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ARTICLE INFO ABSTRACT
Keywords: Aiming at simplifying the parameter calibration process of the 6 degree-of-freedom(6-DOF)
6-DOF parallel mechanism parallel mechanism, improving the calibration efficiency, and reducing the calibration cost,

Orthogonal displacement measuring (ODM)
system

this paper proposes a pose measurement device and method based on the Orthogonal Displace-

. ment Measurement (ODM) system. First, the pose calculation method of the proposed device is
Parameter identification . . . . . . . . .
Optimization algorithm studied, and its forward and inverse kinematics solutions are solved using spatial analytic ge-
OASIS software ometry method; second, an error model for the combination of the parallel mechanism and the
ODM system is constructed using the infinitesimal displacement synthesis method; third, based on
the proposed error model, a mathematical model is constructed for the optimization problem of
the parameter error identification of the combination, wherein the minimization of the sum of
squares of in, the indicating value displayed by the sensor, is taken as the objective function, and
the structural parameter errors of the combination are taken as the design variables; at last, the
ODM system is used to measure the pose of the 6-DOF parallel mechanism, and the OASIS soft-
ware is adopted to directly find out the optimal solutions of the parameter errors and compensate
them to the parallel mechanism control system, so as to complete the parameter calibration of the
parallel mechanism. The comparison result of the pose errors before and after the calibration
shows that, the maximum position error has been reduced by 69 %-94 %, and the maximum
posture error has been reduced by 87 %-97 %. Using ODM system to calibrate the parameters of
the parallel mechanism can not only effectively improve the positioning accuracy of the parallel
mechanism, but also simplify the calibration work, improve the calibration efficiency, and reduce
the calibration cost.

1. Introduction

The 6-DOF parallel mechanism is widely used in the fields of optical components fine tuning, and ultra-precision machining due to
its advantages of high precision, high rigidity, and no cumulative error, etc. [1].

Due to machining and assembly errors, the actual structural parameters of the 6-DOF parallel mechanism are somewhat different
from the theoretical values, resulting in kinematic model inaccuracy. Because of the existence of structural parameter errors, when the
6-DOF parallel mechanism performs movements according to the instructions, there’re certain deviations between the actual pose and
the theoretical ones. Using high-precision machine tools to process the structural components of the parallel mechanism can reduce the
machining errors, but its cost is very high; in such case, using parameter calibration to compensate the errors is a low-cost and effective

* Corresponding author.
E-mail address: 13604415684@126.com (Y. Liwei).

https://doi.org/10.1016/j.ijleo.2020.165806
Received 18 July 2020; Accepted 13 October 2020

Available online 6 November 2020
0030-4026/© 2020 Elsevier GmbH. All rights reserved.


mailto:13604415684@126.com
www.sciencedirect.com/science/journal/00304026
https://www.elsevier.com/locate/ijleo
https://doi.org/10.1016/j.ijleo.2020.165806
https://doi.org/10.1016/j.ijleo.2020.165806
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijleo.2020.165806&domain=pdf
https://doi.org/10.1016/j.ijleo.2020.165806

Y. Liwei et al. Optik 226 (2021) 165806

method [2,3].

Generally speaking, the calibration of parallel mechanism includes the following three steps: error modeling, pose measurement,
and parameter identification. Wherein, the pose measurement of the end effector of the parallel mechanism is the key link of cali-
bration process; during calibration, according to the measurement output, the calibration can be divided into two types: self-
calibration and external calibration [4]. The self-calibration method does not require external measurement equipment, it uses the
redundant information derived from the moving platform to identify its geometric parameters; in the calibration process, this method
has to solve the forward solutions of the calibration model, and it cannot obtain all information of the end pose, thereby its accuracy
improvement is limited by certain restrictions. The external calibration method is also called open-loop calibration, which uses
external measurement equipment to acquire the pose information of the moving platform, and identify the geometric parameters of the
platform accordingly. Now external calibration is still the main method for the calibration of parallel mechanisms, and commonly used
external measurement equipment includes: coordinate measuring machine (CMM) [4], measuring arm [5], laser tracker [6] and other
devices. Although these devices generally have high accuracy and wide adaptability, they are expensive to manufacture and there’re
two problems with them during application: first, the measuring equipment needs to be finely adjusted before measurement, which
would take a long time, and the calibration efficiency is relatively low; second, some measuring equipment (such as CMM) has a high
requirement on the operators and the operating environment, so its application is not that convenient. Based on the above reasons, the
above-mentioned pose measurement solutions need to be further improved.

