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The radial basis functions based on the surface slope (RBF-Slope) freeform surfaces model has demonstrated
stronger fitting ability and better optical performance than the conventional RBF model. However, the large num-
ber of basis functions and optimization variables of the RBF-Slope model may result in convergence problems
during optimization for optical systems consisting of freeform surfaces characterized by RBF-Slope. To overcome
these drawbacks, we use Zernike polynomials to link the RBF-Slope model to aberration correction and propose
a new optimization method for coaxial imaging systems using the RBF-Slope model based on nodal aberration
theory (NAT). The aberrations generated by the conic parameter and Zernike terms up to Z17/18 of the Zernike
freeform surface at the non-stop surface in the coaxial imaging system are analyzed, and the gradient descent is
implemented to obtain the optimal coefficients of the Zernike surface, which is then fitted by the RBF-Slope surface
for further optimization. The method is applied to the optimization of a secondary mirror using the RBF-Slope
model in a two-mirror telescope and proved to have better results than traditional commonly used direct optimiza-
tion. This research offers an important reference for optimization using NAT and provides valuable insight into the
optimization method for RBF-Slope freeform surfaces. © 2021 Optical Society of America

https://doi.org/10.1364/AO.418563

1. INTRODUCTION

In optical system design, freeform surfaces [1] that are not
symmetric have more degrees of freedom than conventional
rotational symmetric surfaces such as spherical and conic sur-
faces, which therefore reduces the aberration and simplifies the
structure of the optical system. With the development of manu-
facturing techniques, freeform surfaces have been increasingly
used in imaging systems [2–6] and nonimaging systems [7–10].

It is challenging to choose a suitable freeform surface model to
connect classic aberration theory with the surface shape. Among
these freeform surface models, Zernike polynomials [11], which
are both continuous and orthogonal over a unit circle, have
the same form as the types of wave aberrations, making them
particularly applicable to the fields of surface characterization,
optical design, and optical testing. Q-type polynomials devel-
oped by Forbes are orthogonalized with respect to mean square
gradient over a circular aperture with the goal of facilitating
measures of manufacturability [12]. XY polynomials, which are

consistent with the numerical control (NC) optical expression
form, have been widely selected for industrial manufacture.
But when we represent an optical surface as the above three
global-type freeform surfaces models, the sag value of the whole
aperture will be affected by any changes of the coefficient of
any term in the polynomial, which leads to deterioration of
fitting ability and image quality for complicated or asymmetric
surfaces. To solve this problem, the conventional radial basis
function (RBF) model was proposed by Cakmakci et al., which
is a local descriptor of surface shape [13]. This means that the
local shape is only impacted by variation of few basis function
in this model. The stronger ability in fitting surfaces and aber-
ration balancing compared to a Zernike polynomial model up
to and including the 10th order in the design of single-element
head-worn display (HWD) system has been demonstrated [14].
However, there are still some drawbacks in the conventional
RBF model. Due to inefficient distribution and identical shape
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factors in the conventional RBF model, the accuracy of char-
acterization and the ability of aberration balancing are both
limited. Therefore, the model with radial basis functions based
on surface slope (RBF-Slope) was proposed by Tong et al. and
proved stronger fitting ability and better optical performance
than the conventional RBF model by improving the basis-
function distribution for circular apertures and establishing a
relationship between shape factor and local surface slope [15].

