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Abstract
Histogram equalization (HE)-based technology has been widely applied in infrared image contrast enhancement due to its 
effectiveness and simple implementation. However, HE and its variations considered the accumulation of pixels in different 
gray values, thus ordinarily result in artifact effects, over-enhancement and noise amplification, especially in the uniform-
ity region. In this paper, we redefine and formulate a new HE technology to overcome the shortcomings of traditional HE 
technology. 2D difference information between two adjacent pixels is introduced for infrared image histogram calculation 
and its calculation is achieved by a reasonable difference threshold. With the purpose of adaptability to different scenes, 
the display range of output image is controlled by 2D difference information. To preserve detail edges, we apply adaptive 
plateau HE on 2D difference information-related histogram. Experiments and results show that the proposed algorithm has 
better scene adaptability and outperforms other compared algorithms by enhancing the contrast without introducing over-
enhancement effect.

Keywords Infrared image · Contrast enhancement · Histogram equalization · 2D difference information

1 Introduction

Infrared imaging technology can detect thermal radiation, 
which is invisible for human visual system, has been widely 
used in military and civilian surveillance. Images obtained 
from the infrared imaging system are often characterized 
by low contrast and blurred texture details, due to thermals 
isotropy radiation and the uneven photosensitive response 
of infrared sensor. Thus, infrared images contrast enhance-
ment is a vital step in the application of infrared imaging 
technology and has attracted the attention of many research-
ers [1–3].

To improve the quality of infrared images and gain a sat-
isfied visual experience, numerous infrared image enhance-
ment methods have been proposed. Double plateau his-
togram equalization (DPHE) controls the infrared image 
over-enhancement by an upper threshold and enhances 

details with a lower threshold [3]. Wavelet transform-based 
algorithm enhances image global and local information 
under appropriate parameter selection [4]. Multi-scale 
decomposition algorithm based on bilateral filtering and 
guided filtering achieves infrared image detail informa-
tion enhancement [5]. High-frequency detail information 
and low-frequency information contrast in infrared image 
get enhancement using Retinex and wavelet transform [6]. 
Details and texture information get enhanced using the total 
variation-based method in infrared image gradient domain. 
Other commonly used infrared image enhancement algo-
rithms are based on fuzzy theory, neural networks, (non-
down sampled contourlet transform) NSCT, top hat trans-
forms, and so on [7–10].

Among these existed infrared image enhancement algo-
rithms, conventional global histogram equalization (HE) 
remains one of the most popular techniques for its simple 
implementation and satisfactory performance in contrast 
enhancement. The HE technique performs input-to-output 
mapping by a cumulative distribution function (CDF) of the 
input image histogram. The mapping leads to gray levels 
with large groups of pixels to be expanded to occupy a larger 
range of gray levels in the output image, while pixels of 
other gray level ranges are compressed to a smaller range. 
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As a result, the performance of HE in the output image is 
over-enhancement and noise amplification in the uniformity 
region, if there are large peaks in the histogram of the input 
image. To handle the problem mentioned above, a lot of 
HE-based technologies have been developed and improved. 
Plateau histogram equalization (PHE) is proposed to con-
strain background noise amplification, but detail information 
enhancement is limited. Double-plateau histogram equaliza-
tion (DPHE) is then produced. An upper threshold is used 
to constrain background noise and a lower threshold aims to 
protect and enhance the details [3]. Local histogram equali-
zation (LHE) equalizes each histogram in a small window, 
by sliding through each window sequentially, instead of the 
histogram of the entire image [11]. Brightness preserving 
Bi-Histogram Equalization (BBHE) attempts to solve the 
problem of brightness preservation and splits the image 
histogram into two histograms and equalizes them indepen-
dently using the mean value of the input image [12]. Con-
trast Limited Adaptive Histogram Equalization (CLAHE) is 
introduced to restrict contrast enhancement and reduce the 
problem of noise amplification [13]. Though these HE-based 
algorithms improve the overall image contrast effectively, 
they still suffer from over-enhancement and noise amplifica-
tion in the uniformity region as they ignore the relationship 
between adjacent pixels in the image and try to process 2D 
images using 1D accumulation information.

