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A B S T R A C T

The photonics integrated interference imaging system (PIIIS) is a recently developed far-field imaging approach
aimed at compacting structures and acquiring high imaging performance. In this regard, to acquire higher
imaging quality, several lens patterns have been developed, providing low-frequency intensive but high-
frequency sparse measurements of the visibility function. However, sparse measurements at high frequency
produce Gibbs-ringing artifacts in the image reconstruction, severely damaging the PIIIS imaging quality. In this
study, a new data penalty for revised entropy is proposed for PIIIS, and a simple reconstruction algorithm using
the Newton method is developed. A reconstruction experiment adopting the hierarchical multistage pattern
is implemented on resolution board (USAF1951) targets with bright and black backgrounds. The outstanding
improvement in the experimental results proves the feasibility of suppressing the ringing artifacts in the images
reconstructed in PIIIS.
. Introduction

The spatial resolution of conventional diffraction-limited optical
ystems is proportional to the diameter of the pupil. Currently, higher
patial resolution is required for human activities and research, leading
o a dramatic increase in the size, weight, and power (SWaP) of the
onventional optical systems. A new imaging telescope, the Segmented
lanar Imaging Detector for Electro-optical Reconnaissance (SPIDER),
as been proposed based on standard imaging interferometer tech-
iques [1,2]. The SPIDER imager can reduce SWaP by ∼10–100 times
or a similar resolution by introducing photonic integrated circuits
PICs) and replacing bulk lens systems with compact lenslets array [3].
ence, the SPIDER imager comprises two parts: a sensor system and a

ignal-processing module. The sensor system consists of a lenslet array
nd couples spatial light into a signal-processing module. The signal-
rocessing module is used to obtain four balanced four-quadrature
nterference signals and contains waveguide arrays, arrayed waveguide
ratings (AWGs), and balanced four-quadrature detectors (BFQDs) [4–
]. Subsequently, these detected photocurrent signals can be used to
alculate complex visibility by digital signal processing.

The SPIDER imager interferes with the light from two different
enslets spaced apart by a distance vector 𝐵⃗, also called the baseline.
he separate two lenslets produce an angular resolution inversely
roportional to 𝐵 and independent of the individual telescope diameter.

∗ Corresponding authors.
E-mail addresses: zxf@ciomp.ac.cn (X. Zeng), zhangfjyz@sina.cn (F. Zhang).

Based on the Van Cittert–Zernike theorem, interference signal measures
the certain complex visibility corresponding to spatial frequency 𝑓 =
𝐵⃗∕𝜆𝑧, where 𝜆 is the observing wavelength and 𝑧 is the distance from
the target to the imager pupil plane. Subsequently, the visibilities are
arranged in a numerical matrix considering the spatial frequency as
the coordinate [3]. To some extent, the complex visibility matrix corre-
sponds to the Fourier transform of observation. Hence, by applying the
inverse Fourier transform (IFT) to the visibility matrix, the observed
targets can be reconstructed. Moreover, the image quality is mainly
related to acquiring the visibilities filled in the matrix of different
spatial frequencies.

To improve imaging quality, several lenslet array patterns have been
proposed for the photonics integrated interference imaging system (PI-
IIS), such as SPIDER pairing methods [5], hierarchical multistage pat-
tern [6], rectangular pattern [7], and hexagonal array pattern [8]. Chu
et al. [5] proposed an adjustable baseline pairing method to acquire
better imaging quality for different frequency-intensive targets. For
natural scenes, they are low-frequency intensive targets, characterized
by a heavy-tailed gradient distribution [9]. Hence, low-frequency inten-
sive patterns tend to acquire higher imaging quality. The subsequent
patterns focus on filling the low-frequency complex visibilities and
they ingeniously propose observing the zero-frequency visibility [6–8],
improving imaging quality.
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The imaging improvements using the low-frequency intensive pair-
ng method have been confirmed for most observations. For some
pecial observations, which are high/middle-frequency intensive, ad-
ustable pairing methods could guarantee image quality [5]. All pairing
atterns lead to sparse sampling in some ‘‘unimportant’’ frequencies,
nd adding sampling for these ‘‘unimportant’’ frequencies would be
xpensive. However, Gibbs-ringing artifacts are produced when recon-
tructing images raised by sparse sampling [10,11]. Moreover, PIIIS is
ore capable of observing targets with significant gradient changes,
hich can be explained through compressive sampling [8,12]. How-
ver, targets with significant gradient changes further aggravate the
ibbs-ringing artifacts, and these artifacts severely reduce the imaging
uality of PIIIS.