For the conventional RBF model and RBF-Slope model, the
normal optimization process often consists of two steps: the first
step is to set optimization variables such as shape factor, coeffi-
cient, and location of basis functions, and the second step is to
optimize by using the default optimization function of optical
design software. This process does work for the case of few basis
functions. Nevertheless, in most situations, the number of basis
functions of RBF-Slope surface and the variables during the
optimization process are too large, which therefore leads to some
problems in the optimization procedure like no convergence,
low efficiency, and low convergence speed. Thus, it is of great
importance to establish a new optimization method to improve
the aberration-balancing ability of the RBF-Slope model. It is
well known that the Zernike polynomials are directly associated
with the traditional Seidel wave aberration because they have
the same forms. Obviously, it can be treated as a bridge between
the RBF-Slope model and wave aberration, and it can help the
RBF-Slope surface be optimized with the guidance of aberration
theory. As an aberration theory suitable for asymmetric optical
system, the nodal aberration theory (NAT) was proposed by
Shack and developed by Thompson [16–21]. By using NAT,
the aberrations induced by the conic parameter and the Zernike
polynomial terms on either the reflective or the refractive
surfaces in the coaxial imaging systems can be quantitatively
derived, which will be a useful tool to develop the optimization
method for the RBF-Slope model.

In this paper, we use the Zernike polynomial whose expres-
sion is the same as the traditional Seidel aberration as a bridge
between RBF-Slope and aberration correction and propose a
new optimization method for coaxial imaging systems using
the RBF-Slope model. In this method, the gradient descent
algorithm is applied to acquire the optimal conic and Zernike
term coefficients up to Z17/18, and the initial optimization can
be finished by fitting Zernike terms with the RBF-Slope model.
The aberrations generated by the conic parameter and Zernike
terms up to Z17/18 at the non-stop surface in the coaxial imaging
system are analyzed in Section 2. The gradient descent algo-
rithm is explained, and the optimization method is introduced
in detail in Section 3. In Section 4 we present the optimization
of a second mirror using the RBF-Slope model in two-mirror
telescopes. Finally, the advantages and shortcomings of this
method are discussed in Section 5.

2. ABERRATIONS GENERATED BY THE CONIC
PARAMETER AND ZERNIKE TERMS OF THE
ZERNIKE FREEFORM SURFACE IN A COAXIAL
IMAGING SYSTEM

In this section, we will quantitatively analyze the aberration
generated by Zernike freeform surface terms located away from
the stop. According to the previous studies by Thompson [18]

Fig. 1. Light footprints of different fields when the freeform surface
is located at the non-stop surface.

and Yang [22], it can be achieved by establishing the quantitative
relationship between the terms of the freeform surface at the
non-stop surface and the induced aberration.

A. Aberrations Generated by Zernike Freeform
Surface Terms in a Coaxial Imaging System

Freeform surface terms added on a freeform surface can be seen
as a zero-power thin optical plate or deformation. When the
freeform surface is located at the stop, the light beam footprints
of different fields are same on the surface. Thus, the induced
aberration of Zernike terms to the system aberration can be
seen as field constant. Base on NAT, the field coordinate H
and pupil coordinate ρ in aberration terms are expressed in
vector form EH = He iθ and Eρ = ρe iφ , where θ and ϕ represent
the orientations of the two vectors. So the Zernike terms need
to be expressed in vector form to integrate the freeform sur-
face term into NAT. Considering Zernike terms as a kind of
φ-polynomials that are expressed as Z(ρ, φ), they can be rewrit-
ten as Z( Eρ) in vector form. Since the freeform is at the stop, and
the light beam from different fields shares the same area at the
stop, and the aperture vector of Zernike surface Eρ ′ is equal to the
pupil vector Eρ. The induced aberration generated by Zernike
terms of a Zernike freeform surface at the stop can be given by

W =
n′ − n
λ

⇀
z i · Zi ( Eρ

′)=
n′ − n
λ

⇀
z i · Zi ( Eρ), (1)

where λ denotes the wavelength, Eρ ′ is the normalized aperture
vector of the Zernike surface, and Eρ is the normalized pupil
vector.

⇀
z i is the coefficient vector with respect to the i th Zernike

terms Zi ( Eρ), and n and n′ are the indices of refraction before
and after the freeform surface. Especially in the reflective system,
n = 1, n′ =−1, and for odd times of reflection, the direction
of the pupil coordinate rotates 180◦, and the pupil vector Eρ is
replaced by−Eρ; however, the replacement just changes the sign
of the generated aberrations, and the type of the aberrations will
not be influenced. Therefore, we only analyze the situation in
even times reflection here.