Aiming at the problems existing in the measurement process of the pose of the 6-DOF parallel mechanism, this paper proposes a
simple and efficient 6-DOF parallel mechanism parameter calibration device and method, in the hopes of achieving the purpose of
reducing calibration cost, simplifying calibration process, and improving calibration efficiency. This study has a very important
guiding significance for the parameter calibration of parallel mechanisms.

2. Forward and inverse solutions of the ODM system
2.1. Composition of ODM system

The traditional pose measurement method is simple to operate and has a wide application range, however, since the coordinates of
the reference point cannot be obtained directly from measurement, but from the fitting of multiple sampling points, its requirement on
data volume is relatively large, and its calibration efficiency is low. With a simplest case, the fitting of spherical surface as an example,
at least 5 points are required to fit the coordinates of a reference point, and at least 3 points are required to solve the pose, that is to say,
for each end pose, at least 15 points need to be measured to solve its corresponding actual pose, obviously, this method is both time and
energy consuming.

Inspired by the laser 6-dimensional measurement system [7,8], this study attempts to construct a contact-type orthogonal
displacement measuring system (hereinafter referred to as the ODM system) to carry out the measurement and calculation of the pose
of moving platform of parallel mechanism. Fig. 1 shows a schematic diagram of the ODM system, which includes the reference block to
be measured (namely the target reference block), and the displacement sensors, etc. Wherein the target reference block is fixed on the
moving platform, several displacement sensors are placed in the three orthogonal directions of the target reference block, all
displacement sensors are fixed on the sensor stand, and there’s no relative movement between the sensor stand and the fixed platform;
under the action of the elastic force, the displacement sensor is always in contact with the target reference block. The working principle
is as follows: the moving platform performs 6-dimensional movements according to the instructions of the controller, the target
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Fig. 1. diagram of the ODM system.
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reference block moves with it accordingly, and the displacement sensors perform 1-dimensional stretching out and drawing back
movements; then the indicating values of the displacement sensors are recorded, then with certain solving method, the pose of the
moving platform relative to fixed platform are calculated.

It can be seen from the figure that the ODM system can be regarded as a set of mechanisms, the driving part is the end effector of the
parallel mechanism, and the driven part is the displacement sensor. The 6-dimensional movement of the effector produces the 1-
dimensional linear movement of the displacement sensor, and the solving process of the pose of the end effector is the process of
the kinematic analysis of the ODM system.

Just like the parallel mechanism, the kinematic analysis of the ODM system also has two basic questions, namely the forward
solution and the inverse solution. Solving the 1-dimensional linear movement of the displacement sensors from the 6-dimensional
movement of the effector is called the forward solution; and solving the 6-dimensional movement of the effector from the 1-dimen-
sional linear movement of the displacement sensors is called the inverse solution.

According to the principle of 6-point positioning [9], to solve the 6-dimensional movement of the effector through the inverse
solution, it needs to arrange 6 displacement sensors around the target reference block. There are two types of the configuration of the 6
displacement sensors: 321-type and 222-type. The configuration of the displacement sensors of the 321-type ODM system is: 3 sensors
are arranged in the first direction, 2 sensors are arranged in the second direction, and 1 sensor is arranged in the third direction; as for
the 222-type ODM system, the configuration is to arrange 2 sensors in each direction of the three orthogonal directions.

2.2. Pose calculation method

FAN [10] et al. used the laser interferometer to measure the 6-dimensional parameters of the linear placement platform, and their
pose calculation method is relatively simple: linear displacement is solved by using mean value method and the angular displacement
is solved by using trigonometric functions. However, if the laser beam is not accurately aligned with the target object of the linear
placement platform, such solving method is easy to introduce alignment errors. For example, if the axis of the target prism is not
parallel with the axis of the laser beam, it’ll generate Abbe error; if the axis of the target prism is not parallel with the axis of the laser
beam, it’ll generate axis error, etc. The expressions of each plane of the target reference block and the linear expressions of the
displacement sensors in the measurement coordinate system could be obtained by using the three coordinates to measure the spatial
positions of the target reference block and the displacement sensors; the target reference block could be solved using spatial analytical
geometry method, and further, the pose of the moving platform could be obtained. In view of this, this study chooses to apply spatial
analytical geometry method to solve the problem.

