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Abstract
Unmanned aerial vehicle (UAV) system is an emerging remote sensing tool for profiling 
crop phenotypic characteristics, as it distinctly captures crop real-time information on field 
scales. For optimizing UAV agro-monitoring schemes, this study investigated the perfor-
mance of single-source and multi-source UAV data on maize phenotyping (leaf area index, 
above-ground biomass, crop height, leaf chlorophyll concentration, and plant moisture 
content). Four UAV systems [i.e., hyperspectral, thermal, RGB, and Light Detection and 
Ranging (LiDAR)] were used to conduct flight missions above two long-term experimen-
tal fields involving multi-level treatments of fertilization and irrigation. For reducing the 
effects of algorithm characteristics on maize parameter estimation and ensuring the reli-
ability of estimates, multi-variable linear regression, backpropagation neural network, ran-
dom forest, and support vector machine were used for modeling. Highly correlated UAV 
variables were filtered, and optimal UAV inputs were determined using a recursive feature 
elimination procedure. Major conclusions are (1) for single-source UAV data, LiDAR and 
RGB texture were suitable for leaf area index, above-ground biomass, and crop height esti-
mation; hyperspectral outperformed on leaf chlorophyll concentration estimation; thermal 
worked for plant moisture content estimation; (2) model performance was slightly boosted 
via the fusion of multi-source UAV datasets regarding leaf area index, above-ground bio-
mass, and crop height estimation, while single-source thermal and hyperspectral data out-
performed multi-source data for the estimation of plant moisture and leaf chlorophyll con-
centration, respectively; (3) the optimal UAV scheme for leaf area index, above-ground 
biomass, and crop height estimation was LiDAR + RGB + hyperspectral, while considering 
practical agro-applications, optical Structure from Motion + customer-defined multispec-
tral system was recommended owing to its cost-effectiveness. This study contributes to the 
optimization of UAV agro-monitoring schemes designed for field-scale crop phenotyping 
and further extends the applications of UAV technologies in precision agriculture.
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Introduction

Maize (Zea mays L.) is known as one of the most important crops around the world, 
which plays an essential role in feeding the population and providing raw material for 
manufacturing (Széles et  al., 2012). According to FAOSTAT 2018, China accounted 
for 22.42% of the worldwide total maize production in 2018; for China in 2018, maize 
accounted for 42.04% of total cereal production. Crop phenotyping is a rapid process for 
profiling crop phenotypic characteristics including e.g., 3-dimensional (3D) structure 
information (e.g., crop height (CH), leaf area index (LAI), canopy volume), physiologi-
cal traits (e.g., above-ground biomass (AGB), plant moisture content (W), and blade 
thickness), and biochemical parameters (e.g., leaf/canopy chlorophyll/nitrogen content/
concentration (LCC/CCC, LNC/CNC)) (Hunt et al., 2018; Su et al., 2019). Some phe-
notypic parameters are strongly related to photosynthesis, respiration, and transpiration 
processes of crops. Field-scale maize phenotyping provides precise spatial variability 
and uncertainty of crop growth status, which is significant to the optimization of spatial 
agro-management with a view towards improving crop production.

Considering ecological benefits and the sustainable development of agroecosystem, 
non-destructive and cost-effective approaches for field-scale crop monitoring are priori-
ties in the areas of modern precision agriculture. Satellite remote sensing (RS) has been 
broadly applied in agro-monitoring, but it is impacted greatly by the coarse spatial reso-
lutions and mixed pixels, the cloudy and rainy weather conditions, and fixed and long 
revisiting periods (Verrelst et al., 2015; Xie et al., 2019). In recent years, the unmanned 
aerial vehicle (UAV) RS becomes an alternative to mitigate the aforementioned issues 
owing to its versatility and cost-benefits (Bendig et al., 2015; Wang et al., 2019a, b). As 
an emerging technology, UAV systems can distinctly capture crop information on field 
scales (~  10–4–106  m2) which is sharply extended from the traditional crop phenotyping 
scales (~  10–6–100  m2). Besides, remotely sensed crop information with specific spectral 
requirements (e.g., narrow or broad bands, specific wavelengths) is available via UAV 
observations, thus providing a potential to improve the estimation/retrieval accuracy of 
crop phenotypic traits.

UAV RS has been widely applied in the estimation of crop phenotypic parameters 
at the field level (Duan et al., 2014; Kanning et al., 2018). Optical (400–1000 nm, e.g., 
RGB, multispectral (MS), and hyperspectral (HS)) (Jay et  al., 2018; Xu et  al., 2019a, 
b), thermal (TM, 3–18  μm) (Berni et  al., 2009; Maimaitijiang et  al., 2020), and light 
detection and ranging (LiDAR) (Luo et  al., 2019) are three popular UAV sensors for 
RS-based vegetation phenotyping (Weiss et  al., 2020). However, as the RS informa-
tion offered by various UAV systems is characterized by different traits, the selection of 
appropriate UAV sensors depends on the specific phenotypic parameters.

Optical cameras have access to capture spectral reflectance and textures of objects, 
and vegetation indices (VIs) can be further calculated using the reflectance of specific 
bands (Cao et al., 2020; Chianucci et al., 2016). This optical information has been suc-
cessfully applied in crop phenotyping with satisfying accuracies, such as the estima-
tion/retrieval of above-ground biomass (Bendig et  al., 2015), yield (Feng et al., 2020; 
Zhou et al., 2017), LAI (Roth et al., 2018), and LCC/CCC/LNC/CNC (Li et al., 2019; 
Zhu et al., 2020). However, the asymptotic saturation issue that occurred in the dense 
canopy would hamper the applications of optical sensors regarding crop phenotyping, 
independent and complementary RS information (e.g., temperature and vertical struc-
ture data of canopies) is therefore necessary to alleviate these issues.
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In recent years, the structure from motion (SfM) point clouds has become a promising 
alternative for partially detecting canopy structure information (González-Jaramillo et al., 
2019). SfM point cloud is developed from the image sequences caused by multi-angle tilt 
photogrammetry of optical cameras (usually are RGB and MS) (Li et al., 2016; Ye et al., 
2019). However, these passive optical cameras fail to penetrate the dense canopy and cap-
ture precise information beneath the layers. Therefore, optical SfM point clouds are limited 
in detecting rugged terrain and complex vertical structure of canopies, especially for the 
forest ecosystem with abundant species diversity (Karpina et  al., 2016). As farmland is 
usually under unified tillage management, crop canopy tends to be homogeneous. In such 
a context, the performance of optical SfM point clouds on revealing the subtle differences 
of a homogeneous crop canopy remains uncertain (Zhu et al., 2019a, b). By comparison, 
the LiDAR system, as an active technology, allows more dense point clouds concerning 3D 
information of observed objects from differences in the wavelengths and return time of the 
actively emitted laser (Luo et al., 2019). While it is challenging to apply LiDAR in agro-
applications due to the over-expensiveness.