When the freeform surface is located away from the stop, the
light beam footprints of different fields on the surface are differ-
ent and only cover a part of the surface as shown in Fig. 1.

In this case, the aperture vector of Zernike surface Eρ ′ is no
longer equal to the pupil vector Eρ. Since aberrations are often
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Fig. 2. Process of coordinate conversion on the freeform surface
located at the non-stop surface. (a) Rays from the central field are
irradiated on the freeform surface away from the stop; (b) rays from
different fields are irradiated on the freeform surface away from the
stop.

characterized in pupil coordinates, it is necessary to convert Eρ ′ to
Eρ. The process of coordinate conversion is illustrated in Fig. 2.

As shown in Fig. 2(a), when the rays from the central field
are irradiated on the freeform surface away from the stop, the
beam no longer completely covers the freeform surface, and the
effective freeform surface aperture that interacts with the beam
is determined by the actual beam trajectory irradiated on the
freeform surface. Here we use the scaling factor a related to the
marginal ray height to define the effective freeform surface aper-
ture. In Fig. 2(b), when rays of different fields are irradiated on
the freeform surface away from the stop, the center position of
the beam footprint will shift with field of view, so the shift factor
b related to the height of the chief ray is required to determine
the center position of the beam footprint.

In summary, the pupil coordinate vector for different fields
can be written as

Eρ ′ = a Eρ + b EH (2)

with

a =
y
R
, (3)

b =
ȳ
R
, (4)

where y and ȳ denote the marginal ray height and the chief ray
height on the freeform surface and R is the normalized radius of
the Zernike freeform surface.

Combining Eqs. (1) and (2), the aberration contribution
induced by the freeform surface away from stop can be written as
Eq. (5):

W( Eρ)=
n′ − n
λ

⇀
z i · Zi (a Eρ + b EH). (5)

From Eq. (5) the specific form of the field-dependent aber-
ration components induced by the Zernike terms can be
determined. For the sake of description, we represent n′−n

λ

⇀
z i

with
⇀

C i in the following text.

Table 1. Fringe Zernike Terms up to Z17/18 and Their
Corresponding Aberrations

Term Zernike Term Corresponding Aberration Type

1 1 Piston (constant)
2 ρ cos φ Distortion-tilt (x axis)
3 ρ sin φ Distortion-tilt (y axis)
4 2ρ2

− 1 Defocus
5 ρ2 cos(2φ) Astigmatism, primary (axis at

0◦or 90◦)
6 ρ2 sin(2φ) Astigmatism, primary (axis at±45◦)
7 (3ρ3

− 2ρ) cos φ Coma, primary (x axis)
8 (3ρ3

− 2ρ) sin φ Coma, primary (y axis)
9 (6ρ4

− 6ρ2
+ 1) Spherical aberration, primary

10 ρ3 cos(3φ) Trefoil, primary (x axis)
11 ρ3 sin(3φ) Trefoil, primary (y axis)
12 (4ρ4

− 3ρ2) cos(2φ) Astigmatism, secondary (axis at
0◦or 90◦)

13 (4ρ4
− 3ρ2) sin(2φ) Astigmatism, secondary (axis at±45◦)

14 (10ρ5
− 12ρ3

+

3ρ) cos(φ)
Coma, secondary (x axis)

15 (10ρ5
− 12ρ3

+

3ρ) sin(φ)
Coma, secondary (y axis)

16 20ρ6
− 30ρ4

+ 12ρ2
− 1 Spherical aberration, secondary

17 ρ4 cos(4φ) Tetrafoil, primary (x axis)
18 ρ4 sin(4φ) Tetrafoil, primary (y axis)