Recently, several algorithms have been proposed to cal-
culate the histogram of neighboring pixel values for contrast 
enhancement [14–18]. Contextual and variational contrast 
enhancement algorithm (CVC) achieves contrast enhance-
ment by introducing a 2D histogram and modifying it to 
emphasize large gray level differences [14]. Layered dif-
ference representation (LDR) attempts to amplify gray-
level differences that frequently occur in the input image to 
enhance the contrast and overcome over-enhancement [17]. 
Advanced gradient histogram equalization with sine func-
tion (SAGHE) realizes gradient enhancement and contrast 
enhancement by introducing an advanced gradient histogram 
and control the enhancement level of gradient histogram 
equalization. 2D histogram-based algorithms make great 
progress in suppressing over-enhancement in uniformity 

region [18]. However, noise amplification and over-enhance-
ment are still existed, due to the overuse of display range.

In this paper, our goal is to develop a new histogram-
based infrared image enhancement algorithm, which is capa-
ble of enhancing image contrast without over-enhancement 
and has good adaptability to different scenes. First, we 
obtain a 2D information-related 1D histogram by calculat-
ing the difference information between adjacent pixels in a 
4-adjacency neighborhood with a difference threshold. Then 
different image scenes are quantified by difference informa-
tion calculation, and the display range for output image is 
gained from an established quantitative function. Finally, 
adaptive plateau histogram equalization is introduced to 
protect tinny details and textures. We conduct a series of 
experiments, and the experimental results demonstrate that 
the proposed algorithm has better scene adaptability and 
outperforms other compared algorithms by enhancing the 
contrast without introducing the over-enhancement effect. 
Our main contributions in this paper are as follows:

(1) 2D difference information histogram for infrared 
image contrast enhancement is proposed to overcome over-
enhancement and noise amplification in uniformity region.

(2) To control the degree of infrared image enhancement, 
scenarios are distinguished by difference information-based 
feature pixels and display range for each output image is 
restricted by the number of feature pixels.

The remainder of this paper is designed as follows: in 
Sect. 2, the mechanism of the proposed algorithm is intro-
duced; experiments and related discussion are detailed in 
Sect. 3; in Sect. 4, we give a conclusion of the paper.

2  Range‑restricted pixel difference 
histogram equalization (RRPDHE)

The proposed algorithm not only aims to eliminate the arti-
fact effects and over-enhancement in HE-based technology, 
but also achieve better contrast enhancement and scene 
adaptability for infrared images. Figure 1 summarizes the 
framework of the proposed range-restricted pixel difference 
histogram equalization. The main processes are divided into 

Fig. 1  The framework of 
RRPDHE
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four parts, and each part will be introduced in the following 
subsections.

2.1  2D difference information

Conventional HE uses the calculation of gray values of 
each pixel in an infrared image and applies the calcula-
tion probability to remap new gray values for the output 
image. Obviously, it results in artifact effects and amplifica-
tion of random noise in uniformity region. The main reason 
is that pixel calculation probabilities in uniformity region 
are higher than other pixels, and larger gray value range is 
assigned to describe the uniformity region in output image. 
As a result, the artifact effects and random noise are more 
noticeable than they are in input image.

To deal with such kind of drawback of HE-based technol-
ogy, the proposed algorithm employs 2D difference informa-
tion between adjacent pixels instead of simple accumulation 
of different pixel values. 2D difference information depicts 
the relationship between pixels. 2D difference information 
accumulation �D calculates the difference between each 
pixel and neighboring pixels in the entire infrared image.

h(x) is the gray-level statistical histogram, which counts the 
number of pixels with gray-level x in the image, and x is 
the grayscale of a pixel in the infrared image.L = 2pixeldepth 
is the full display range gray value, for 8-bit output infrared 
image L = 28 = 256.