Temporal and spatial variations of soil moisture have important impacts on crop growth, 
but it is difficult to obtain these variations. Diagnosis of plants to indirectly assess environ-
mental water stress has been proposed as an alternative approach in previous studies (Kull-
berg et  al., 2017). Although VIs and fractional vegetation cover from optical data have 
the capabilities of assessing water stress severity for plants, the independent temperature 
information of canopies provided by TM cameras is the best indicator (Maes & Steppe, 
2012). For example, the water stress level for crops can be assessed through the compar-
ison between the target and fully irrigated reference crops; some TM related indicators, 
such as crop water stress index and canopy temperature ratio, have been generated to assess 
soil moisture deficit and related stress factors (Maimaitijiang et al., 2020; Taghvacian et al., 
2012). The integration of TM into spectral and structure RS data can provide independent 
and complementary information for crop phenotyping, which could contribute to accurate 
estimation.

In this study, five key crop parameters, i.e., LAI, AGB, LCC, CH, and W were selected 
for UAV RS-based phenotyping, and the related studies were summarized in Table 1. Sin-
gle and dual UAV sensors have been widely applied in the estimation of these five param-
eters. Concerning LCC estimation, optical, particularly HS sensors are broadly used (Jay 
et al., 2018; Zhu et al., 2020); LAI estimation is often carried out using the integration of 
3D point clouds and optical information (Córcoles et  al., 2013; Duan et  al., 2014; Yang 
et al., 2017); for CH, 3D point clouds are often recommended (Niu et al., 2019); regarding 
AGB estimation, the fusion of optical information and 3D point clouds is popular (Almeida 
et  al., 2019; Bendig et  al., 2015); and the TM camera is usually targeted applied in the 
diagnosis of water stress levels or plant moisture content, since the TM bands are sensitive 
to water/moisture (Maes & Steppe, 2012). However, there is a scarcity of study that has 
integrated optical, LiDAR, and TM sensors together or intercompared the performances 
of multi-source UAV sensors for crop phenotyping. As appropriate combinations of UAV 
sensors contribute to accurate phenotyping, it is necessary to investigate the performance 
of single and multi-source UAV data in field-scale crop phenotyping.

This study aimed to fill a gap regarding field-scale crop phenotyping using multi-source 
UAV RS technologies and design optimal UAV agro-monitoring schemes. The hypotheses 
are that UAV 3D-related information performs well in LAI and CH estimation; spectral 
and thermal data are suitable for LCC and W estimation, respectively; and the fusion of 
multi-source UAV data contributes to crop phenotypic parameter estimation, especially for 
AGB. To test these hypotheses, simultaneous multi-source UAV data that were captured 
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via UAV RGB, HS, TM, and LiDAR systems were used for field-level estimation of maize 
phenotypic parameters (i.e., AGB, LAI, W, CH, and LCC). Pearson correlation analysis 
was used to filter highly correlated UAV inputs, and recursive feature elimination (RFE) 
feature selection was carried out to carefully select appropriate UAV inputs for models. 
Four statistical models, i.e., multi-variable linear regression (LM), backpropagation neural 
network (BP), random forest (RF) model, and support vector machine (SVM) were applied 
to modeling. Multiple models for parameter estimation aimed to mitigate the uncertainty 
of algorithms so as to ensure the reliability of phenotypic estimates. The results of this 
study would contribute to field-scale crop phenotyping based on UAV RS technologies and 
extend the applications of UAVs in precision and sustainable agriculture.

Material

Study area

The study site was set up at the Yucheng Comprehensive Experiment Station (YCES) of 
the Chinese Academy of Sciences, Dezhou city in the western Shandong Province in China 
(36.83° N, 116.57° E, Fig. 1). The study area is located at a temperate monsoon zone, with 
a mean annual rainfall of 582.0 mm/year and an average air temperature of 13.10 °C. Most 
of the precipitation is during the growth period of the maize. Wheat and maize are the 
dominant crops, which are cultivated between October and June in the following year, and 
between July and September, respectively.

Two long-term experimental fields in use over ten years were utilized for UAV and 
field observations. Field YF has 25 plots (5 × 6 m), applied with six fertilization and tillage 

Table 1  Summary of crop phenotyping using multi-source UAV RS technology

a WSL water stress level

Phenotypic parameters Commonly-used UAV sensors References

LCC/CCC/LNC/CNC 1. MS (Jay et al., 2018; Roosjen et al., 2018)
2. HS (Li et al., 2019)

LAI 1. RGB (Córcoles et al., 2013)
2. MS (Jay et al., 2018; Yao et al., 2017)
3. HS (Duan et al., 2014)
4. LiDAR (Yang et al., 2017)
5. RGB + MS (Su et al., 2019; Yue et al., 2018)
6. HS + MS (Zhu et al., 2019a, b)

W/WSLa 1. TM (Berni et al., 2009)
CH 1. SfM (Li et al., 2016; Niu et al., 2019; Su et al., 2019)
AGB/yield 1. RGB/RGB + SfM (Bendig et al., 2014; Niu et al., 2019)

2. MS/MS + SfM (Bendig et al., 2015; Roosjen et al., 2018; Wang 
et al., 2019a, b)

3. HS/HS + SfM (Yue et al., 2017)
4. LiDAR (Zhu et al., 2019a, b)
5. MS + TM (Maimaitijiang et al., 2020)
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treatments: CK, NP, NK, PK, NPK, and NPKS; where N, P, K are nitrogen (N 255  kg 
 ha−1), potash  (K2O 125 kg  ha−1), and phosphate  (P2O5 30 kg  ha−1) fertilizers, respectively; 
S is returning the whole straw of each plot into the soil; CK is no nutrient fertilizer. Because 
the bottom row of plots was used as reserved fields, these five plots were treated with con-
ventional fertilization (two NPKS and three NPK plots). Field SN has 32 plots, with a size 
of 5 × 10 m. It was applied with two irrigation (60% fc, 80% fc) and five nitrogen fertilizer 
levels (N0, N70, N140, N210, and N280 denote 0, 70, 140, 210, and 280 kg N   ha−1 for 
each crop season, respectively). The 60% fc and 80% fc denote irrigation to 60% and 80% 
of the field water capacity, respectively. Maize was irrigated once at the sowing stage.

Data acquisition

Field data collection

Summer maize (Zea mays L.), “Zhengdan 958”, was planted on June 12, 2018, and June 
15, 2018, for Fields YF and SN, respectively. Five crop phenotypic parameters were meas-
ured in this study, including LAI  (m2  m−2), CH (cm), AGB (t  ha−1), W (%), and LCC (mg 
 kg−1) (Table 2). All the five parameters were measured on 22–24 July 2018 (Fig. 2). Crop 
canopies were homogeneous within a plot because of the scientific agro-management, 
while they were heterogeneous between various plots owing to the different tillage treat-
ments. For ensuring the typicality of field sampling, considering the plot size, five plants 
outside the border area were determined on a random basis for field measurement.