B. Aberration Contribution by the Conic Parameter
and Zernike Terms up to Z17/18

Based on the above theoretical basis, the induced aberration of
the different Zernike terms up to Z17/18 at the non-stop surface
can be analytically derived and calculated. The first 18 fringe
Zernike terms and their corresponding aberration types are
given in Table 1. When the Zernike terms are added to the non-
stop surface, the induced aberration types and properties can
be analyzed by expanding Eq. (5) based on NAT. According to
Yang’s analysis of the nodal aberration properties of the coaxial
imaging systems with Zernike polynomial surfaces in [22],
the aberrations generated by the i th Zernike term are given in
Table 2. Among these fringe Zernike terms, the terms 1–3 are
the piston and tilt related to the position of surface, which will
not affect the image quality. Furthermore, considering the com-
plication and smaller contribution of fringe Zernike term 16
compared with other terms, the aberrations induced by fringe
Zernike terms 1–3 and 16 are ignored in our work.

However, it is not sufficient to improve the image quality by
only using Zernike terms because the conic parameter also plays
an important role in correcting the aberration of the optical sys-
tem. Thus, it is of great importance to quantitatively analyze the
aberration generated by the conic parameter. For a freeform sur-
face at stop surface, only spherical aberration is generated by the
conic deformation. Based on Zhong’s research in [23], the con-
tribution of the conic parameter at the stop can be expressed by
Eq. (6):

W( Eρ)CONIC =
kc 3 y 4(n′ − n)

8λ
( Eρ · Eρ)2, (6)
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Table 2. Aberrations Generated by the Conic
Parameter and Zernike Terms of the Zernike Freeform
Surface at the Non-stop Surface in a Coaxial Imaging
System

Conic Parameter
and Coefficients of
Zernike Terms

Generated Aberration Types 
and Their Coefficients

k K c 3 y 4/8 (Spherical aberration, primary)
K c 3 y 3 ȳ EH/2 (Coma, primary)
K c 3 y 2 ȳ 2 EH2/4 (Astigmatism, primary)
K c 3 y 2 ȳ 2( EH · EH)/2 (Defocus)

z4 2a 2C4 (Defocus)

Ez5/6 a 2
⇀

C 5/6 (Atigmatism, primary)

Ez7/8 3a 3
⇀

C 7/8 (Coma, primary)

6a 2b(
⇀

C 7/8 · EH) (Defocus)

3a 2(
⇀

C 7/8 EH) (Astigmatism, primary)
z9 6a 4C9(Spherical aberration, primary)

24a 3b(C9 EH) (Coma, primary)
12a 2b2(C9 EH2) (Astigmatism, primary)
24a 2b2C9( EH · EH) (Defocus)

Ez10/11 a 3
⇀

C 10/11 (Trefoil, primary)

3a 3b(
⇀

C 10/11 EH∗) (Astigmatism, primary)

Ez12/13 4a 4
⇀

C 12/13 (Oblique spherical aberration)

12a 3b(
⇀

C 12/13 EH∗) (Coma, primary)

4a 3b(
⇀

C 12/13 EH) (Trefoil, primary)

12a 2b2(| EH|2
⇀

C 12/13)− 3a 2
⇀

C 12/13 (Astigmatism,
primary)

12a 2b2(
⇀

C 12/13 · EH2) (Defocus)

Ez14/15 10a 5
⇀

C 14/15 (Coma, secondary)

20a 4b(
⇀

C 14/15 EH)(Oblique spherical aberration)

30a 4b(
⇀

C 14/15 · EH) (Spherical aberration,
primary)

60a 3b2( EH · EH)
⇀

C 14/15 + 30a 3b2(
⇀

C
∗

14/15 EH2)−

12a 3
⇀

C 14/15 (Coma, primary)

10a 2b3(
⇀

C
∗

14/15 EH3)+ 30a 2b3( EH · EH)(
⇀

C 14/15 EH)

−12a 2b(
⇀

C 14/15 EH)
(Astigmatism, primary)

