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Significantly enhanced electroluminescence performance and stability of all-inorganic perovskite light-emitting de-
vices (PeLEDs) have been achieved by adding triton X-100 into the perovskite precursors. The small perovskite grains
arranged tightly and formed large grains as the triton X-100 were introduced. Thus the nonradiative defects originated
from Pb atoms at the grain boundaries were highly passivated by triton X-100 and resulted in the promotion of PeLED
performance, including a turn-on voltage of 3.2 V, a brightness of 63500 cd/m2, a current efficiency of 17.4 cd/A, and a
prolonged lifetime of 2 h in air.

Keywords: electroluminescence performance, stability, perovskite light-emitting devices (PeLEDs), triton X-
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1. Introduction

Nowadays, perovskite light-emitting devices (PeLEDs)
have attracted widely scientific interest due to the outstand-
ing optical and electrical characteristics of metal halide per-
ovskites, such as high photoluminescence quantum efficiency
(PLQY), high color purity, long diffusion length, and high
charge-carrier mobility, etc.[1–6] During the past five years, the
lead halide perovskite-based PeLED has been greatly boosted,
the maximum current efficiency (CE) of the devices has been
promoted from 0.3 cd/A to 42.9 cd/A.[7,8] And the record
of the maximum external quantum efficiency (EQE) of green
and red emitted devices are all over 20%.[5,6,9,10] Among all
these reported PeLEDs, the ones based on the all-inorganic
perovskite of cesium lead bromide (CsPbBr3), show excel-
lent thermal and chemical stability, together with high quan-
tum yield.[11–15] However, the defects, among the grain in-
terfaces formed during perovskite crystal growing, hindered
the improvement of the device performance.[3,4,16,17] To re-
duce nonradiative recombination and achieve high efficiency
all-inorganic PeLEDs, one of the positive strategies is to em-
ploy additives into the perovskite precursors. Surfactants,
such as polyethylene glycol,[18] tween 20,[19] poly(2-ethyl-
2-oxazoline),[20] and tetrabutylammonium bromide,[13] have
been reported to passivate defects and suppress nonradiative
recombination at grain boundaries. Therefore, the proper se-
lection of additives for defect passivation in perovskite films is

of an important way to improve the PeLED performance.
In this work, a nonionic surfactant triton X-100 was em-

ployed into the all-inorganic perovskite CsPbBr3 precursors
to passivate defects at the grain boundaries. In contrast with
the control perovskite film, perovskite film with triton X-100
shows tightly arranged grains, and reduced grain boundaries.
Thus the nonradiative defects at the grain boundaries were
highly suppressed and enhanced PeLED performance and sta-
bility were achieved, including a turn-on voltage of 3.2 V, a
brightness of 63500 cd/m2, a current efficiency of 17.4 cd/A,
and a prolonged lifetime of 2 h in air. Our results would pro-
vide an efficient approach in obtaining the well-performed all-
inorganic PeLEDs.

2. Experiment procedure
Figures 1(a) and 1(b) show the PeLED structure and

the molecule structure of the additive triton X-100, respec-
tively. The device with a popular structure as shown in
Fig. 1(a). Before the device fabrication, the perovskite pre-
cursor solution with a concentration of 145 mg/mL was pre-
pared, in which CsBr and PbBr2 were dissolved in anhy-
drous DMSO. Then 25-mg/mL triton X-100 in DMSO was
added into the perovskite precursors with different volume ra-
tios. PeLEDs were constructed on cleaned and oxygen plasma
treated ITO electrodes. Then filtered poly (ethylenedioxythio-
phene):polystyrenesulfonate (PEDOT:PSS) was spin-coated
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on the ITO electrodes then baked to form a 30-nm thick film.
Afterwards, transfer the substrates into a glovebox for the per-
ovskite film deposition to form a 50-nm thick perovskite emit-
ting layer. Finally, 30-nm TPBi, 1-nm LiF, and 100-nm Al
were deposited successively in a thermal evaporation cham-
ber at a pressure below 5.0× 10−5 Pa. The effective area of
devices was 0.01 cm2.

After device fabrication, several measurements were car-
ried out. Scanning electron microscope (SEM) images were
measured by a Hitachi S4800 microscope. Current density–
voltage–luminance characteristics of PeLEDs were measured
using a Keithley 2400 source meter and a luminance meter
(LS-110, Konica Minolta). Electroluminescence (EL) spectra
were tested by an Avantes Avaspec 2048 spectrometer. All
these measurements were performed in air.
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Fig. 1. (a) Schematic representation of CsPbBr3 PeLED. (b) Molecule struc-
ture of triton X-100.

3. Results and discussion
To study the affection of triton X-100 on the EL perfor-

mance of PeLEDs, a series of devices with different triton X-

100:CsPbBr3 volume ratios as the emission layers have been
fabricated. Figure 2 shows the current density–voltage (J–
V ), luminance–voltage (L–V ), CE–voltage (CE–V ), as well as
EQE–voltage (EQE–V) curves for these PeLEDs, and the de-
tailed device parameters are summarized in Table 1.

Table 1. Device parameters of PeLEDs.