Measurement of LCC and LAI were carried out in the field. LCC was non-destruc-
tively measured using a MultispecQ v2.0 handheld chlorophyll meter (PhotosynQ LLC, 
East Lansing, MI, USA), between 10:00 and 14:00 under a clear sky. MultispecQ v2.0 

Table 2  Descriptive statistics for the five field-measured maize phenotypic parameters

a SD standard deviation
b cv coefficient of variation

Maize parameters Field Min Mean Max SDa cv (%)b

LAI  (m2  m−2) Field all (n = 57) 0.35 1.17 2.36 0.47 39.87
Field YF (n = 25) 0.50 1.37 2.36 0.58 42.29
Field SN (n = 32) 0.35 1.00 1.48 0.26 25.73

AGB (t  ha−1) Field all (n = 57) 0.20 1.14 4.54 1.01 88.12
Field YF (n = 25) 0.35 1.82 4.54 1.19 65.40
Field SN (n = 32) 0.20 0.61 1.26 0.25 40.56

W (%) Field all (n = 57) 84.35 87.57 89.13 1.17 1.34
Field YF (n = 25) 84.35 86.81 89.01 1.28 1.47
Field SN (n = 32) 86.52 88.16 89.13 0.62 0.71

LCC (mg  kg−1) Field all (n = 57) 26.72 37.21 50.26 4.25 11.43
Field YF (n = 25) 26.72 39.33 50.26 4.40 11.18
Field SN (n = 32) 27.93 35.56 41.00 3.36 9.46

CH (cm) Field all (n = 57) 67.67 107.76 166.50 23.32 21.64
Field YF (n = 25) 69.00 120.86 166.50 27.51 22.76
Field SN (n = 32) 67.67 97.53 116.67 12.25 12.56
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was controlled by a Photosynq app through Bluetooth using an Android smartphone MI 
8 (Xiaomi Technology Co., Ltd., Beijing, China). All the leaves of maize were used for 
LCC measurement, and each leaf was measured 3 times. MultispecQ v2.0 measurement 
recorded relative amounts of chlorophyll in leaves, this measurement gave a unitless but 
highly reproducible measure. The MultispecQ-based LCC (unitless) was further converted 
into actual LCC (mg  kg−1) based on the results of the previous study (Zhu et al., 2020). 
LAI was measured by a LAI-2200 Canopy Analyzer (Li-COR Biosciences, Lincoln, NE, 
USA), repeating 10 times in each plot. LAI measurement was conducted at dusk to avoid 
intense incident radiation.

The whole plant without roots was cut down for indoor measurement of AGB, CH, and 
W. Maize plant was put vertically to measure CH using a straight tape, measuring from the 
ground to the top part of the plant. Then the whole plants were used for weighing the fresh 
AGB (with moisture). Next, to remove moisture, maize was cut up and put into envelopes. 
The samples were dried in an oven at 105 °C for 2 h to destroy the activity of the enzyme 
and then at 75 °C until the weight remained constant to obtain the dry AGB (without mois-
ture) and W. Field-level LAI, CH, and LCC were obtained by calculating the average val-
ues of all measurements; AGB and W of each plot were calculated as follows:

where m (kg) is the total weight of dry matter per maize plant; num is the number of plants 
in each plot; length_plot and width_plot are the length (m) and width (m) of each plot, 
respectively. Then the kg  m−2 was rescaled to t  ha−1.

Multi‑sensor UAV flights

Four UAV flight missions were conducted under clear sky and low wind speed (< 5 m  s−1) 
conditions between 09:30–14:30 Beijing time, on 22–24 July 2018, when the time at the 
jointing stage of maize. Four types of UAV platforms, i.e., eBee wing-fixed UAV (Sense-
Fly, Cheseaux-Lausanne, Switzerland), DJI M100 four-rotator UAV (SZ DJI Technology 

(1)AGB
(
kg m−2

)
= (m × num)∕(length_plot × width_plot)

(2)W (%) = (fresh AGB − dry AGB )∕(fresh AGB) × 100%

(3)Actual LCC
(
mg kg−1

)
= 9.6324 × e

0.029×MultispecQ - based LCC

Fig. 2  a Destructive sampling of maize; b measurement of LCC using a MultispecQ; and c removing mois-
ture of maize samples using an oven
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Co., Shenzhen, China), DJI M600 six-rotator UAV (SZ DJI Technology Co., Shenzhen, 
China), and EWZ-D6 six-rotator UAV (EWATT, Wuhan, China), were equipped with ther-
moMAP camera (SenseFly, Cheseaux-Lausanne, Switzerland), DJI Zenmuse X3 RGB 
camera (SZ DJI Technology Co., Shenzhen, China), Nano-Hyperspec VNIR HS camera 
(Headwall Photonics, Los Angeles, CA, USA), and the Alpha Series AL3-32 LiDAR sys-
tem (Phoenix, Los Angeles, CA, USA), respectively (Fig.  3). The specific information 
about UAV systems and their flight missions is shown in Table 3.

For the next radiation calibration, the reflectance of spectral panels was collected before 
the flight of the RGB system and during the flight of the HS system. The calibration of TM 
data is automatic without artificial calibration. The Pix4D Mapper 3.1.22 (Pix4D, S.A., 
Lausanne, Switzerland) was used for the radiation correlation, image mosaic, and orthog-
raphy of both RGB and TM images. The CloudCompare open-source software and Arc-
GIS 10.5 (ESRI, RedLands, CA, USA) were used for developing the digital surface model 
(DSM) and digital elevation model (DEM) derived from the LiDAR point clouds. ENVI 
5.5 (Exelis Visual Information Solutions, Boulder, CO, USA) and IDL language were used 
for image mosaic and radiation correction of HS images. Python 3.7 and related geography 
processing packages (e.g., GDAL) were used for further processing and analysis of UAV 
RS data.

Methods

UAV RS information extraction

Extraction of hyperspectral information

The 272 raw HS bands (400–1000  nm) from Nano-Hyperspec VNIR HS orthomosaics 
were used as canopy spectral features. Besides, a set of VIs that have been applied to veg-
etation phenotyping recorded in previous studies was selected for parameter estimation. As 
shown in Table 4, these VIs were divided into five types: (1)  (R1 −  R2)/(R1 +  R2), (2)  R1/
R2, (3)  R1 −  R2, (4)  (R1 −  R2)/R3, and (5) hybrid. The mean values of 272 bands and 27 
VIs of each plot were calculated to present the spectral information of each plot. Thus, 272 
spectral reflectance and 27 VIs constituted the HS dataset (n = 299).

Extraction of RGB information

As spectral information has been provided by HS camera, the RGB data with a high spa-
tial resolution (~ 1 cm) were used to offer spectral texture information of canopies. This 
texture information was extracted from the grey level co-occurrence matrix (GLCM) of 
RGB-based green, red, and blue bands. GLCM texture includes eight indicators: mean, 
variance (var), homogeneity (homo), contrast (con), dissimilarity (dis), entropy (en), sec-
ond moment (se), and correlation (cor). GLCM texture was computed using ENVI 5.5. 
The processing window is 3 rows × 3 cols. To obtain more texture information, the mean, 
min, max, sd, and cv values of GLCM indicators within each plot were calculated. Thus, 
8 (GLCM indicators) × 3 (bands) × 5 (statistical metrics) = 120 RGB variables were gener-
ated for the RGB dataset.
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Extraction of LiDAR information

The Alpha Series AL3-32 LiDAR system captured 3D point clouds of objects. Noise 
points were firstly filtered. Then DSM (raster data) was developed based on the remain-
ing point clouds. Next, ground points were carefully selected to develop DEM. Thus 
CSM was available by the difference between DSM and DEM. The spatial resolution 
of DSM, DEM, and CSM were 2 cm × 2 cm. The mean, min, max, sd, and cv values of 
all CSM pixels within a plot were calculated. To obtain more LiDAR information, the 
GLCM approach was used again to obtain LiDAR-based canopy texture information. 
The process of LiDAR texture was similar to that of RGB data, including eight GLCM 
indicators, and each GLCM indicator had five statistical metrics. Thus, the LiDAR 
dataset was developed with 5 + 8 × 5 = 45 variables.