To get 2D information, we run a gradient mask (GM) 
operation firstly. There are many optional GM methods in 
the conventional method, such as Sobel, Prewitt and so on 
[17]. With the purpose of presenting the authentic relation-
ship between pixels and the simplicity of calculation, we 
use a four-neighbor gradient mask operation. The result of 
each direction alone is an element of difference vector ∇� , 
as show in (2).

Difference vector ∇� gets further standardization to one or 
zero by a difference threshold Td . One of the elements in ∇� 
is calculated as follows:

(1)�D = {h(x)|0 ≤ x ≤ L − 1},

(2)

⎧⎪⎨⎪⎩

∇r(m, n) = �I(m + 1, n) − I(m, n)�
∇l(m, n) = �I(m − 1, n) − I(m, n)�
∇u(m, n) = �I(m, n + 1) − I(m, n)�
∇d(m, n) = �I(m, n − 1) − I(m, n)�

.

(3)∇dm−1,n = Std(
∇l(m, n)

Td

),

(4)Td ∈ [1, L − 1],

Std() is a standardized function.Td is a variable value deter-
mined experimentally and shows the deviation of uniformity 
region in original infrared images. The method to choose a 
suitable Td will be introduced in the following description. 
After GM operation and difference vector standardization, 
2D difference information-based histogram �D is achieved 
by counting pixels in related difference vectors.

x is the gray value of each pixel in infrared image. num() 
counts how many 1′s are in vector ∇� . By traversing the 
entire image,h(x) gets accumulation with the number of 1′s 
in current pixel difference vector. �D changes with differ-
ence threshold Td , and then produces different results with 
PHE, shown in Fig. 2. A smaller Td produces result with less 
contrast enhancement and a bigger Td obtains a distorted 
image. To this end, it is necessary to find a suitable threshold 
Td to get 2D difference-based histogram.

When Td = 0 , 2D difference-based histogram degener-
ates into a traditional pixel intensity histogram. 2D differ-
ence information for Fig. 3a with different Td are shown 
in Fig. 3b. We can learn from Fig. 3b that the difference 
between 2D difference-based histogram and traditional pixel 
intensity histogram is that lies in uniformity region, which 
located on the left side of the blue line in the histogram in 
Fig. 3b and marked blue in Fig. 3c.

The main cause of distortion is that the range indicates the 
uniformity region gets widened, as the difference threshold 
Td increases. As shown in Fig. 3b, when Td ≥ 6 , the range 
presents uniformity region expanding beyond the blue line. 
A higher threshold indicates that accumulation of larger dif-
ference information is required, but the difference of adjacent 
pixels in the uniform background region is small. A compro-
mise method is to ensure that the accumulation of background 

(5)Std(
a

b
) =

{
1

0

a ≥ b

else
,

(6)h(x) ← h(x) + num(∇�),

Fig. 2  Enhanced results with different T
d
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gray levels do not decrease too much when using a higher 
difference threshold for calculation. In this paper, we apply 
an improved method based on Ostu [19] to detect background 
and foreground. Gray-scale density metric Λ is used among 
m − 1 ranges which are divided by local valley points mi in 2D 
difference-based histogram.

Ci =
mi+1∑
i=mi

�D(Ii) and Ni = mi+1 − mi + 1 are the cumulative 

density and gray levels in each range[mi,mi+1 ]. An adaptive 
threshold Λ∗ is gained by Ostu-based method which exhaus-
tively searches for the optimum as follows:

where E(Λa) and E(Λb) stand for the mean values of the 
two separated ranges; �Λ is the mean value of a range; and 
�a and �b represent the fractions indicating the component 
numbers of the two ranges among the whole, respectively.

Then the background region and foreground region can be 
splitted by such a threshold. For normal intensity histogram, 
ranges with its grayscale density metric bigger than Λ∗ are 
defined as background and the other ranges are defined as 
foreground [19].