Currently, several approaches have been proposed to reduce the
isturbances due to Gibbs-ringing artifacts in Magnetic resonance imag-
ng [13]. One of the more direct methods is image filtering. However,
his method leads to blurring and a significant reduction of high-
requency information [14]. Based on Gegenbauer polynomials, more
dvanced algorithms have been proposed for reconstructing smooth
reas piecewise [15]. Nevertheless, the requirements for precise edge
etection are still a challenge for degraded images. Deep learning tech-
iques, especially convolutional neural networks, have been applied to
uppress ringing artifacts [13]. However, the reliability of the training
mages depends greatly on the available databases. Moreover, PIIIS is
sed for far-field imaging, and thus it is difficult to obtain the brightness
istribution of observation.

Several outstanding image reconstruction algorithms have been
roposed for radio/optical interferometer, such as maximum entropy
ethods (MEM) [16]. The underlying idea of MEM is to obtain the least

nformative image that is consistent with the data. Inspired by the well-
eveloped entropy method in optical interferometry, we propose a prior
mage based penalty designed to preserve the advantage of entropy and
tabilize the algorithm. Hence, the data penalty term is termed ‘‘revised
ntropy’’. The penalty is designed to penalize high bias deviating from
he ringing-free or ringing-less prior images. Moreover, the data penalty
erm of this method has a ‘‘U-shape’’ design, which is typical of convex
unctions. When minimizing this ‘‘U-shaped term’’ with the L2 data
idelity norm, the reconstruction drops to the prior, set as the bottom
f the U-shaped term, and simultaneously maintains data fidelity.

To demonstrate the reconstruction of the revised entropy for PIIIS,
e developed a simple revised entropy algorithm using the Newton
ethod and adopted a hierarchical multistage pattern as the image

econstruction system architecture [6]. In addition to the revised en-
ropy penalty, other restrictions are also added to the revised entropy
lgorithm to obtain reconstruction images.

The remainder of this paper is structured as follows. In Section 2,
e briefly describe the forward imaging model mathematically and
resent the overall structure of the PIIIS. In Section 3, the entropy
s presented. Subsequently, we introduce the revised entropy penalty
nd develop a simple revised entropy algorithm using the Newton
ethod. In Section 4, we demonstrate the feasibility of suppressing

inging artifacts using bright and black background resolution board
USAF1951) targets. The conclusions are presented in Section 5.

. Imaging principles

For incoherent extended observations in the far-field, the Van
ittert–Zernike theory provides the complex visibility of two different
oints in the 𝑢𝑣 plane, namely the lenslet array plane [2] as follows:

𝑉
(

𝐷⃗1, 𝐷⃗2, 𝜆
)

= ∫𝛴
I0
(

𝑥⃗
)

exp
{

−2 i𝜋
𝜆𝑧0

[(

𝐷⃗1 − 𝐷⃗2

)

∙ 𝑥⃗
]

}

d𝑥⃗ (1)

where 𝐷⃗1 and 𝐷⃗2 are coordinate vectors of two lenslets in the 𝑢𝑣 plane,
𝑥⃗ is the coordinate vector for the observation plane, and 𝑧0 represents
the distance between the two planes. I0(𝑥⃗) is the brightness distribution
2

of the observation and 𝐵⃗ = 𝐷⃗1 − 𝐷⃗2 is the baseline vector. The spatial
requency can be expressed as follows:

⃗ = (𝜇, 𝜈) = 𝐵⃗
𝜆z0

(2)

PICs are introduced to calculate the complex visibilities of different
spatial frequencies. A diagram of a PIIIS is shown in Fig. 1. A pair
of lenslets composes one baseline, and each lenslet is equipped with
𝑛 input waveguides to obtain an approximately 2n𝜆∕𝐷 field of view
(FOV) [17]. The AWGs and BFQDs are used to obtain four-quadrature
signals of quasi-monochromatic light 𝜆 with a baseline 𝐵⃗ [3]. The
complex visibility is solved using the quadrature modulation detection
technique [5,6].