Extraction of thermal information

The temperature pixels of the maize canopy were captured by the thermoMAP camera. 
The min, mean, max, sd, cv, T05, T10, T15, T20, T25,T30, T35, and T40 values of 
each plot were calculated; where T05 T10, T15, T20, T25,T30, T35, and T40 were the 
mean values of top 5%, 10%, 15%, 20%, 25%, 30%, 35%, and 40% ranked pixels within 
a plot. The TM dataset was generated with 13 variables.

Table 3  Specific information about four UAV systems and corresponding flight missions

Platforms Sensors

Type Specific information

eBee ThermoMAP (1) Bands: 3.5–13.5 μm
(2) Scene temperature: − 40 ℃ to 160 ℃
(3) Temperature resolution: 0.1 ℃
(4) Calibration: automatic, in-flight thermal image-based
(5) Spatial resolution: ~ 20 cm
(6) Flight height: 105 m
(7) Overlap: 70% (front), 80% (side)

DJI M100 DJI Zenmuse X3 RGB (1) Bands: blue (B), green (G), and red (R) bands
(2) Spatial resolution: ~ 1 cm
(3) Flight height: 30 m
(4) Overlap: 75% (front), 85% (side)

DJI M600 Nano-Hyperspec VNIR (1) Bands: 400–1000 nm (272 bands)
(2) Spectral resolution: ~ 2.22 nm
(3) Spatial resolution: ~ 4 cm
(4) Flight height: 60 m
(5) 70% (front), 80% (side)

EWZ-D6 Alpha Series AL3-32 LiDAR (1) Field View: 270°
(2) Scan rate: 700 k points  s−1

(3) Flight height: 40 m
(4) Overlap: 70% (front), 70% (side)
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Pre‑process of 4 UAV datasets

As Fig. 4 shows, firstly, four UAV datasets (RGB, HS, LiDAR, and TM) were generated 
as foregoing descriptions (477 UAV variables). Secondly, the highly correlated UAV 
variables were removed (|r|> 0.95, n = 57) to reduce the impacts of the multi-collinear-
ity issue (Almeida et al., 2019). This process was carried out using the findCorrelation 
function of the caret package in the R × 3.6.3 software. After this process, only 108 
UAV variables remained. To select appropriate UAV variables for maize phenotyping 
and to ensure the accuracy of estimation models, the RFE feature selection was carried 
out using the caret package in R × 3.6.3. RFE feature selection is a wrapper method, 
which selects model inputs based on the value of root mean square error (RMSE) or 
the coefficient of determination (R2). This process was quantified in three-fold cross-
validation, repeating 1000 times. The optimal models were determined with the lowest 
RMSE. Finally, single-source and multi-source UAV datasets were separately used for 
modeling (see “Modeling and validation” section), and their performance was intercom-
pared. Thus, optimal UAV observation schemes could be determined.

Fig. 4  A brief framework of maize phenotyping based on multi-source UAV data
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Statistical analysis and methods used for phenotyping

Modeling and validation

Machine learning algorithms have been demonstrated to have the capability of con-
ducting non-linear modeling flexibly with satisfying accuracy and robustness, and 
are adopted in data fusion-based estimation of crop phenotypic parameters (Cai et al., 
2019). Factors such as the sample size, data characteristics, and initial parameterizations 
would affect model performance. To ensure the estimation reliability of UAV-based crop 
phenotyping, three machine learning methods (BP, RF, and SVM) and LM were used in 
this study, and their performance was intercompared. BP, RF, and SVM modeling were 
run using the nnet, randomForest, and e1071 packages in R, respectively.

Machine learning modeling included three steps. Firstly, zero-mean normalization 
(z-score) and model parameterization were conducted. The z-score requires all UAV 
RS inputs were normalized to the mean and sd values of 0 and 1, respectively. The 
parameterization of the RF algorithm was the default value; the kernel of SVM was set 
to ‘linear’ mode; the size, maxit, and decay parameters of BP were debugged repeat-
edly to determine their optimal values for different phenotyping models. Secondly, the 
leave-one-out-cross validation (LOOCV) was carried out to avoid the multicollinearity 
issues by dividing the dataset into training (ntrain = 56) and validation datasets (nvali = 1). 
LOOCV is k-fold cross-validation, where k equals the number of samples (k = n). The 
LOOCV is time-consuming, but it is recommended for samples with a small size. As 
samples equal to 57, this process was repeated 57 times, and each model was repeated 
1000 times. Finally, the performance of each model for maize phenotyping was assessed 
by the validation dataset, which was evaluated using R2, RMSE, and the mean relative 
error (MRE) as follows:

ANOVA test

To further investigate the effects of tillage treatment of maize phenotypes, analysis of vari-
ability (ANOVA) was implemented for two fields. For Field YF, the six treatments (i.e., 
CK, NP, NK, PK, NPK, NPKS) were treated as a ‘nutrient factor’, so the one-way ANOVA 
test was implemented. The irrigation (fc) and nitrogen fertilizer (N) levels of Field SN were 
different, thus a two-factor interactive ANOVA test was conducted for Field SN. ANOVA 
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test was conducted using the IBM SPSS statistics 24.0 software (IBM Corp., Armonk, NY, 
US).

Results

Effects of tillage treatment on maize phenotyping

As shown in Fig. 5, in Field YF, LAI, AGB, CH, and LCC exhibited obvious spatial het-
erogeneity across various nutrient and tillage treatments, with a similar trend that their val-
ues roughly increased in the order of NPKS > NPK > NP > PK > NK > CK; while the vari-
ance of W across various plots was not remarkable, as the W values were 85.37 ± 0.92%, 
86.30 ± 1.36%, 86.30 ± 0.73%, 86.47 ± 0.38%, 87.82 ± 0.70%, and 88.83 ± 0.25% for CK, 
NK, NP, PK, NPK, NPKS plots, respectively. In Field SN, LAI, AGB, CH, and LCC were 
approximately correlated with N fertilizer levels, although their values nearly remained 
constant when the plots were applied over a rate of 210 kg N  ha−1. However, the W values 
were 87.50 ± 0.70%, 88.45 ± 0.32%, 88.09 ± 0.76%, 88.31 ± 0.38%, and 88.40% ± 0.49 for 
N0, N70, N140, N210, and N280 plots, respectively. Besides, the W value of 80% fc plots 
(88.30 ± 0.69%) was close to that of 60% fc plots (88.03 ± 0.53%), suggesting the insignifi-
cant difference of plant moisture content for plots in Field SN; while regarding the other 
four phenotypic parameters, the growth of maize at 80% fc was better than 60% fc.