(7)Λi =
Ci

Ni

, i = 1, 2,⋯ ,m − 1 ,

(8)Λ∗ = argmax
Λmin<Λ

∗<Λmax

{𝜎(Λ∗)},

(9)�(Λ∗) = �a ⋅ (E(Λa) − �Λ)
2 +�b ⋅ (E(Λb) − �Λ)

2,

(10)
{

Λ0i ≤ Λ∗
0
, [m0i,m0(i+1)] ∈ foreground0

Λ0i > Λ∗
0
, [m0i,m0(i+1)] ∈ background0

,

Λ∗
0
 is the Ostu threshold for intensity histogram, [m0i,m0(i+1)] 

is ranges, foreground0 and background0 are foreground region 
and background region.

On the contrary, in 2D difference-based histogram 
ranges whose grayscale density metric are lower than Λ∗ 
are defined as background.

Λ∗
i
 is the Ostu threshold for 2D difference-based histogram 

with difference threshold Td = i.
To obtain proper contrast enhancement without causing 

any distortion of the output image, we choose the maxi-
mum difference threshold Td by keeping the background 
area in the difference histogram consistent with the back-
ground area in the intensity histogram. The formula is 
defined as follows:

In formula 13, the background calculated based on the 2D 
difference information includes the uniformity area in the 
foreground and the background area with concentrated pixel 
distribution. ℂ∗ means a condition that the background area 
in the 2D difference-based histogram keeps consistent with 
the background area in the intensity histogram. Td T is 
updated iteratively and stops when the background calcula-
tion condition is satisfied.

(11)
{

Λi ≤ Λ∗
i
, [mii,mi(i+1)] ∈ backgroundi

Λi > Λ∗
i
, [mii,mi(i+1)] ∈ foregroundi

,

(12)max
∀ℂ∗

{Td},

(13)ℂ
∗ = background ≤ {background0 ∪ backgroundi}.

Fig. 3  Original image (a), histograms for different T
d
(b) and image marked background (c)
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2.2  Display range supervise

For most HE-based technology, display gray range of out-
put image is the full display range L . They may lack adapt-
ability to different scenes, and background noise in scenes 
which are uniformity or not complex enough gets enhanced 
and becomes noticeable. These annoying results have a bad 
influence on infrared observation and monitoring, the results 
of HE are shown in Fig. 4.

In this paper, we apply display range supervise for out-
put infrared image using difference information. The prin-
ciple of range restricted is to control the display range of 
the output image by connecting the complex scene with the 
uniform scene through a reasonable curve. There are two 
steps to achieve display range supervise, assessment of the 
scenes should be quantified by difference information calcu-
lation firstly. Second, the display range of different scenes is 
obtained by establishing the relationship between the scene 
evaluation and the defined output display range.

2.2.1  (1) Scene assessment

Image classification is a hot research topic in the field of 
image processing, and many image classification methods 
have been produced [20]. However, quantitatively assess-
ing the complexity of an image scene is a challenge. In this 
manuscript, we try to quantify image scene by difference 
information calculation. Difference vector of each pixel rep-
resents the relationship between a pixel and its neighbor-
hood. Pixels in an image scene with their difference vectors 
are full of ‘1′ indicate more textures and edges than pixels 
difference vectors are full of ‘0′. We call pixels whose dif-
ference vectors are full of ‘1′ feature pixels. Then we count 
the number of feature pixels ND in infrared images.

It is obvious that ND is small in a uniformity scene and big 
in the scene full with textures and edges. Figure 5 shows that 
feature pixels are marked in red in four different infrared 
images.

