In the
first and last few columns, the column mean values of the image restored by the proposed
model are slightly different from those of the undegraded image. This could be have been
caused by inappropriate border treatment, which could be improved in follow-up research.
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5.3. Limitation

Although the proposed model achieves a superior destriping effect, it still has some
limitations. The current research has mainly focused on removing stripe noise from a single
remote sensing image, and the model is unable to perform destriping on remote sensing
images with different channels, such as multispectral images. Furthermore, when there
are some small fragment cases, the low-rank characteristics of the stripe components will
be destroyed, significantly weakening the model’s stripe noise-removal effect. Therefore,
when the image contains a lot of random noise, the model’s destriping effect may be
considerably diminished.

6. Conclusions

The majority of image processing problems are ill-posed inverse problems that can be
addressed with a suitable regularization model. The optimum result can be obtained by
adding appropriate regularization terms to the underlying priors.

In this paper, under the premise of completely retaining the image information, we
fully considered stripe noise’s potential low-rank and sparse properties and proposed a
stable and effective destriping model. Constrained by these properties, the model can
preserve image details while dealing with stripe noise. Combining the subjective and
objective experimental results, the proposed model obtained better destriping performance
than the other five existing typical models. Furthermore, the proposed model could still
stably remove the stripe noise when other methods lost their effect. It shows an excellent
stripe noise removal effect for different degrees of degraded images with strong robustness,
and is, thus, worthy of promotion.

The proposed model shows strong competitiveness in both subjective and objective
evaluation. However, it still has some problems, such as many solving processes, a large
amount of calculation, and a long processing time, which will be continuously improved
in follow-up research . In addition, random noise will pose a new challenge to the removal
of stripe noise; whichever noise is preferentially processed will affect other types of noise.
Therefore, related research will also be carried out in follow-up to remove all of types of
noise simultaneously.
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Abbreviations
The following abbreviations are used in this manuscript:

TV Total Variation
FIR Finite Impulse Response
ADMM Alternating Direction Multiplier Method
PSNR Peak Signal to Noise Ratio
SSIM Structural Similarity
PRNU Photo Response Non-uniformity
SLD Statistical Linear Destriping
LRSID Low-Rank Single-Image Decomposition
GSLV Global Sparsity and Local Variational
TVGS Total Variation and Group Sparse
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