Differences in maize phenotypic parameters across various tillage treatments were 
assessed using the ANOVA test. The Psig. values for tillage factor on LAI, AGB, CH, 
LCC, and W at Field YF were less than 0.05 (F test, n = 25) (Table 5), suggesting the N, 
P, and K fertilizer along with straw returning treatments had major effects on maize phe-
notype. As shown in Table 6, The Psig. values for N fertilizer levels on LAI, AGB, CH, 
and LCC were < 0.05 (n = 32), indicating N levels had a significant impact on maize LAI, 
AGB, CH, and LCC. While, the irrigation levels only influenced AGB and CH signifi-
cantly (Psig. < 0.05, n = 32). Except for W, no significant differences were found in LAI, 
AGB, CH, and LCC between the interactive treatments of N and irrigation within Field 
SN.

Maize phenotyping using single‑source UAV RS data

Model inputs screening of single‑source UAV data

This section used four single-source UAV datasets for maize phenotyping. The effects of 
UAV input sizes on phenotyping and the importance values of the top 10 ranked UAV 
variables were displayed in Figs. 6 and 7, respectively. When the RMSE was lowest, the 
number of inputs was determined as an optimal size. However, taking temporal efficiency, 
model robustness, and the importance of UAV inputs into account, the most parsimonious 
yet informative model was determined.

For LAI estimation, the optimal sizes of UAV inputs were 5, 21, 3, and 2 for LiDAR, 
HS, RGB, and TM datasets, respectively; the RMSE values were in the order of LiDAR 
(~ 0.20) < RGB (~ 0.30) < HS (~ 0.32) < TM (~ 0.35) (Fig.  6). Among LiDAR variables, 
Li-mean, Li-sd, and Li-cv were essential for modeling, as their importance values were 
16.82, 15.82, and 15.51, respectively (Fig. 7). The importance of HS variables was close 
ranging between 4.70 and 7.84, and most of the top 10 ranked important variables were 
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red-edge and NIR bands, located at 730–750  nm and 930–980  nm, respectively. As the 
RMSE value of 6 HS variables (0.285) was roughly equivalent to 21 HS variables (0.274), 
the appropriate size of HS dataset for LAI estimation was set to 6. Among RGB variables, 
R-mean-mean was dominant for modeling (21.94) over the other variables. Regarding TM 
variables, T-max and T-min, and T-mean were important, with values of 22.12, 19.48, and 
8.02, respectively.

In terms of AGB modeling, the optimal sizes of UAV inputs were 12, 12, 6, and 
2 for LiDAR, HS, RGB, and TM datasets, respectively; while 5, 4, 6, and 2 were set as 
the appropriate size following the aforementioned rules. The RMSE were in the order of 
LiDAR (~ 0.52) < RGB (~ 0.62) < TM (~ 0.70)/HS (~ 0.70). The important LiDAR vari-
ables for AGB modeling were similar to LAI estimation, such as Li-mean (8.41), Li-sd 
(7.62), and Li-homo-mean (7.85). R-mean-mean was a dominant RGB variable with an 
importance value of 19.33, remarkably higher than the 2nd ranked G-mean-mean (9.29). 
Regarding HS variables, their importance values were low, most of which were located 
at NIR bands (930–960 nm). For TM dataset, the dominant variable was T-max, with an 
importance value of 28.72.

In the case of CH modeling, the appropriate size of UAV inputs were 7, 5, 3, and 2 
for LiDAR, HS, RGB, and TM datasets, respectively. The RMSE values followed the 

Table 5  Results of one-way ANOVA analysis for phenotypic parameters of maize at Field YF

a SS sum of squares
b MS mean square

SSa df MSb F Psig SS df MS F Psig

Groups LAI 6.934 5 1.461 34.605 0.000 AGB 24.049 5 4.810 9.027 0.000
Error 1.374 19 0.042 10.123 19 0.533
Total 8.309 24 34.172 24
Groups CH 15,070.046 5 3014.009 18.510 0.000 LCC 306.971 5 61.394 7.438 0.001
Error 3093.714 19 162.827 156.831 19 8.254
Total 18,163.760 24 463.802 24
Groups W 26.228 5 5.246 7.618 0.000
Error 13.083 19 0.689
Total 39.310 24

Table 6  Results of two-factor interactive ANOVA analysis for phenotypic parameters of maize at Field SN

The bold numbers aimed to highlight significance values were less than 0.05

df MS F Psig df MS F Psig df MS F Psig

LAI AGB CH
N 4 0.344 11.714 0.000 4 0.261 9.886 0.000 1 648.798 14.950 0.000
fc 1 0.010 0.355 0.558 1 0.131 4.984 0.036 4 436.219 10.051 0.004
N*fc 4 0.009 0.307 0.870 4 0.034 1.302 0.300 1 174.451 4.020 0.014

LCC W
N 4 49.758 8.528 0.000 4 0.939 2.763 0.053
fc 1 10.652 1.826 0.190 1 0.456 1.341 0.259
N*fc 4 3.103 0.532 0.714 4 0.064 0.189 0.942
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order of LiDAR (~ 12.0) < RGB (~ 14.0) < HS (~ 15.30) < TM (~ 17.0). The important 
LiDAR, RGB, and TM variables were similar to AGB estimation. However, it is worth 
noting that the VIs (e.g., DR1, PSSRA, and NDVI1) were more important than the spec-
tral reflectance of bands.

Fig. 7  Importance values for single-source UAV RS datasets on the cross-validated RMSE of models for a 
LAI, b AGB, c CH, d LCC, and e W estimation
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For LCC modeling, the appropriate sizes of UAV inputs were set to 4, 6, 7, and 5 for 
LiDAR, HS, RGB, and TM datasets, respectively. It should be noted that the HS dataset 
showed dominant advantages over LiDAR, TM, and RGB datasets, as the order of average 
RMSE was HS (~ 2.25) < LiDAR (~ 2.805) < TM/RGB (~ 3.20). The top six ranked impor-
tant HS variables were PSSRA, NDVI1, PSRI, B402, RD1, and NDRE2, with correspond-
ing importance values of 13.68, 13.21, 13.10, 11.26, 8.68, and 7.83, respectively.

As for W modeling, the appropriate sizes of LiDAR, HS, RGB, and TM datasets 
were set to 8, 6, 8, and 3, respectively. The RMSE values followed the order of TM 
(~ 0.73) < HS < (0.78) < LiDAR (~ 0.80) < RGB (~ 0.85), indicating that the TM dataset 
pertained to W estimation. The importance values of top 5 ranked TM-variables followed 
the order of T-mean (13.55) > T-min (12.64) > T-max (10.20) > T-cv (9.22) > T-sd (8.76).