2.2.2  (2) Restrict display range

The number of feature pixels is the specific quantification 
of infrared scene complexity. Display range of infrared out-
put image can be restricted by these feature pixels. We get 
output infrared display range by establishing a feature pixels 
dependent mapping function. To utilize such feature pixels 
dependent mapping function, the following principles need 
to be followed: (1) an image scene with few feature pixels 
classified as an uniformity scene;(2) an image scene with a 
lot of feature pixels classified as a complexity scene;(3) all 
images are mapped to a range of 0 to 1 according to their 
feature pixels. Sigmoid function Sg(x) = 1∕1 + e−x meets the 
above requirements in most cases, as shown in Fig. 6a. We 
apply an improved mapping function based on the sigmoid 
function, as shown in (14).

�,�,�,� present the amplitude, scale, phase, and shift param-
eters. Set �=1,�=0 according to the above requirements. 
Human visual system has a property of logarithmic to the 
response to brightness [16]. We apply log function to feature 
pixels, then x = log(ND+1).� and � depend on the resolution 
of infrared images W × H . The phase and scale parameters 
can be computed as follows according to [19].

(14)ND =

{
+1

0

num(∇�) = 4

else
.

(15)�(x) = � ⋅ (Sg(� ⋅ x + �) + �),

Fig. 4  Original image (a, b) and enhanced by HE (c, d) Fig. 5  Infrared images with feature pixels marked in red
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�1 is the minimum valid value of �(x) , �1=�(NDmin) → 0 , and 
�2 is the maximum valid value of �(x) , �2=�(NDmax) → 1.
Take 640 × 480 infrared images as an example, the big-
gest value of feature pixels is NDmax ≈ 640 × 480∕2 and 
x = log(NDmax+1) ≈ 5 . There may exist many parameter 
pairs which meet the requirements, as we pursue a rough 
mapping of scene classification. One parameter pairs of the 
scale and phase can be set as �=1.5 and �= −4 , and its curve 
shows in Fig. 6b.

The output display range LR of an infrared image, which 
needs to be enhanced, is computed as follows:

2.3  Adaptive PHE

Another drawback of HE-based technology is that they eas-
ily lead to the combination of small or similar gray values. 
In other words, if the calculation of some pixel gray values 
is small, tiny details in their values will be lost. The way 
they use cumulative methods for information accumulation 
inevitably leads to the combination of some gray values. To 
handle this problem, the combination of small or similar 
gray values should be reduced or eliminated. In this paper, 
adaptive plateau histogram equalization (APHE) is intro-
duced. The difference between PHE and HE is that PHE 
has a plateau dominating the upper or lower allowance of 
histogram; thus, control the combination of gray values.

Plateau value P has a range from 1 to W × H in conven-
tional HE. A great number of methods have been proposed 

(16)

⎧
⎪⎨⎪⎩

�=
ln(

�2

1−�2
⋅

1−�1
�1

)

NDmax−NDmin

� = ln(
�1

1−�1
) − � ⋅ NDmin

,

(17)LR = �(x) ⋅ (L − 1).

(18)h̃(x) =

{
P

h(x)

h(x) ≥ P

else
.

to choose plateau value in the past decades [3, 21]. The pro-
posed method uses the calculation of difference information, 
and it has the same drawback of gray values combination in 
output image as conventional HE technology.

As a result, a proper plateau value should be selected for 
protecting details information in the input infrared image. In 
Sect. 2.1, background and foreground in an infrared image 
are detected, then the minimum local valley points in fore-
ground can be selected as the plateau value.

2.4  Redefined HE

At last, we redefine the HE technology by changing three 
factors and formulate as follows:

�̃D presents with 2D difference information and modified 
by a plateau P.LR is normalized from 0 to L − 1 . max(LR, LS) 
guarantees that the original display range is not compressed, 
LS is the display range of original infrared image.

3  Experiment and discussion

In this section, we make a lot of comparative experiments 
for infrared images. Eight experimental infrared images are 
chosen to test the proposed method, half of them are down-
loaded from a public database [22] and others are captured 
from real-owned infrared sensors to test the adaptability of 
the proposed method. Widely used algorithms and state-
of-the-art methods, such as HE, DPHE [3], CLAHE [13], 
Wavelet [4], MSR [5], LDR [17] and AHPBCM [19], have 

(19)P = min(m1,⋯ ,mi,⋯ ,mn) mi ∈ foreground .