Triton X-100 (%) Von (V) Lmax (cd/m2) CEmax (cd/A) EQEmax (%)

0 3.2 8990 2.14 0.12

10 3.2 42300 13.7 0.80

20 3.2 63500 17.4 1.03

30 3.2 56500 15.8 0.92

For the PeLED without triton X-100, it shows poor EL
characteristics with a turn-on voltage (Von) of 3.2 V, a max-
imum luminance (Lmax) of 8990 cd/m2, a maximum CE
(CEmax) of 2.14 cd/A, and a maximum EQE (EQEmax) of
0.12%, respectively. As a 10% ratio of triton X-100 was added
into the perovskite precursor solution, the Lmax, CEmax, and
EQEmax of the PeLEDs were promoted significantly, which
values are 42300 cd/m2, 13.7 cd/A, and 0.80%, respectively.
When the ratio of triton X-100 was increased to 20%, the
PeLED displays an optimized performance, including an Lmax

of 63500 cd/m2, a CEmax of 17.4 cd/A, and an EQEmax of
1.03%. But as the triton X-100 ratio further increased to 30%,
the device performance decreases again. The similar device
structures of PeLEDs with different triton X-100:CsPbBr3 vol-
ume ratios result in similar electrical performance, which was
found expression in the similar J–V curves.
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Fig. 2. (a) J–V , (b) L–V , (c) CE–V , (d) EQE–V curves for the PeLEDs with different volume ratios (triton X-100:CsPbBr3).
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In order to explore the affection of triton X-100 on the
morphology of CsPbBr3 films, SEM images of CsPbBr3 films
with various volume ratios of triton X-100 have been mea-
sured, which are shown in Fig. 3. For the pure CsPbBr3

film (0%, Fig. 3(a)), it is mainly composed by small grains
with the crystal size of about 100 nm. As a small amount of
triton X-100 (10% in volume ratio) was introduced into the
CsPbBr3 films, the small perovskite grains arranged one by
one and became irregular large grains over hundreds nanome-
ters (Fig. 3(b)). As the triton X-100 ratio increased to 20%, the
grains further enlarged to over 500 nm, which is seen clearly
from Fig. 3(c). As a result, the tightly arranged grains rendered
the grain boundaries in the perovskite film sharply reduced,
which would decrease the defects between grain boundaries
distinctly.[21–23] But when the triton X-100 ratio further in-
creased to 30%, the grain size stopped growing and became
small and separated, then grain boundaries and defects at these
boundaries would increase again, and thus decrease the de-
vice performance. The grain boundaries changes is consistent
with the promoted EL performance as shown in Fig. 2. The
device EL performance increases as the grain boundaries de-
creasing and decreases as the grain boundaries increasing. In
a word, the triton X-100’s introduction results in the defects
passivated at the grain boundaries and finally enhanced EL
performance.[24–26]

0% 10%

20% 30%

(a) (b)

(c) (d)

1 μm 

1 μm 

1 μm 

1 μm 

Fig. 3. SEM images of perovskite films with various volume ratios (triton
X-100:CsPbBr3) (a) 0%, (b) 10%, (c) 20%, and (d) 30%.

To further investigate the affection of triton X-100 on the
free carriers and exciton kinetics, the time-resolved PL decay
measurement was carried out and shown in Fig. 4. After the
introduction of triton X-100, the PL intensity is significantly
enhanced and PLQYs of the perovskite films with and with-
out 20% triton X-100 are 8.77, and 1.93%, respectively. The
PL lifetime of the perovskite film with 20% triton X-100 is
also dramatically prolonged with an average time of 14.31 ns
which is 8 times higher than that of the neat CsPbBr3 films
(1.75 ns) fitted by tri-exponential curves. This indicates the

defects are suppressed at the grain boundaries, thus enhancing
the PL performance. The nonradiative decay rate also can be
deduced from the following equation:

PLQY =
kr

kr + knr
,

τavg =
1

kr + knr
,

where kr and knr are the radiative and nonradiative decay rates,
respectively. The nonradiative decay rate knr can be expressed
as:

knr =
1−PLQY

τavg
.

Therefore, the nonradiative decay rate of the perovskite film
with 20% triton X-100 can be calculated, and the value is
6.4 × 107 s−1, which is lower than that of the control film
(5.6×108 s−1). The decreased nonradiative decay rate of the
triton X-100 doped perovskite film indicates the reduced de-
fects and ion migration at the grain boundaries.
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Fig. 4. (a) PL and (b) TRPL spectra of perovskite films with and without
20% triton X-100.

The stabilities of the EL devices have also been studies,
figure 5 shows the EL spectra and the lifetime of the PeLED
with 20% triton X-100. The EL spectra of the PeLED with
20% triton X-100 displays a stable green emitting spectrum
with a peak centered at 521 nm. And the intensity of the light
emission increases as the increased bias from 4 V to 6 V, and
then decreases at 7 V. There is seen no obvious peak drift in
Fig. 5(a), indicating the emission stability of the PeLED with
20% triton X-100. The time-dependent EL stabilities of the
devices with and without 20% triton X-100 have been mea-
sured under a constant applied current without encapsulation
and shown in Fig. 5(b). PeLED without triton X-100 shows a
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severe degradation, it took only 36 min for the lifespan to de-
cline by half, while the value for the PeLED with 20% triton
X-100 was about 2 h. Compared with the controlled PeLED,
the significantly prolonged lifetime for the triton X-100 based
device can be contributed to the passivated boundaries and re-
duced defect state densities by employed triton X-100.
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Fig. 5. (a) EL spectra of PeLEDs with 20% triton X-100 under different
voltages. (b) Lifetime curves of PeLEDs with and without 20% triton
X-100.

4. Conclusion

In summary, enhanced EL performance and stability of
all-inorganic PeLEDs have been obtained by using a nonionic
surfactant triton X-100. This surfactant promoted the forma-
tion of tightly arranged grains in the CsPbBr3 films, reduc-
ing the grain boundaries in the perovskite film significantly,
and resulting in decreased nonradiative decay between grain
boundaries. As a result, the EL parameters were effectively
enhanced with a maximum brightness of 63500 cd/m2, a max-
imum current efficiency of 17.4 cd/A and a prolonged lifetime
of 2 h. This work will help us to investigate the affection of
the nonionic surfactant on the CsPbBr3-based PeLEDs and to
develop efficient stable all-inorganic PeLEDs.
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