Performance of single‑source UAV data on maize phenotyping

After determining appropriate UAV variables, LM, RF, BP, and SVM methods were 
employed for maize phenotyping using single-source UAV data. The performance 
of various single-source UAV data on maize phenotyping was evidently different 
(Fig. 8). For LAI estimation, the accuracy of UAV datasets were in the order of LiDAR 
(R2 = 0.83–0.85, RMSE = 0.18–0.19, MRE = 14.16–15.45%) > RGB (R2 = 0.65–0.73, 
RMSE = 0.24–0.28, MRE = 16.98–20.52%) > HS (R2 = 0.60–0.61, RMSE = 0.29–0.30, 
MRE = 21.19–24.70%) > TM (R2 = 0.51–0.57, RMSE = 0.31–0.33, MRE = 23.83–26.80%). 
Regarding AGB estimation, the LiDAR dataset performed best, with R2, RMSE, and MRE 
values around 0.70, 0.52, and 35%, respectively; the RGB dataset was less accurate than 
LiDAR dataset, while the performance of HS and TM datasets was comparable, remarkably 
less accurate than the LiDAR dataset. For CH estimation, the R2, RMSE, and MRE values 
for LiDAR dataset were ranging 0.72–0.76, 11.49–13.58, and 9.13%–10.08%, respectively; 
and those three for RGB dataset were 0.63–0.69, 12.95–14.27, and 10.10–11.0%, respec-
tively. The estimation for TM and HS datasets was less robust, with low R2 and high RMSE 
and MRE. In terms of LCC, the HS dataset outperformed the other three datasets, with 
R2, RMSE, and MRE around 0.76, 2.0, and 4.20%, respectively; while the RGB and TM 
datasets did not work well, with R2, RMSE and MRE around 0.50, 3.2, and 6.0%, respec-
tively. In the context of W estimation, the accuracy of UAV datasets were in the order 
of TM (R2 = 0.65–0.69, RMSE = 0.69–0.71, MRE = 0.61–0.68%) > HS (R2 = 0.59–0.63, 
RMSE = 0.71–0.75, MRE = 0.61–0.66%) > RGB (R2 = 0.50–0.60, RMSE = 0.75–0.95, 
MRE = 0.72–0.77%)/LiDAR (R2 = 0.55–0.56, RMSE = 0.77–0.80, MRE = 0.69–0.75%).

In summary, LiDAR and RGB datasets performed well in LAI, AGB, and CH estima-
tion, although the LiDAR dataset was slightly better than the RGB dataset; HS outper-
formed the other three datasets in the case of LCC estimation; TM dataset did not perform 
well regarding maize phenotyping, although it moderately pertained to W estimation.

Maize phenotyping using multi‑source UAV RS data

Model inputs screening of multi‑source UAV data

In this selection, multi-source UAV data were used for maize phenotyping. As displayed 
in Fig. 9(1), models with the lowest RMSE values for LAI, AGB, CH, and W estimation 
required few UAV inputs, as their optimal feature sizes were 10, 11, 15, and 15, respec-
tively. However, the optimal size for LCC modeling was 25. As the RMSE value of size 
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8 for LCC estimation was 0.809, close to size 83 (0.776), the appropriate size regarding 
LCC estimation was set to 8.

Comparing the importance values of multi-source UAV variables (Fig.  9(2)), for 
LAI estimation, the top 10 ranked UAV inputs, which would be used for the next LAI 
modeling, were Li-sd (13.82), Li-mean (11.03), R-mean-mean (9.75), Li-cv (8.11), 
R-con-max (7.07), G-mean-mean (6.83), RVSI (6.41), G-mean-cv (5.28), Li-homo-
mean (4.47), and PSRI (4.18). Regarding CH modeling, Li-mean was dominant with 
an importance value of 14.06, followed by Li-sd (8.89), R-mean-mean (7.80), G-mean-
mean (6.85), and PSSRA (6.72), et al. For AGB, four LiDAR, two RGB, and five HS 
variables were selected for modeling, suggesting comprehensive multi-source UAV 
RS information was needed for robust AGB estimation. Regarding LCC modeling, a 
LiDAR, three RGB, and 11 HS variables were listed in the selected model inputs, indi-
cating HS dataset played the predominant role in LCC estimation. Besides, it should 
be noted that the top five ranked important variables were VIs in HS variables, i.e., 
PSRI (10.17), PSSRA (9.71), NDVI1 (9.31), RD1 (9.29), and B402 (8.13), indicating 
the performance of VIs was more stable and superior than band reflectance. TM dataset 
played a decisive role in W estimation, as the importance values of top two ranked UAV 
variables were 9.88 (T-min) and 9.45 (T-mean), remarkably higher than the following 
selected inputs e.g., Li-T10 (6.56), Li-mean-sd (6.55), and Li-mean-cv (5.76).

Performance of multi‑source UAV data on maize phenotyping

Table 7 shows the robustness assessment of maize phenotyping using multi-source UAV 
RS data. Except for W, the estimation of LAI, AGB, CH, and LCC achieved satisfy-
ing accuracy. Regarding AGB estimation, the R2 ranged between 0.79 and 0.81; RMSE 
ranged between 0.45 and 0.46; MRE ranged between 31.58 and 39.42%. While except 
for the BP performance was slightly poor, the R2 values were around 0.88, 0.80, and 
0.73, and RMSE values were around 0.16, 10.0, and 2.30 for LAI, CH, and LCC estima-
tion, respectively. The estimation accuracy of W was moderate, with R2, RMSE, and 
MRE around 0.60, 0.90, and 0.80%, respectively.

Table 7  R2, RMSE, and MRE values for maize phenotyping using multi-source UAV data

LAI  (m2  m−2) AGB (t  ha−1) CH (cm)

R2 RMSE MRE R2 RMSE MRE R2 RMSE MRE
LM 0.86 0.20 17.34 0.79 0.45 31.58 0.80 10.96 8.68
RF 0.88 0.16 12.25 0.81 0.46 33.50 0.82 9.94 8.28
BP 0.84 0.19 14.08 0.79 0.46 39.42 0.76 12.00 10.36
SVM 0.89 0.16 13.24 0.80 0.46 34.57 0.79 10.54 7.89

LCC (mg  kg−1) W (%)
LM 0.72 2.29 5.18 0.59 0.94 0.90
RF 0.74 2.31 5.31 0.65 0.74 0.68
BP 0.66 2.69s 6.04 0.56 0.91 0.77
SVM 0.73 2.47 5.47 0.61 0.73 0.65
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Discussion

In this study, five crop phenotypic parameters (i.e., LAI, AGB, CH, LCC, and W) were 
measured at the jointing period of maize cultivated across various tillage treatments, and 
the single-source and multi-source UAV RS datasets (i.e., HS, LiDAR, TM, and RGB) 
were used for maize phenotyping. The results of this study illustrated that for single-source 
UAV data, the LiDAR and RGB data were suitable for LAI, AGB, and CH estimation; HS 
data performed best regarding LCC estimation; while the TM dataset was appropriate for 
W estimation. The fusion of multi-source UAV RS data (LiDAR + RGB + HS) exhibited 
good performance regarding LAI, AGB, and CH estimation, although the importance of 
various UAV datasets differed for specific phenotypic parameters. While the single-source 
TM and HS data showed better performance than multi-source data on W and LCC estima-
tion, respectively.

Selection of single‑source UAV RS data for field‑scale maize phenotyping

The results of this study validated that different-source UAV RS datasets were suitable for 
specific crop phenotypic parameters. To investigate the effects of relationships between 
crop parameters on UAV-based maize phenotyping, the Pearson correlation analysis was 
employed. For all samples (n = 57), CH, LAI, and AGB exhibited strongly linear rela-
tionship, as the r values were 0.84 for LAI and AGB (p < 0.001), 0.89 for LAI and CH 
(p < 0.001), and 0.93 for AGB and CH (p < 0.001). LCC also showed significant correlation 
with CH (0.82, p < 0.001), LAI (0.75, p < 0.001) and AGB (0.75, p < 0.001). However, W 
exhibited a weak correlation with LAI, LCC, AGB, and CH, with r values less than 0.27 
(p ≥ 0.05) (Fig. 10).