(20)O(m, n) = max(LR, LS) ⋅ I(m, n) ⋅

i∑
t=0

�̃D(t)

L−1∑
k=0

�̃D(k)

,

Fig. 6  Curves of sigmoid 
function (a) and display range 
mapping function (b)
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been introduced for comparison. The processed comparison 
results are given in Figs. 7, 8, 9, 10, 11, 12, 13, 14, the cal-
culation results of display range of eight original infrared 
images are shown in Table 1, related discussions for qualita-
tive evaluation and quantitative assessment are shown below.

3.1  Visual comparisons

First of all, we conduct a qualitative observation. From 
Figs. 7a to 14a, all original infrared images, which need 
to be further processed, have low contrast, blurred fore-
ground and unclear edge details. Figures 7b–14b are result 
images enhanced by HE. HE enhances infrared images 
contrast without any restrictions, easily leads to over-
enhancement and noise amplification. Compared to the 
original image, the black and white of the result image 
pixel grayscale is more prominent, but the details are 
merged. Especially outdoor house in Figs. 9b and 10b, 
windows in Figs. 11b and 13b, the tires in Figs.12b and 
14b. DPHE and CLAHE are both upgrade and improve-
ment of HE-based technology. DPHE has suppressed the 
shortcomings of HE technology to a certain extent, and 
the visual experience has been improved, but there are still 
serious over-enhancement and noise amplification, espe-
cially in uniformity region. Figures 7c–14c are enhanced 
result images by DPHE, they present a more comfortable 

visual experience than result images enhanced by HE. 
CLAHE can enhance the contrast and improve the visual 
perception of infrared image. However, CLAHE is derived 
from HE technology, the background and foreground in 
infrared image cannot be distinguished. In most cases, the 
foreground area with more details is better enhanced, but 
the contrast between background area and foreground area 
is less effective. Images from Figs. 7d–14d are processed 
images by CLAHE. The reason for the good performance 
of visual perception in Figs. 7d and, 11d–14d is the fore-
ground in the original image has more details and occu-
pies most of the entire image or the foreground is clearly 
contrasted with the background.

Result image enhanced by Wavelet method is shown in 
Figs 7e–14e. With the appropriate coefficient selection, 
Wavelet can enhance the image details considerably, but 
the contrast of the image is not enhanced, and the related 
blurred phenomenon of the infrared image is not improved. 
The MSR method extracts the background radiation part 
from the infrared image, and adds the obtained multi-scale 
target foreground radiation to obtain the result image, which 
can mine many inconspicuous details [5]. In Figs. 8f and 9f, 
details that are not visible in the original image are high-
lighted after MSR processed. But for infrared image con-
tains many uniform areas, the contrast enhanced by MSR is 
limited. As can be seen in Figs. 8f, 10f–14f.

Fig. 7  a Image1 and enhanced 
results by b HE, c DPHE, d 
CLAHE, e Wavelet, f MSR, g 
LDR, h AHPBCM and i pro-
posed method
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Fig. 8  a Image2 and enhanced 
results by b HE, c DPHE, d 
CLAHE, e Wavelet, f MSR, g 
LDR, h AHPBCM and i pro-
posed method

Fig. 9  a Image3 and enhanced 
results by b HE, c DPHE, d 
CLAHE, e Wavelet, f MSR, g 
LDR, h AHPBCM and i pro-
posed method
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Fig. 10  a Image4 and enhanced 
results by b HE, c DPHE, d 
CLAHE, e Wavelet, f MSR, g 
LDR, h AHPBCM and i pro-
posed method

Fig. 11  a Image5 and enhanced 
results by b HE, c DPHE, d 
CLAHE, e Wavelet, f MSR, g 
LDR, h AHPBCM and i pro-
posed method
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Fig. 12  a Image6 and enhanced 
results by b HE, c DPHE, d 
CLAHE, e Wavelet, f MSR, g 
LDR, h AHPBCM and i pro-
posed method