10a 3b2(
⇀

C 14/15 EH) (Trefoil, primary)

60a 2b3( EH · EH)(
⇀

C 14/15 · EH)− 24a 2b(
⇀

C 14/15 ·

EH)(Defocus)

Ez17/18 a 4
⇀

C 17/18 (Tetrafoil, primary)

4a 3b(
⇀

C 17/18 EH∗) (Trefoil, primary)

6a 2b2(
⇀

C 17/18( EH∗)2) (Astigmatism, primary)

where k denotes the conic parameter and c is the curvature of the
surface. Here we use K to represent k(n′−n)

λ
to make the expres-

sion clearer. When the conic parameter is added to the non-stop
surface, the aberration generated by the conic parameter can be
obtained by replacing Eρ with Eρ + ȳ

y
EH, and Eq. (6) can be writ-

ten as Eq. (7):

W( Eρ)CONICnonstop

=
K c 3 y 4

8

((
Eρ +

ȳ
y

⇀

H
)
·

(
Eρ +

ȳ
y

⇀

H
))2

=
K c 3 y 4

8

(
Eρ · Eρ + 2

ȳ
y
( Eρ ·

⇀

H)+
(

ȳ
y

)2

(
⇀

H ·
⇀

H)

)2

=
K c 3 y 4

8

(
( Eρ · Eρ)2 + 4

ȳ
y
(
⇀

H · Eρ)2 +
(

ȳ
y

)2

(
⇀

H ·
⇀

H )2

+ 4
ȳ
y
(
⇀

H · Eρ)( Eρ · Eρ)+ 2(
⇀

H ·
⇀

H)( Eρ · Eρ)+ 4

(
ȳ
y

)3

(
⇀

H ·
⇀

H)(
⇀

H · Eρ)

)

=
K c 3 y 4

8
( Eρ · Eρ)2 +

K c 3 y 2 ȳ 2

2
(
⇀

H ·
⇀

H)( Eρ · Eρ)

+
K c 3 y 2 ȳ 2

4
(
⇀

H
2

· Eρ2)+
K c 3 y 3 ȳ

2
(
⇀

H · Eρ)( Eρ · Eρ)

+
K c 3 y 4

2

(
ȳ
y

)3

(
⇀

H ·
⇀

H)(
⇀

H · Eρ)+
K c 3 y 4

8

(
ȳ
y

)2

(
⇀

H ·
⇀

H)2

(7)

From Eq. (7), the aberrations generated by the conic parameter
of the non-stop surfaces can be obtained in Table 2.

Using the equations in Table 2, the aberrations generated
by the conic parameter and the Zernike polynomial terms on
either the reflective or refractive surfaces in the coaxial imaging
systems can be quantitatively calculated, which can be used as
the guidance for aberration correction and optimization during
the freeform optical system design. For example, the aberra-
tions induced by fringe Zernike terms can be used to minimize
the RMS wavefront error, and the image quality of the coaxial
optical system might be improved by adding Zernike terms. In
the following section, the quantitative relationship between the
conic parameter, the Zernike terms, and the induced aberrations
will be used in the initial optimization of the RBF-Slope model.

3. OPTIMIZATION METHOD OF A COAXIAL
IMAGING SYSTEM USING THE RBF-SLOPE
MODEL

The RBF-Slope model, which improves the basis-function
distribution for circular apertures and establishes a relationship
between shape factor and local surface slope, has stronger fitting
ability and better optical performance than the conventional
RBF model. The normal optimization method of the RBF
or RBF-Slope model mainly utilizes the default optimization
function of optical software to improve the imaging quality.
However, in most situations the number of basis functions of the
RBF-Slope model, the variables during the optimization process
could be large and therefore lead to drawbacks in the optimiza-
tion procedure such as no convergence, low efficiency, and low
convergence speed. In order to overcome these drawbacks, we
can apply the Zernike polynomials for linking the RBF-Slope
model with aberration optimization in a coaxial imaging system.
The optimization procedure is illustrated in Fig. 3.
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Fig. 3. Optimization procedure for the coaxial imaging system.