With a 222-type ODM system as an example, the inverse kinematics solution process is discussed as follows.

2.3. Forward kinematics solution

To facilitate the description of the relationship between the fixed platform reference system and the moving platform coordinate
system of the fine-tuned mechanism, a coordinate system of the reference block {E} (hereinafter referred to as the reference block

{E}
{P}

{B}

Fig. 2. Space dimension chain.
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system) is constructed, the coordinate origin is located at the intersection of the three reference planes, and the coordinate axis is
parallel to the moving platform coordinate system; as a result, in Fig. 2, there are following coordinate systems: the fixed platform
reference system of the parallel mechanism {B}, the moving platform coordinate system of the parallel mechanism {P}, the coordinate
system of the reference block {E}.

The pose relationship between the two systems is described by the corresponding homogeneous transformation matrix as:

BT describes the pose of the moving platform coordinate system{P} relative to the fixed platform coordinate system {B};

PT describes the pose of the reference block coordinate system {E} in the moving platform coordinate system{P}.

In order to intuitively describe the coordinate transformation, the above pose relationship can be expressed in the form of space
dimension chain [11], as shown in Fig. 4.7.

The coordinate transformation equation is:

Br=8rPr (@))]
Assume that the pose of {E} in the moving platform coordinate system {P} is:

O=["Xe Yy *Zz fa B iy 2
Which can be written in the form of homogeneous coordinate transformation matrix [12], and abbreviated as:

PP P, oP oy P P oy P P ooy P P oy P P
TN X O A T A
PT = cpPspy  SpaspPspy + cpacgy  cpaspPspy — cpyspa Y

—shp chpsta chackp i/
0 0 0 1
P P P P 3
A
_ | EMy Yy EWy Ye
Zuz ZV; sz "7
0 0 0 1
Where, c stands for cos, s stands for sin, same below.
Assume the actual pose of {E} in {B} at zero position is:
PQV =["Xe Ve "Zy ja i ] @
Which can be written in the form of homogeneous coordinate transformation matrix, and abbreviated as:
e pveo pw, CXp
B B B B
u, V. w. Y,
2 7O — EY B E E (5)

E uz £V ng BZE
0 0 0 1

Mark the XOY plane of coordinate system {E} as plane I, the XOZ plane as plane II, the YOZ plane as plane III, then the point normal
equation of plane I can be obtained as [13]:

ww (x = PXp) + fw (v = PYp) + fw.(z— PZg) =0 (6)
This expression is not conducive to programming and calculation, to facilitate programming, the expression of plane I is written as:

I=[x y z dq dy, du dx, dy, dz] (2]

Where,P = [xo Yo 2, representsthe coordinates of a point onthe plane,v; = [dx; dy; dz]andv, =[dx, dy» dz,]represent
vectors in the plane, and the direction of the plane normal vector n follows the right-hand rule.

The expressions of planes II and III are the same as that of plane I.

The parameter equation of the spatial straight line is [14]:

X = Xo + mt
y=yot+nt 8)
Z=2p+pt

This expression is also not conducive to programming and calculation, so the expression of the spatial line of displacement sensor Sy
is written as:

Li=[x » z dug dy dulk=1,2,3,4,56 (C)]

Where, S = [xx  Yx 2] represents the coordinates of a point on the straight line, vi = [dxx dyi dz] represents the straight line
vector, k = 1,2,3,4,5,6.