In this study, Li-mean was predominant on CH estimation, which is also recognized in 
previous studies that 3D point clouds and GLCM texture can provide information about 
canopy structure (Maimaitijiang et al., 2020; Schneider et al., 2019). As CH was illustrated 
to be strongly correlated to AGB and LAI, UAV-based LiDAR and GLCM texture infor-
mation consequently would contribute to LAI and AGB estimation, which agrees with the 
previous studies (Li et  al., 2016; Yue et  al., 2017). However, the RGB and LiDAR data 
tend to suffer information overlap in the case of canopy structure detection, which might 
lead to the comparable applicability of LiDAR and RGB datasets. Nonetheless, RGB and 
LiDAR are independent, as RGB information was derived from optical photogrammetry 
while LiDAR data was extracted from 3D point clouds computed by active emitted laser. 
Besides, LiDAR outperformed RGB in LAI, AGB, and CH estimation, which is likely 
because the dense LiDAR scanning provided more precise structure information. On the 
other hand, RGB camera is a passive sensor and easily affected by environmental condi-
tions (e.g., incident radiation, soil, weeds, and shadow), which might degrade its accuracy 
for remotely sensed observation.

In this study, the optical (MS/HS) dataset was proved to be appropriate for LCC estima-
tion, which was consistent with the previous studies (Kanning et al., 2018; Pablo Rivera-
Caicedo et al., 2017); while this single-source optical information exhibited moderate per-
formance on LAI estimation. Many studies have validated that spectral information had the 
potential for LAI estimation, as they succeeded in implementing the spectral information 
and radiative transfer models (e.g., PROSAIL and ACRM) to retrieve LAI with a satisfy-
ing accuracy (Dong et al., 2019; Jay et al., 2017). The moderate performance of HS dataset 



1792 Precision Agriculture (2021) 22:1768–1802

1 3

on LAI estimation could be explained by the asymptotic saturation that occurs for dense 
and heterogeneous canopies and surrounding noises within sparse canopies (Almeida 
et al., 2019; Gnyp et al., 2014). The tillage treatments of Fields SN and YF were different, 
and the sowing date of Field YF was three days earlier than Field SN. In such a context, 
the growth process of maize differed among various plots. Some maize without nutrient 
or irrigation stress, such as the NPKS plots in Field YF, were at the late jointing stage 
with relatively dense canopies; while maize under a severe environmental stress condition 
(e.g., N0 + 60%fc in Field SN) was at the early jointing stage with a sparse canopy. Conse-
quently, part of plots with dense canopies might exhibit asymptotic saturation, while plots 
with sparse canopy might be obviously interfered with surrounding noises. As the variance 
of LAI across various tillage treatments was more obvious than LCC, the saturation issue 
could degrade LAI estimation more evidently compared to LCC estimation.

The temperature information provided by TM camera is associated with leaf water 
content, pigment content, and canopy structure features (Berni et  al., 2009; Maimaiti-
jiang et  al., 2020). However, a wide range of environmental factors, for example, wind 
speed, photosynthetic active radiation, air temperature, and water availability, signifi-
cantly affected canopy temperature, which may at least in part degrade TM performance 

Fig. 10  Scatters of ground-measured phenotypic parameters of maize cultivated at Fields YF and SN



1793Precision Agriculture (2021) 22:1768–1802 

1 3

(Kullberg et al., 2017; Lei et al., 2020). Nonetheless, in this study, TM data was proved to 
exhibit potential in maize phenotyping, particularly for plant moisture content detection. 
Besides, since temperature data is independent and complementary to spectral and struc-
ture information, integration of these data for more robust crop monitoring and phenotyp-
ing is promising in recent years (Maimaitijiang et al., 2020).

Effects of multi‑source data fusion on field‑scale maize phenotyping

To investigate the effects of UAV data fusion on maize phenotyping, the differences in 
estimation robustness between multi-source and single-source datasets were displayed in 
Fig. 11. It should be noted that the accuracy improvement was not substantial when comb-
ing all spectral, structure, thermal, and texture information as compared to using optimal 
single-source UAV data, which is likely attributed to the information homogeneity and 
redundancy among canopy spectral, structure, and texture features.

The phenotyping results of data fusion illustrated that the combinations of LiDAR, 
RGB, and HS data exhibited slightly better performance on LAI, CH, and AGB estimation. 
This subtle improvement might be because the estimation accuracy of LiDAR-based model 
was already pretty high, and the errors and redundancy from surrounding noises offset the 
model improvement provided by the fusion of HS information. Nevertheless, AGB is a 
comprehensive parameter of crop growth status, which is strongly related to e.g., the accu-
mulation of organic matters, the increase of CH and LAI, and changes in LCC (Xu et al., 
2019a, b; Ye et al., 2020), thus AGB estimation required sufficiently independent and com-
plementary RS data to ensure its comprehensiveness and robustness. In recent years, the 
fusion of LiDAR and HS data for AGB estimation is popular, particularly for forest ecosys-
tems (Almeida et al., 2019; Luo et al., 2019). One reason could be that HS data has poten-
tial for species confirmation and assessment of vegetation physiological indicators, while 
LiDAR can mitigate the spectral asymptotic saturation, and offer supplementary informa-
tion associated with canopy spatial heterogeneity and subtle structure characteristics.

The fusion of UAV datasets using four methods slightly degraded LCC and W estima-
tion. In terms of LCC estimation, the R2 decreased by 0.04, 0.01, and 0.11 for LM, SVM, 
and BP, respectively; the RMSE and MRE values of four methods were slightly increased. 
LCC is a biochemical indicator of vegetation, so few studies applied structural or tempera-
ture information to retrieve LCC. Besides, compared to spectral reflectance, VIs reduce 
the effects of environmental noises, and the implied information of crops could emerge 
through mathematics calculations and band combinations, so VIs are broadly used for veg-
etation phenotyping (Zhu et al., 2019a, b). Regarding W estimation, the accuracy nearly 
remained constant, without obvious change, although the performance of single-source TM 
dataset was slightly better than the multi-source UAV dataset. As demonstrated in Fig. 10, 
W showed a weak correlation with other parameters, so other UAV datasets that reflect 
e.g., spectral and structure information of canopies, might not offer effective information to 
boost the W estimation accuracy.

Effects of model construction on field‑scale maize phenotyping

LM, RF, and SVM generally exhibited close performance in both single-source and multi-
source estimation cases, which might be due to the limited samples and inputs for mod-
eling. LM, RF, and SVM estimated LAI, AGB, CH, and LCC with satisfying accuracy, 
while the performance of BP was slightly unstable. As reported in previous studies, BP is 
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suitable for modeling with large samples, and BP is required to be debugged many times 
until its performance is optimized with satisfying robustness for determining the optimal 
parameters; while RF performs well in modeling with small samples (Pham & Brabyn, 
2017; Wang et al., 2016). Therefore, SVM and RF outperformed BP in the case of fewer 
inputs (Mountrakis et al., 2011; Xu et al., 2020). Regarding W estimation, the performance 
of four methods was moderate, which might be not due to the model itself but the errors 
contained TM dataset, which was derived from e.g., changeable weather conditions, or the 
limited irrigation levels applied in plots. The relatively coarse spatial resolution of TM 
dataset (~ 20 cm) might also hamper its ability to maize phenotyping.