In a coaxial imaging system, the aberrations generated by the
freeform surface located at the stop are field constant, which
will be used to correct the field constant aberration. In this
paper, we consider a more complicated situation in which the
freeform surface will be away from the stop to generate the field-
dependent aberrations. So the non-stop surface is represented
by the RBF-Slop model to correct the field-dependent aber-
rations. After establishing the initial optical system, the initial
optimization can be achieved by two steps. In step 1, we utilize
the gradient descent algorithm to solve the optimal Zernike
terms and conic parameter. In step 2, the initial optimization is
finished by fitting the Zernike terms with the RBF-Slope model.
The details of the two steps will be explained as follows.

A. Step 1 in the Initial Optimization Procedure

In the previous section, the aberrations generated by the conic
parameter and Zernike terms can be quantitatively calculated
by the equations in Table 2. Furthermore, we can find that when
the Zernike terms and conic parameter are added to the non-
stop Zernike surface, not only the aberrations corresponding to
the employed Zernike term but also some other additional aber-
rations will be generated. Therefore, the system aberrations after
adding the Zernike terms and conic parameter on the non-stop
surface can be expressed as

Wi =W ′i +W ′′i , (8)

where W ′i denotes the matrix of the i th initial aberration coeffi-
cients corresponding to the i th Zernike term over the full field of
view (FOV) for the coaxial imaging system before Zernike terms
and conic parameters are added. W ′′i is the matrix of the i th
additional aberration coefficients over the full FOV generated
by the Zernike terms and conic parameters. Wi is the matrix
of the i th total aberration coefficients over the full FOV after
adding the Zernike terms and the conic parameter.

Fig. 4. Based schematic of the gradient descent algorithm.

To solve the optimal Zernike terms and conic parameter in a
coaxial imaging system for the initial optimization, the aberra-
tion evaluation function needs to be established to evaluate the
system aberrations. The aberration evaluation function consists
of two parts. One is the sum of the square of average values of
the i th aberration coefficients corresponding to the i th Zernike
term up to Z17/18 over full the FOV, which is directly related
with the average values of the system aberrations. In the process
of system optimization, the system is mainly limited by the
low-order and third-order aberrations [24]; therefore, the other
is the sum of the square of the root mean square (RMS) of the
low-order and third-order aberrations corresponding to the j th
Zernike term up to Z9, which can represent the difference of the
system’s main aberrations in different fields. It can be written as

J(k, Z1 ∼ Z18)=
∑18

i=1
W̄2

i +
∑9

j=1
RMS j

2 (9)

with

W̄i =
sum(Wi )

q
, (10)

RMS j =

√
sum[(W j − W̄ j )]

q
, (11)

where W̄i denotes average value of the i th aberration coefficients
corresponding to the i th Zernike term, q is the number of fields
in the coaxial imaging system, sum() is to get the sum of the
matrix, RMS j is RMS of the j th aberration coefficient corre-
sponding to the j th Zernike term, Z1 ∼ Z18 are the coefficients
of the Zernike terms up to Z17/18, and J (k, Z1 ∼ Z18) is the
value of the aberration evaluation function.

Then the gradient descent algorithm is used to obtain the
optimal coefficients of the Zernike terms up to Z17/18 and the
conic parameter. The gradient descent algorithm is an iterative
method to solve the extreme value with the direction of the
gradient descent. Figure 4 illustrates the basic schematic of
the gradient descent algorithm. The minimum value of the
objective function can be achieved at the final position, and the
unknown variables will be solved.

By using Eq. (9), the gradient function can be derived as
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Fig. 5. Solving process for the optimal coefficients of the Zernike
terms and conic parameter.

∇ J (k, Z1 ∼ Z18)=

〈
∂ J
∂k
,
∂ J
∂Z1

,
∂ J
∂Z2

, . . . ,
∂ J
∂Z17

,
∂ J
∂Z18

〉
.