The linear equation and the plane equation of the displacement sensor are combined to obtain the coordinates of the contact points
between each sensor and each coordinate plane when the moving platform is at zero position, which is recorded as:
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MY =[x9 yO 797 k=1,2,3,4,556 (10)
The pose of the moving platform is given and recorded as:

0=[Xe Y» Zp a p 7] an
Convert it into the form of homogeneous coordinate transformation matrix [15], then there is:

cpcy cysasp — casy cacysp+sasy Xp

By _ cfsy sasPpsy + cacy caspsy —cysa Yp 12)
L cPsa cacp Zp
0 0 0 1

From Egs. (3) and (12), the pose of coordinate system {E} in {B} can be obtained as:

B B B B
u £V W, Xg

E"x x 2 -
B B B B
R o A 9
L U U Zr
0 0 0 1
So, the expressions of the three planes I, II, and III of {E} can be obtained and written as:

I=[%% °ve *zg - Pv, Bv, Pv]

=["x ®Ye *®2g - Ju. ju, fu] 14)

m=["xe °vg "Zg - Jw, gwy ]

By combining the linear equation and the plane equation of the displacement sensors, the contact point coordinates of each sensor and
each coordinate plane can be obtained as:

M =[x\) vl ZW]k=1,2,3,4,56 (15)

From Egs. (10) and (15), the linear distance between the two contact points can be obtained as:

el = (X — X)) + (v — Y + (2 - 20 (16)

If the contact point moves in the positive direction of the coordinate axis, it’s specified that h is positive, otherwise it is negative,
namely:

hie = ||, b >0
{]’lk = _‘hklahk < 0 (17)

Write the displacement of each displacement sensor into the vector form, then there is:
H=[h hy hy hy hs he) (18)

Therefore, from the pose of the moving platform, the placement value of each placement sensor could be obtained, namely the
forward kinematics solutions.

2.4. Inverse kinematics solution

Assume after the pose has changed, the stretching-and-drawing amount of each displacement sensor is hx,k = 1,2,3,4,5,6.
At this time, the contact points between displacement sensors and planes I, II, and IIl would change accordingly, the coordinates M*
in {B} are:

X) = X9 + hrdx, / \JdxE 4 dy? + dZ?
Y = Y9 + hrdy, / &+ dy? + dZ (19)

Z) =79 + nerdz / d + dy? + dz?

Assume the normal vector of plane I is [yw, W, jWw,], the normal vector of plane ITis [V, 'V, V,], the normal vector of
Yu. ¥u, }u,), the three normal vectors are perpendicular to the vectors in each plane, then there is [16]:

plane Il is [pu, pu, pu,

wo* Xz — Xont) + W * (Ve = Yot ) + w*(Zyy — Zon) = 0
Vi (Xma = Xuz) + vy (Yos — Yos) + v (Zus — Zu3) =0 @
u*(Xnas — Xus) + uy* (Yue — Yus) + u*(Zus — Zus) = 0
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The three-plane normal vectors are perpendicular to each other, so there is:

weku, + wyFuy, +wFu, =0
WV +wy vy, +w v, =0
ViFu, + vy Fuy + v, Fu, =0

(21)

Also, the unit vector modulus is 1, there is:

(22)

There are 9 unknown quantities and 9 equations, so the unknowns can be calculated, therefore, the programming expressions of
planes I, II and III can be written as:

1= [XMI Yim Zin - AE/IVX g"y [g‘)z_}
11 = [XM] Yin Zun - [E[WX Igwy ng} (23)
I = [Xm Yvi  Zwmn }‘E4wx "E”Wy "E”wz}

The expressions of the three planes are combined to obtain the intersection point of the three planes, which is recorded as:
ME=[YXp MYy M7 eZ))

So, the homogeneous coordinate transformation matrix of {E} in {M} can be obtained as:

M, M, M M
Tl
mp_ | E% EVy  EW, Ye (25)
E M, oM, M My
E¥, (V. W E

0 0 0 1
From Eq. (1), it’s known that:
o= (1) (i) (26)

Which is abbreviated as

B B B B
plhe PV PWy Xp
B B B
wp_ | P B Bw Y @)
d Bu By By BZ
P Pz P P
0 0 1

According to the RPY inverse solution equation [11], there is:

B
— pVz
Q = arctan B
PWz

_ B
plt (28)

B 2 B 2

\/ pUy T Yy
B

u,

yzarctan(ﬁ ")
u

plUx

As a result, the pose of the moving platform coordinate system in the fixed platform coordinate system has been solved to be:

f = arctan

0=[%%» *v» %Zp a p 7] (29)

Which is the inverse kinematics solution of the ODM system.
From the solution process of the pose, it can be seen that, although the whole process seems a bit complex, its requirement on data

amount is less, and it is easy to operate, which are the advantages of this method.