Fig. 13  a Image7 and enhanced 
results by b HE, c DPHE, d 
CLAHE, e Wavelet, f MSR, g 
LDR, h AHPBCM and i pro-
posed method
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LDR separates the difference vector for each layer and 
adds 255 difference vectors to obtain a gray-mapping func-
tion. The purpose of LDR is to amplify the difference 
between the pixels of the original image. But the simply 
summation of difference vectors between layers results in a 
strong image correlation, and the visual effect of processed 
images by LDR becomes less clear. Almost all images 
become more blurred, although the difference information of 
the original image is magnified. All result images processed 
by LDR are present in Figs. 7g–14g.

AHPBCM distinguishes between foreground and back-
ground, and uses particle swarm optimization to correct the 
brightness of the enhanced image. The algorithm performs 
well in suppressing the problem of over-enhancement and 
noise amplification in the uniform region of the background. 
The processed results are shown in Figs. 7h–14h. However, 
due to its excessive pursuit of balancing the brightness of 
the original image, the performance is inferior in contrast 
enhancement.

The advantage of the proposed algorithm is that it not 
only achieves contrast enhancement and details protect-
ing, but also protects uniformity region from becoming 
over-enhancement. Infrared image scene in which most 
areas are uniformity regions is considered to be a ‘simple 
complexity scene’. Figures 7a and 8a can be classified as 
such kind of scene. Figures 7i and 8i are processed by the 
proposed method. The contrast between foreground and 
background is enhanced and the uniformity region in the 
infrared image background remains intact without over-
enhancement and noise amplification. ‘Complex scenes’ 
can be defined that the foreground occupies most of the 
entire infrared image. Figures 12a–14a can be thought of 
as a so-called ‘complex scene’. Figures 12i–14i present the 
result images processed by the proposed method. Among 
these results, contrast of the whole image is enhanced and 
details in foreground is been protected well. The tire in 
Figs. 12I and 14i and the window on the right side of 
Fig. 13i are the best proof. The other three experimental 

Fig. 14  a Image8 and enhanced 
results by b HE, c DPHE, d 
CLAHE, e Wavelet, f MSR, g 
LDR, h AHPBCM and i pro-
posed method

Table 1  Display range for 
output image

Image1 Image2 Image3 Image4 Image5 Image6 Image7 Image8

N
D

�(N
D
)

L
R

6 29 362 665 683 1575 1144 1364
0.054 0.140 0.452 0.557 0.560 0.686 0.639 0.667
14 36 115 142 143 175 163 170
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infrared images Figs.  9a–11a are defined as ‘Medium 
complexity scene’. The enhanced images are shown in 
Figs. 9i–11i, they are excellent in contrast enhancement, 
details protection and preventing uniformity areas getting 
over-enhanced compared with other methods. The relevant 
calculation results of the output display range are shown 
in Table 1.

We select three regions of different images to enlarge, 
including uniformity region, less uniformity region and 
complex region, as shown in Fig. 15. We can learn that HE 
and DPHE always produce over enhancement and noise 
amplification, other algorithms will avoid over enhance-
ment or noise amplification, but their processed image 
contrast and visual perception are not good enough. And 
the proposed algorithm has better scene adaptability and 
outperforms other compared algorithms by enhancing the 
contrast without introducing over-enhancement effect.

3.2  Quantitative evaluation

Quantitative evaluation of image enhancement is a tough 
task because an acceptable criterion by which to quantify 
the improved perception has yet to be proposed. However, it 
is desirable to have both quantitative and subjective assess-
ments in practice. For the purpose of further demonstra-
tion of the proposed method superiority, we introduce three 
quantitative metrics: image definition [9], Logarithmic 
Michelson Contrast Measure [23] and Discrete entropy. 
Their definitions are as follows:

(1) Image definition Ω is used to reflect the overall per-
formance of the whole enhanced image and a bigger value 
of Ω meanings that the processed output contains less noises 
and the enhanced image is more distinct. Consequently, the 
performance of the corresponding algorithm is better.Ω is 
defined as follows:

� presents the index of image fuzziness. Its value is widely 
used to indicate the performance of an enhanced image. The 
smaller � value, the lower the degree of image fuzziness. An 
image with a lower � value means a clearer displayed image.