The visibility function 𝑉 is hidden in four-quadrature signals IA, IB,
IC, ID as follows:

IA = 1
4

(

I1 + I2 + 2
√

I1I2 |𝑉 | cos𝜑
)

IB = 1
4

(

I1 + I2 + 2
√

I1I2 |𝑉 | sin𝜑
)

IC = 1
4

(

I1 + I2 − 2
√

I1I2 |𝑉 | cos𝜑
)

ID = 1
4

(

I1 + I2 − 2
√

I1I2 |𝑉 | sin𝜑
)

(3)

The complex visibility 𝑉 = |𝑉 | 𝑒𝑖𝜑, including amplitude |𝑉 | and
phase 𝜑, is then obtained as follows:

|𝑉 |

2 =

(

IA − IC
)2 +

(

IB − ID
)2

I1I2
(4)

𝜑 = arctg
(

IB − ID
IA − IC

)

(5)

The complex visibilities matrix of the brightness distribution of
various nonredundant spatial frequencies 𝑓 can be established.

3. Reconstruction algorithm

3.1. The revised entropy penalty

The MEM algorithm achieved great success in astronomical observa-
tions [16,18]. Among the infinite number of possible images that agree
with the visibility measurements, the MEM is designed to select the
image containing the least amount of information, and thus the least
amount of false information [18,19], such as Gibbs-ringing artifacts.
The information entropy is given as follows:

E = −
N
∑

j
Ij ln(Ij∕Mj) (6)

where Ij is a discrete representation of the images in position j and
Mj is the default model image allowing the incorporation of prior
information regarding the observations.

Based on entropy, we propose Mj that could operate as a prior image
to suppress ringing artifacts. The prior image can be set as ringing-
free or ringing-less and used to penalize a high bias deviating from it.
So, this penalty term should have a ‘‘U-shape’’, which is typical of a
convex function. When minimizing this ‘‘U-shaped’’ term with the L2
data fidelity norm [20], the reconstructed image drops to the prior,
which is set as the inflection point of the ‘‘U-shaped’’ term, retaining
data fidelity. To preserve the advantage of information entropy and
stabilize the iterations without a sophisticated scheme, we propose the
revised entropy given as follows:

H = −
N
∑

j
Ij exp(−Ij∕Ip) (7)

This term allows restoration Ij close to zero and dampens a high
deviation from prior intensity Ip. The prior Ip can have different alter-
natives, such as a uniform matrix with the same value or a filtering
image:
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(1) For a uniform matrix, the value is suggested as the average
energy of the brightness distribution, which can be obtained
through the visibility of zero-frequency owing to Parseval’s the-
orem [21].

(2) For a filtering image, different filtering methods (e.g., Gaussian
or Lanczos) can be used [10,14]. One of these filters is added to
the visibility matrix before IFT, which is equivalent to windowed
IFT.

However, H is found to be not convex in the nonnegative real num-
bers domain 𝑹+, which leads to instability and difficulty in iterations
using gradient descent optimization algorithms. It is noticed that H is
convex on [0, 2Ip] and is non-convex on

(

2Ip,+∞
)

. Nevertheless, certain
echniques can be added for the optimization:

(1) The initial estimations Ij are set to near zero and Ij ⊂ 𝑹+.
(2) The revised entropy can be modified as H = −

∑N
j Ij exp(−aIj∕Ip),

where 0 < a ≤ 1. The modification renders H convex on [0, 2Ip∕a].

By minimizing H, we can obtain the minimum of the revised en-
tropy, where Ij is exactly equal to Ip. However, the Ip is not an
optimal value of Ij for an interferometric imaging system; therefore,
data fidelity and total power restrictions are considered and discussed
in the following section.

3.2. Revised entropy method (REM)

In the simulation, the observed data are samples of the complex
visibilities of observation. They can be expressed as in Eq. (1). In the
simulation, sampled visibilities correspond to a fast Fourier transform
of observation I0 and can be arranged in frequency domain with serial
numbers k as follows:

Vk = Wk

N
∑

j
wjIoj exp

(

−i2𝜋𝑓k ∙ 𝑥⃗j
)

+ nk (8)

where nk represents the noise introduced by the PIIIS, and Wk is
he measurement matrix of the complex visibilities. The measurement
atrix contains only zero and one, corresponding to the actual baseline
istribution [8]. wj is the sample window of the observation [19],
amely the FOV of PIIIS, 𝑓k is the measured spatial frequency in
he pupil plane of the kth pixel, and 𝑥⃗ is the position vector in the
j

3

observation plane of the jth pixel. The corresponding visibility functions
produced by the restoration Ij are as follows:

′
k =

N
∑

j
Ij exp

(

i2𝜋𝑓k ⋅ 𝑥⃗j
)

(9)

Moreover, additional specific equations constraining the particular
imaging of PIIIS are selected to evaluate the features of revised en-
tropy. To measure the difference of complex visibilities between the
restoration and observed data, the data fidelity term is used as follows:

𝜒2 =
N
∑

k

|

|

|

WkV′
k − Vk

|

|

|

2
(10)

Constraining only data fidelity 𝜒2 can lead to systematic bias in
the restoration. Minimizing the revised entropy provides the benefits
of suppressing high errors of deviation from the prior and acquiring
least information. Moreover, minimizing data fidelity provides the
benefits of suppressing the error between the sampled visibilities and
the restored visibilities. However, systematic error biased by noise nk
as not been considered thus far, and this can be suppressed through
inimizing the total power of the image. Therefore, we measure the

otal power of the restoration image as follows:

=
N
∑

j
Ij (11)

Using Lagrange’s undetermined multiplier method, we can restate
he optimization problem as minimizing the following objective func-
ion:

𝑖𝑛𝑖𝑚𝑢𝑚 J = 𝛾H + 𝛼𝜒2 + 𝛽F (12)

𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

H = −
N
∑

j
Ij exp(−Ij∕Ip)

𝜒2 =
N
∑

k
Wk

|

|

|

V′
k − Vk

|

|

|

2

F =
N
∑

j
Ij

Ij ≥ 0

(13)

In the optimization problem, the modification of H can be used to
tabilize the iterations, and the initial estimations of I are set close to
j
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Fig. 2. (a) The hierarchical multistage sampling lens array. (b) Spatial frequency distributions of the segmented planar imaging system with 512 × 512 discrete data points of the
ixed FOV.
he IFT images. Therefore, to accelerate the convergence, we adapted
he Newton–Raphson method to optimize the objective function [22].
he next trial image is obtained as follows:

I = (−∇∇J)−1 ⋅ ∇J (14)

here ∇J = 𝛾∇H − 𝛼∇𝜒2 − 𝛽𝟏 and ∇∇J = 𝛾∇∇H − 𝛼∇∇𝜒2. 𝟏 represents
atrix with all element equals one. Because of the low sampling rate

f complex visibilities, we neglect the sidelobes of ∇∇𝜒2. Therefore,
he Hessian of the data fidelity term is a diagonal matrix, and diagonal
lements can be expressed as follows:

∇j1∇j𝜒
2 = 𝜕

𝜕Ij1

(

𝜕𝜒2

𝜕Ij

)

∗ 𝛿
(

j − j1
)

= 2
∑

𝑘
Wk cos

(

i2𝜋𝑓𝑘 ∙
(

𝑥⃗𝑗 − 𝑥⃗𝑗1
))

∗ 𝛿
(

j − j1
)

= 2
∑

k
Wk

(15)

The Lagrange multipliers, 𝛼, 𝛽, and 𝛾 are adjusted during iterations
o satisfy the final constraints. A simple Taylor series expansion of 𝜒2,
, and H helps to calculate the changes in the Lagrange multipliers [23]:

𝛼 = −𝛥𝜒2∕ ‖‖
‖

∇𝜒2 ⋅ ∇𝜒2‖
‖

‖

𝛥𝛽 = −𝛥F∕ ‖∇F ⋅ ∇F‖

𝛥𝛾 = −𝛥H∕ ‖∇H ⋅ ∇H‖

(16)

Algorithm 1 shows the pseudocode of the REM for reconstruction.
4

Table 1
System parameters used in the simulations.

Parameters Symbols Values

Range of wavelength 𝜆 380–700 nm
Object distance 𝑧 250 km
Lenslet diameter D 3.6 mm
Longest interferometric baseline 𝐵max 104.4 mm
Number of the lenslets per column M 30
Number of PIC P 19
Channel number of arrayed waveguide grating SC 16
Wavelength spacing of arrayed waveguide 𝛥𝜆 20 nm
Fixed FOV 𝑓FOV 2𝜆∕𝐷
Discrete data points of fixed FOV N × N 512 × 512

4. Image reconstruction experiment

To illustrate the reconstruction and feasibility of suppressing the
ringing artifacts using the REM, we employed a hierarchical multistage
sampling lens array for our image reconstruction system architec-
ture [6]. The lens array is composed of long, medium and short radial
lenses, as shown in Fig. 2(a). The pairing method of long radial lenses
is (1,30), (2,24), (3,6), (4,17), (5,7), (8,25), (9,10), (18,23), (19,29),
(20,28), (21,27), (22,26), and the baseline lengths are 1, 2, 3, 4, 5,
6, 8, 10, 13, 17, 22, 29. The pairing method of medium radial lenses
is (1,18), (2,4), (3,10), (5,17), (6,9), (7,8), (11,16), (12,22), (13,21),
(14,20), (15,19), and the baseline lengths are 1, 2, 3, 4, 5, 6, 7, 8,
10, 12, 17. The pairing method of short radial lenses is (1,3), (2,5),
(4,9), (6,10), (7,8), and the baseline lengths are 1, 2, 3, 4, 5. The
spatial frequency distribution of the hierarchical multistage-sampling
lens array is shown in Fig. 2(b). It had a continuous sampling radius
of 𝑟 = 0.144 and a maximum sampling radius of R = 0.835. The rest of
system parameters used in the simulations are listed in Table 1.