3. The error model based on the infinitesimal displacement synthesis method

Each time the moving platform changes a pose, a constraint equation can be constructed for each displacement sensor, so it’s
assumed:
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* = f(Xsi, Yi» Zgis Xpir Ypis Zpiy iy Xicy Yies Zur X, dY, d2i) (30)
i=1,2,3,4,56k=1,2,3,4,56
Where, Xg;, Ygi, Zpi, Xpi, Ypi, Zpi, li are the structural parameters of the parallel mechanism, and xy, y, 2k, dxk, dyk, dzx are the structural
parameters of the ODM system.

When there’re errors in the structural parameters, the equation becomes:

hjk +Ah_/-k :f(XB[ +AXB[, ey l; JrAl;,Xk +Axk, "’,dZﬁ +Ad26) (31)

Where, j = 1,2,3,... represents different positions and postures, so there is:

Ahy = f(Xpi + AXpiy ooy i + Al Xi + Axg, o+, dzs + Adzs) — hye (32)

Where, AXg;, ..., Al;, Axy, -+, Adze are the structural parameter errors of the parallel mechanism and the ODM system, Ahy is the de-
viation in the indicating values of the displacement sensors caused by the structural parameter errors.

Therefore, an error model of the combination of the parallel mechanism and the ODM system has been constructed based on the
infinitesimal displacement synthesis method, in the model, Ahj can be obtained from the difference between the measured value and
the nominal value of the displacement sensor, Xg;, Ysi, Zgi, Xpi, Ypi, Zpi, li, Xk, Yk, 2k, dXk, dyk, dz are the nominal values of the parameters
of the parallel mechanism and the ODM system, and they are known quantities; AXp;, ---, Al;, Axy, ---, Adz are unknown quantities, each
structural parameter error can be obtained by solving the above equation.

4. Parameter error identification based on optimization algorithm
4.1. Construction of the parameter error identification model

After obtaining the test data, how to obtain reasonable kinematics parameter error identification results is the difficulty and the key
point of the entire kinematics calibration. Adopting different methods to process the test data can yield different parameter identi-
fication results. According to the identification model, parameter error identification methods can be divided into two categories: one
is the error identification method based on the linear error model [17-19], which establishes the function mapping relationship be-
tween structural parameter errors and error measurement results by identifying the Jacobian matrix, and then identifies the structural
parameters by solving this model, it can be summarized as the solution of typical linear equations; in the actual application process, it
requires the parallel mechanism move along a fixed trajectory, its flexibility is low and the computation workload is large. The other is
the error identification method based on the optimization algorithm, this method does not establish a linear error model, but uses the
optimization algorithm to directly search for the kinematics parameter errors. Methods of this kind are based on the machine kine-
matics equations and error measurement results, there’s no specific identification equation, they are a kind of typical non-linear
equation solution, and the commonly used solving methods include genetic algorithm [20], neural network [21] and so on.

The error model proposed in the paper is non-linear, it is impossible to construct a linear equation set to solve the errors of the
structural parameters, so we can only choose the second method.

The parameter error identification problem of the above model can be converted into an optimization problem of the minimization
of objective function. The mathematical model of the optimization problem is constructed as follows:

Under each pose, taking the minimum sum of squares of the indicating value errors of the displacement sensor as the objective
function, that is:

m

6
> (any)* = min (33)

J=1 k=1
Taking the structural parameter errors of the parallel mechanism and the calibration device as the design variables, namely:
X =[AXp - AZps Axy -+ Adzg|iyqs (34)

The constraint condition of each variable is the value range of the variable under the condition of existing processing and assembly
capabilities, it takes +0.2 (mm/rad).