Figure  12 shows the scatters between measured and estimated parameters using the 
optimal multi-source UAV dataset (determined in “Maize phenotyping using multi-source 
UAV RS data” section). As expected from the comparable RMSE and R2, the distribution 
feature of estimated against measured crop parameters for each algorithm was similar. It 
is worth noting that all the methods tended to slightly underestimate AGB when it was 
over 3 t  ha−1, whereas the underestimation was not obvious for LAI and CH estimation. 
This could be because the importance values of HS and RGB variables for AGB estima-
tion were higher than LiDAR variables; while LiDAR variables played a decisive role in 
LAI and CH estimation. Thus, the saturation issues and surrounding noises contained in 
the optical dataset degraded AGB estimation accuracy more evidently than LAI and CH 
estimation. Besides, maize with lower W values was cultivated at plots deficient in nutrient 
or irrigation, and their temperature was higher than the surroundings. The high temperature 
of these topical canopies might be easily affected by the changeable weather conditions, 
which impaired TM-integrated model performance.

This study, like many others, has uncertainties on parameter estimation. Ground meas-
urement uncertainties caused by e.g., the limited size of plots and changeable surround-
ing environment, could be alleviated via repeating measurement and standard operation. 

Fig. 12  Scatters of measured and estimated phenotypic parameters of maize: a LAI, b AGB, c CH, d LCC, 
and e W using LM, BP, RF, and SVM algorithms
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Uncertainties of model structure can be indirectly revealed via the intercomparison of dif-
ferent regression models. In such a context, the comparable estimates of four regression 
models indicated that our research was reliable. In addition, this study was conducted at the 
vegetative growth of maize. During this period, the number and area of leaves increased, 
and organic matter gradually accumulated, thus LAI, AGB, and CH increased with a nearly 
linear relationship trend. However, during the reproductive growth stage, LAI and CH 
remained constant, while AGB increased owing to the grain filling process. Therefore, an 
in-depth study is required to better consider comprehensive factors, such as environmental 
conditions, plant species, development stages, as well as their interactions on crop pheno-
typing. Furthermore, the spatial resolutions of multi-source data were different owing to 
the specification of different sensors, while further studies could eliminate this effect to 
determine a better UAV agro-monitoring scheme for crop phenotyping.

UAV agro‑monitoring scheme designed for precision agriculture

In precision agriculture, the estimation accuracy of crop phenotypic parameters should be 
considered together with comprehensive factors, such as the costs of UAV sensors, flight 
risk, and flight speed and coverage. Currently, few studies have applied LiDAR to agro-
nomic applications due to its high costs. As CH in agro-ecosystems is low compared to 
macrophanerophytes in forest ecosystems, the super penetration ability of LiDAR sys-
tem may be ineffectively applied in farmland; but LiDAR point clouds can generate ras-
ter imageries with pretty high spatial resolutions, which exhibits advantages in revealing 
subtle differences of homogeneous crop canopies. However, previous studies have demon-
strated that SfM point clouds derived from RGB/MS imageries with a high spatial resolu-
tion and overlaps can accurately fulfill the requirement of crop phenotyping as well (Zhu 
et al., 2019a, b).

HS data performed best regarding LCC estimation. However, the high cost (~ $ 50, 000) 
and weight (> 1 kg) are two undeniable disadvantages. Limited by the battery life, UAV 
flights, such as a DJI M600 Pro equipped with a Nano-Hyperspec VNIR HS camera, can 
last about 20 min with a height of 30–50 m, so UAV HS observations fail to cover large-
scale farmland (> 1 ha). By contrast, MS cameras are cost-effective and light, and the flight 
speed and coverage of UAV MS systems are satisfying. For instance, an eBee wing-fixed 
UAV equipped with a multiSPEC-4C MS camera can fly for 30–45 min per mission, and 
the coverage area of each flight for eBee UAV systems with a height of 150  m reaches 
100–150  ha. For multi-rotor UAV, such as DJI Phantom 4 Pro, the top horizontal flight 
speed reaches 72 km   h−1, and the take-off and landing of these UAV systems are verti-
cal and easy to conduct. However, the limited bands of MS cameras sometimes hamper 
their applications in agro-monitoring e.g., estimating chlorophyll and carotenoid content 
of crops. In such a context, MS along with multi-angle observations are recommended to 
retrieve LCC/CCC in previous studies. Owing to the characteristics of non-Lambert reflec-
tance for objects, multi-angle observations provide more information of crops (Roosjen 
et al., 2018; Xu et al., 2019a, b), which partly make up the disadvantages of MS cameras. 
In recent years, some MS manufacturers have begun to support customer-defined settings 
regarding the selection of spectral channels for cameras (e.g., MS600 manufactured by 
Yusense Technology Co., Ltd.), which widens the scope of applications for MS cameras. 
Therefore, customer-defined MS cameras, which are low-cost and portable, are recom-
mended for crop monitoring schemes in precision and sustainable agriculture.
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Considering monitoring robustness, UAV observations with multi-sensor might be bet-
ter than single-sensor, as information provided by multi-sensors are independent and com-
plementary. According to the results of this study, the integration of LiDAR, RGB, and HS 
datasets performed better regarding the estimation of LAI, AGB, and CH. As MS cameras 
can be an alternative to LiDAR and HS sensors, considering practical costs, UAV RGB 
texture/SfM (for structure detection) + customer-defined MS systems (for spectral infor-
mation) are recommended in agricultural applications, while in-depth research is needed 
to further validate this conclusion. Moreover, regarding W and LCC estimation, a single-
source TM and HS UAV dataset performed best, respectively, and to some extent, the 
fusion of multi-source UAV data reduced W and LCC estimation accuracy. Therefore, it is 
necessary to trade off the effects of abundant information and implied errors when apply-
ing a multi-source UAV dataset in crop phenotyping.

Conclusion

In this study, field-scale UAV HS, RGB, TM, and LiDAR data along with four regression 
methods (i.e., LM, RF, BP, and SVM) were used for the estimation of maize phenotypic 
parameters (i.e., LAI, AGB, CH, LCC, and W), and the performance of single-source and 
multi-source UAV datasets were intercompared. Major conclusions are given as follows:

(1) For single-source UAV data, the structure information derived from LiDAR and RGB 
texture data were suitable for LAI, AGB, and CH estimation; HS data exhibited the best 
performance on LCC estimation; while TM data were appropriate for W estimation;

(2) Multi-source UAV RS datasets yielded slightly better performance on the estimation 
of LAI, CH, and AGB, whereas single-source TM and HS outperformed multi-source 
datasets regarding W and LCC estimation, respectively.

(3) Robust multi-source UAV agro-monitoring schemes for LAI, AGB, and CH estima-
tion were LiDAR + RGB + HS, while optical SfM + customer-defined MS were recom-
mended for routine applications in precision agriculture.

This study integrated the temperature, structure, and spectral information derived from 
multi-source UAV RS technologies to boost the robustness of maize phenotyping, and fur-
ther designed appropriate UAV agro-monitoring schemes for specific aims. The finding of 
this study contributes to field-scale crop phenotyping and extends the applications of UAV 
RS technologies in precision and sustainable agriculture.
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