MAX represents the maximum gray value that appears in 
the infrared image.

(2) Logarithmic Michelson Contrast Measure (AME) is 
employed to represent the performance of local contrast of 
an enhanced image.

O
i,j
max and Oi,j

min
 are the maximum and minimum value in 

sub-block image with its size I1 ∗ I2 , � is a minimal number 
that guarantees the validity of the formula, generally set to 
�=10−6.

(3) Discrete entropy (DE) measures the amount of infor-
mation in an image: a high DE indicates that the image con-
tains more variations and conveys more information.

(21)Ω(O) =
PSNR(O)

�(O)
,

(22)�(O) =
2

H ∗ W

H−1∑
x=0

W−1∑
y=0

min(p(m, n), 1 − p(m, n)),

(23)p(m, n) = sin[
�

2
(1 −

O(m, n)

MAX
)].

(24)AME(O) = −
1

I1 ∗ I2

I1∑
i=1

I2∑
j=1

20 ⋅ ln(
O

i,j
max − O

i,j

min
+ �

O
i,j
max + O

i,j

min
+ �

),

(25)DE = −

L−1∑
i=0

pi log pi,
Fig. 15  Enlarged view for part of infrared image 1,3,7, enlarge view 
are a origin infrared image and enhanced results by b HE, c DPHE, 
d CLAHE, e Wavelet, f MSR, g LDR, h AHPBCM and i proposed 
method
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pi represents the statistical probability of the existence of a 
grayscale with a value of i in the infrared image.

The results for each quantitative metric are shown in 
Fig. 16. The higher the quantitative evaluation index value, 
the better the performance of the algorithm, except for � . 
Although the proposed method can not provide the best per-
formance in all the infrared images, it almost ranks in the 
top three of all the results. The Wavelet method gets the best 
scores in 6.483 in DE measures, the proposed method get 
6.047, but the contrast of the image enhanced by Wavelet is 
not improved, and the blurred phenomenon of the infrared 
image method has not been eliminated. A lower � means a 
less fuzziness image. Among all methods, the infrared image 
enhanced by the proposed method gets lowest score. There-
fore, the proposed method gets the second highest score in 
index of image definition. The top two high scores in AME 
are HE and RRPDGHE. However, over-enhancement and 

noise amplification appears in the result images enhanced 
by HE. 

4  Conclusion

In this paper, we present a range-restricted pixel difference 
global histogram equalization algorithm for infrared image 
enhancement, which not only achieves contrast enhance-
ment and details protection, but also protects uniformity 
areas from over-enhancement and noise amplification, thus 
produces a satisfied subjective quality result. Unlike the tra-
ditional histogram which only has intensity information, the 
proposed method obtains 2D difference-based histogram by 
calculating difference information between adjacent pixels 
in a 4-adjacency neighborhood with an adaptive threshold. 
Then the proposed method redefined the HE technology by 

Fig. 16  Quantitative evaluation comparison results using AME, Ω , DE and �
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applying PHE to 2D difference-based histogram instead of 
intensity histogram. In the new technology, display range 
for output image is adaptive controlled through a sigmoid 
function-based curve which related to difference informa-
tion features, and the local minimum value in the difference 
histogram representing the foreground is used as a platform 
value to protect details in original image. Experimental 
infrared image enhancement results demonstrate that our 
proposed method is effective in both subjective observation 
and objective evaluation. In future work, we will optimize 
and improve to verify the timeliness and applicability of the 
algorithm.
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