4.2. Selection of the optimization tool

The identification of structural parameter errors is to search for the solutions that satisfy Eq. (33) within the value range of the
design variables. The simplest random search can be used to complete this work, but random search has slow computation speed and
large computation load. Common optimization algorithms such as genetic algorithm have the characteristics of global search, stable
and reliable, and there’s no need to solve the equation; however, these algorithms generally have large computation workload, long
computation time, they cannot handle the expensive constraints, and are easy to fall into local optimal solutions. On this occasion, the
new-generation intelligent optimization design software OASIS has provided an effective way to solve the above questions. The full
name of OASIS is Optimization Assisted System Integration Software, OASIS has integrated leading Al algorithms in the industry, can
automatically run the simulation software, change the input files, and restart the design process, thereby eliminating the bottleneck in
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the traditional development design process, making the entire design process achieve full digitalization and automation, and ulti-
mately solving a series of the design optimization problems more rapidly and efficiently [22,23].
In summary, this paper attempts to apply this software to the parameter error identification.

5. Parameter calibration test of the parallel mechanism

To verify the effectiveness of the above method, a parameter calibration test was performed on the parallel mechanism.

5.1. Calibration objects and test elements

In this paper, the object of parameter calibration is a set of 6-DOF 6-SPS parallel mechanisms, as shown in Fig. 3. Its structural
parameters are shown in Table 1. The calibration test elements include 6 displacement sensors, sensor stand, and reference block to be
measured (target reference block), etc., as shown in Fig. 4. The displacement sensors are SM30 series Czech ESSA grating displacement
sensors, which have the advantages of large measurement range, high resolution and high accuracy, etc. [24].

5.2. Calibration test process

Based on the 222-type ODM system, the calibration test was carried out, and the photo of the test site is shown in Fig. 5. The
displacement sensors S1 and S2 were located in the + Z direction of the target reference block, S3 and S4 were located in the -Y di-
rection, and S5 and S6 were located in the -X direction. The monitor 1 shows the data of S1, S2, and S3; and monitor 2 shows the data of
S4, S4, and S6.

Measurement configuration consisted of 18 positions and postures was selected, as shown in Table 2; the corresponding theoretical
values of the 18 displacement sensors are shown in Table 3; displacement measurement was conducted, and the indicating values of
the displacement sensors are shown in Table 4.

According to the above data, an OASIS-based optimization model was constructed, the variables are the structural parameter errors
of the parallel mechanism and the ODM system, the value range is £0.2 (mm/rad) and the step size is 0.001 (mm/rad). The objective
function is the minimum sum of squares of the sensors’ indicating value errors under each pose. The optimization calculation was
carried out in OASIS, the process is shown in Fig. 6, and the calculation process is shown in Fig. 7. After more than 200 rounds of
iterations, the structural parameter errors of the parallel mechanism and the ODM system were obtained, and then the compensated
structural parameters were obtained as well. The structural parameters of the parallel mechanism after compensation are shown in
Table 5.

The parameters in the control program of the parallel mechanism were modified, then the positions and postures of the calibration
test were input respectively to make the moving platform move to the specified pose, so as to verify the calibration effect. After that, the
structural parameters of the ODM system before and after the compensation, and the indicating values of the displacement sensors
were substituted into the inverse kinematics solutions of the ODM system to obtain the errors of the pose before and after the
compensation, as shown in Fig. 8.

According to the figure, there are:

1) For AXp, the maximum error was about 0.171 mm before calibration and about 0.01 mm after calibration, which was reduced by
about 94 %j;

Fig. 3. 6-DOF parallel mechanism.
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Fig. 4. SM30 series ESSA grating displacement sensor.

Table 1

Nominal value of 42 kinematic parameters of 6-SPS parallel mechanism(Unit: mm).
Branch Xpi Yai Zgi Xpi Ypi Zpi I;
1 —138 99.354 0 —138 17.965 0 141.898
2 —138 —99.354 0 —138 —17.965 0 141.898
3 —17.043 —169.189 0 53.442 —128.494 0 141.898
4 155.043 —69.834 0 84.558 —110.529 0 141.898
5 155.043 69.834 0 84.558 110.529 0 141.898
6 —17.043 169.189 0 53.442 128.494 0 141.898

s2 St
Conikoller: S6 Target reference block

Monitor 2 Monitor 1

Parallel mechanism

Fig. 5. Data collection site of 222-type ODM system.