The FOV of an interferometer using one single-mode waveguide
/fiber per aperture to transport the beam is limited to 2𝜆∕𝐷 [17]. For
simplification, the FOV was set to 2𝜆∕𝐷 and was discrete with 512 ×
512 data points. Furthermore, a measurement matrix was also set to
avoid visibility regridding [8].

The degraded image in the PIIIS is performed by a filter, which
has a characteristic feature of the low-frequency intensive and high-
frequency sparse measurement matrix in the frequency domain. This
brings a sharp cut-off or truncation in the frequency domain, equivalent
to a convolution in the spatial domain with a 𝑠𝑖𝑛𝑐 function. Moreover,
it brings a ringing pattern around sharp edges by oscillating lobes of the
𝑠𝑖𝑛𝑐 function. In the PIIIS, these truncations differ with the orientations,
leading to a different distance between the main lobe and the oscillating
lobes of the 𝑠𝑖𝑛𝑐 function. Hence, more complicated ringing artifacts

arise around the object in IFT images. Moreover, these ringing artifacts
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Fig. 3. Comparison of IFT, REM, and raw images for the black and bright background resolution board targets.
Fig. 4. MSEs, SSIMs, and PSNRs of the reconstruction results of the REM at different iterations for the bright and black background resolution board targets.
reduce the imaging quality by a large extent, which is determined by
the simulation and is shown in Fig. 3 (a1), (a2), (b1), and (b2).

To quantify the effect of suppressing ringing artifacts, the similarity
between the reconstructed and raw images is further evaluated using
the mean squared error (MSE), peak signal-to-noise ratio (PSNR), and
structural similarity (SSIM) assessments [13,24–26]. To demonstrate
5

the ringing artifacts raised by sparse samples, we demonstrate IFT and
REM reconstructions on resolution board targets with black and bright
backgrounds. The IFT, REM reconstructions, and raw images of the two
resolution board targets are shown in Fig. 3.

In Fig. 4 the MSEs, SSIMs, and PSNRs at different iterations are
plotted over a total of 16 iterations. The indices improved rapidly
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Table 2
MSE, PSNR, and SSIM reconstruction result differences for the bright and black
background resolution board targets after 20 iterations.

Methods Assessments

MSE PSNR SSIM

Bright background target IFT 0.0288 15.4134 0.3785
REM 0.0159 17.9724 0.6529

Black background target IFT 0.0288 15.4134 0.3784
REM 0.0137 18.6198 0.6803

during the first iterations. The significant improvements in the MSE,
SSIM, and PSNR after 20 iterations are shown and compared with those
of IFT images in Table 2. The improvements in the MSEs, SSIMs, PSNRs,
and the visual quality confirm the feasibility of suppressing the ringing
effect due to the insufficient sampling of the visibility function in the
PIIIS. The remaining fuzzy area in Fig. 3 (c2) and (d2) is produced by
the lack of a corresponding sample of that visibility function.

5. Conclusion

Inspired by entropy, we proposed a prior-based penalty term and
developed a simple algorithm using the Newton method. The prior-
based penalty term was designed to penalize a high bias deviating from
the ringing-free or ringing-less prior image. To retain the advantages
of information entropy and stabilize the iterations, the penalty term
replaced the logarithm form of the traditional entropy with a nega-
tive exponent, which led to a nonconvex revised entropy. Therefore,
certain techniques were proposed to render it a convex optimization
problem assuming that the optimal solution was within [0, 2Ip∕a] of
he prior value Ip. To discuss the revised entropy penalty term, we
dded data fidelity to suppress the error between the sampled and
estored visibilities, and the total power term was introduced to prevent
ystematic error biased by noise in the algorithm. In the reconstruction
xperiment, we adopted the hierarchical multistage sampling pattern
nd resolution board targets with sharp edges, which caused evident
inging effects. The resulting imaging quality and resolution were sig-
ificantly improved. The revised entropy penalty showed the feasibility
f suppressing ringing artifacts for PIIIS.
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