2) For AYp, the maximum error was about 0.073 mm before calibration and about 0.01 mm after calibration, which was reduced by
about 87 %;

3) For AZp, the maximum error was about 0.032 mm before calibration and about 0.01 mm after calibration, which was reduced by
about 69 %;

4) For Aa, the maximum error was about 1.3 x 107> rad before calibration and about 1.7 x 10rad after calibration, which was
reduced by about 87 %;

5) For AP, the maximum error was about 6.7 x 10~* rad before calibration and about 1.7 x 10ad after calibration, which was
reduced by about 97 %;

6) For Ay, the maximum error was about 2.3 x 10~* rad before calibration and about 1.7 x 10°rad after calibration, which was
reduced by about 93 %.

In summary, the pose errors after calibration were significantly lower than those before calibration, indicating that the calibration
effect is significant.

Compared with the traditional measuring devices and methods, the pose measuring device and method proposed in this paper have
the following advantages:
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Table 2

Measurement configurations of calibration experiment (unit: mm/rad).
No. X Y Z o i} %
1 3.94 -5.85 116.69 —0.010 0.012 —0.001
2 3.94 6.07 116.30 0.019 —0.016 0.003
3 3.94 —0.25 116.71 0.004 0.008 0.000
4 -5.17 -5.85 116.69 0.019 —0.016 0.000
5 -5.17 6.07 116.30 0.004 0.008 —0.001
6 -5.17 —0.25 116.71 —0.010 0.012 0.003
7 0.20 —5.85 116.30 —0.010 0.008 0.003
8 0.20 6.07 116.71 0.019 0.012 0.000
9 0.20 —0.25 116.69 0.004 —0.016 —0.001
10 3.94 —5.85 116.71 0.004 —0.016 0.003
11 3.94 6.07 116.69 —0.010 0.008 0.000
12 3.94 —0.25 116.30 0.019 0.012 —0.001
13 -5.17 —5.85 116.30 0.004 0.012 0.000
14 -5.17 6.07 116.71 —0.010 —0.016 —0.001
15 -5.17 —0.25 116.69 0.019 0.008 0.003
16 0.20 —5.85 116.71 0.019 0.008 —0.001
17 0.20 6.07 116.69 0.004 0.012 0.003
18 0.20 —0.25 116.30 —0.010 —0.016 0.000

Table 3

Nominal value of displacement sensor of calibration experiment (unit: mm).
No. hl h2 h3 h4 h5 h6
1 —0.2403 0.552 1.789 —4.2485 —4.1919 6.4976
2 0.9121 0.111 —2.1186 3.3031 2.9095 0.4466
3 0.0513 1.1968 0.7527 —0.8175 —0.8526 5.6124
4 1.6729 0.8633 —1.3612 —8.7478 —8.822 —8.6712
5 —0.4558 0.6897 0.2448 5.4391 5.5136 —3.4925
6 —0.2644 0.5209 1.763 1.5796 1.2071 —2.6117
7 —0.4399 —0.1406 1.1 —4.0351 —4.4026 1.8607
8 —0.2857 2.2367 0.0134 3.1333 3.1208 2.7586
9 1.4412 —0.2599 —0.7032 —0.8658 —0.8018 —3.3019
10 1.4245 -0.2716 —-0.7218 —6.2635 —6.6286 0.4177
11 0.1013 0.4051 1.6433 7.7154 7.6673 5.6146
12 —0.5377 1.9833 —0.2413 —3.2411 —3.1438 6.4988
13 —0.667 0.9652 0.5212 —6.4172 —6.4506 —2.6076
14 1.6221 —0.9192 0.3199 7.6431 7.7341 —8.6726
15 —0.0028 2.0376 —0.1833 —3.0036 —3.3445 —3.4929
16 0.1694 2.2035 —0.0207 —8.832 —8.7437 1.8787
17 —0.2573 1.3741 0.9339 5.6565 5.3038 2.7747
18 1.0576 —1.4839 —0.2466 1.3912 1.3724 —3.3084

Table 4

Measurement value of displacement sensor of calibration experiment (unit: mm).
No. hl h2 h3 h4 h5 h6
1 —0.2641 0.7010 1.8504 —4.2890 —4.2548 6.5308
2 0.9735 —0.1198 —2.2568 3.3596 2.9603 0.4045
3 0.1050 1.2667 0.7146 —0.8101 —0.8554 5.6342
4 1.7750 0.7031 —1.4550 —8.8325 —8.9709 —8.6974
5 a—0.4042 0.7718 0.2172 5.4853 5.6018 —3.4733
6 —0.2846 0.6921 1.8397 1.5483 1.1900 —2.5875
7 —0.4787 —0.0279 1.1715 —4.0990 —4.4941 1.8761
8 —-0.1171 2.3213 —0.1328 3.1921 3.1924 2.7933
9 1.4219 —0.4294 —-0.7102 —0.8661 —0.8111 —3.3383
10 1.4085 —0.4445 —0.7324 —6.3197 —6.7417 0.3735
11 0.0469 0.4937 1.6965 7.7832 7.7863 5.6332
12 —0.3687 2.0590 —0.3937 —3.2350 —3.1668 6.5369
13 —0.5831 1.1106 0.5034 —6.4942 —6.5635 —2.5760
14 1.5065 —1.0508 0.4192 7.6888 7.8388 —8.7077
15 0.1693 2.1124 —0.3059 —3.0378 —3.4079 —3.4724
16 0.3434 2.2705 —0.1486 —8.8972 —8.8707 1.9054
17 —0.1941 1.4882 0.8947 5.7033 5.3779 2.8024
18 0.9348 —1.6364 —0.1569 1.3901 1.3815 —3.3492
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Table 5
42 kinematic parameters after compensation (unit: mm).
Branch Xpi Yai Zg; Xpi Ypi Zp; I;
1 —137.991 99.282 —0.070 —138.048 18.033 —0.049 141.860
2 —137.937 —99.406 0.086 —138.030 —18.026 —0.050 141.904
3 —17.020 —169.194 —0.030 53.508 —128.477 0.010 141.831
4 155.127 —69.877 0.051 84.609 —110.553 0.014 141.918
5 154.959 69.745 0.006 84.614 110.616 —0.074 141.851
6 —17.030 169.183 —0.098 53.409 128.426 0.059 141.929

1) Easy to operate. To measure pose, the proposed device and method only need to fix the target reference block on the moving
platform of the parallel mechanism and fix the displacement sensors on the stand.
2) Simple and efficient. As long as the end pose of the parallel mechanism change, the indicating values of the displacement sensors
would change accordingly, by substituting them into the inverse kinematics solutions, the end pose information could be obtained,

which can greatly save the labor and time costs.

3) Low cost. The main components of the measuring system are: 6 high-precision displacement sensors (reusable), target reference
block and measuring reference block, and stand for the sensors, so, the overall cost is relatively low.
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Fig. 8. Pose errors before and after calibration.

In summary, the pose measuring device and method proposed in this paper can not only effectively improve the positioning ac-
curacy of the parallel mechanism, but also have the advantages of easy-to-operate, simple and efficient, and low cost.

6. Conclusion

To simplify the parameter calibration process of the 6-DOF parallel mechanism, improve the calibration efficiency, and reduce the
calibration cost, this paper proposed a pose measuring method based on the ODM system, applied the spatial analytic geometry
method to analyze the forward and inverse kinematics solutions of the ODM system, and adopted the infinitesimal displacement
synthesis method to construct an error model for the combination of the parallel mechanism and the ODM system. Then, to identify the
structural parameters of the parallel mechanism, a mathematical model of the optimization problem was constructed, and the
objective function was the minimum sum of squares of the sensors’ indicating value errors, and the design variables were the structural
parameter errors of the parallel mechanism and the calibration device. After that, a parallel mechanism calibration platform based on
the ODM system was constructed, and the displacement of the 6-DOF parallel mechanism was measured; the OASIS software was used
to identify the structural parameter errors of the parallel mechanism and compensate the structural parameters, and then the effect of
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the compensation was verified. The comparison of the pose errors before and after calibration showed that the maximum position error
was reduced by 69 %-94 %, and the maximum posture error was reduced by 87 %-97 %, indicating that the positioning accuracy of the
parallel mechanism had been improved effectively. Compared with the traditional calibration method, the proposed method has the
advantages of easy-to-operate, simple and efficient, and low cost; it can effectively simplify the calibration work, improve the cali-
bration efficiency, and reduce the calibration cost.

The research results of this paper have high guiding significance and reference value for the calibration of parallel mechanisms.
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