(12)
Next, the iterative equation can be written as

ηp+1 = ηp + β∇ J (k, Z1 ∼ Z18), (13)

where ηp and ηp+1 denote the vector〈
∂ J
∂k ,

∂ J
∂Z1
, ∂ J
∂Z2
, . . . , ∂ J

∂Z17
, ∂ J
∂Z18

〉
before and after the pth

iteration, respectively.β determines the step of gradient descent.
First, we need to set the initial vector η0 and the step β, which
determine the descent speed of the objective function. Then,
after each iteration, the value of the aberration evaluation func-
tion will decrease with the direction of the gradient descent until
the minimum is obtained, meaning the optimal vector ηoptimal is
solved. Figure 5 illustrates the solving process.

B. Step 2 in the Initial Optimization Procedure

After getting the optimal coefficients of the Zernike terms and
the conic parameter, the initial optimization of the RBF-Slope
model can be achieved by fitting the Zernike terms with the
RBF-Slope model. The RBF-Slope model can be represented by
a linear combination of RBFs and a conic as

z(x , y )=
c (x 2
+ y 2)

1+
√

1− (1+ k)c 2(x 2 + y 2)

+

∑
i

wi e−ε
2
i ((x−x0i )

2
+(y−y0i )

2), (14)

where c represents curvature, k is the conic constant, z(x , y )
denotes the sag of the freeform surface in the aperture, and
(x , y ) are the Cartesian coordinates. The second term repre-
sents a linear combination of RBFs, where (x0i , y0i ) and shape
factor εi determines the center position and the width of the
basis functions. Comparing the freeform surface model with
the Zernike polynomials, the first term is the same. Therefore,
the RBF-Slope surface, which has the same sag distribution
as the optimized Zernike surface, can be obtained by fitting the
optimized Zernike terms with the second term of the RBF-slope
model.

Combining with step 1 and step 2, the initial optimization
procedure can be finished. Next we can set a small amount of
optimization variables such as coefficient, shape factor, and loca-
tion of basis functions depending on the actual situations and
take optimization in the optical design software to obtain high
imaging quality. To increase the convenience of optimization,
the whole optimization process is integrated into a program.
In this paper, we use optical design software Code V to obtain
the required data in optimization, such as aberration coeffi-
cients and system parameters, and we use MATLAB to do data
processing. Because the Code V API (application programming
interface) uses the Microsoft Windows standard Component
Object Model (COM) interface, users can execute Code V
commands by MATLAB, which supports Windows COM
architecture. Thus, without frequent switching between Code
V and MATLAB, the integrated MATLAB program enables the
initial optimization of the RBF-Slope model to be completed
automatically.

With the above optimization method proposed by utilizing
the Zernike terms to link the RBF-Slope model with aberration
optimization, the initial optimization is simplified. It could
make the system a good starting point for further optimiza-
tion with optical design software. Therefore, the optimization
efficiency could be improved. This is of great importance to
solve problems like low convergence speed or even no conver-
gence. It is expected that a RBF-Slope coaxial imaging system
with better image quality could be obtained through using this
optimization method.

4. OPTIMIZATION OF THE SECONDARY
MIRROR OF A TWO-MIRROR TELESCOPE
USING THE RBF SLOPE MODEL

Based on the optimization method for the RBF-Slope model
proposed in Section 3, a two-mirror telescope is optimized
whose second mirror is described by the RBF-Slope model.
In terms of usage, this system is suitable for a wide spectrum;
since the reflection system has no chromatic aberration, we
use 632.8 nm monochromatic light as a design example.
Specifications of the optical system are listed in Table 3, and the
initial parameters for a two-mirror telescope with 1.2◦ × 1.2◦

rectangular FOV are listed in Table 4. The optical layout of this
telescope is presented in Fig. 6. In order to verify the effective-
ness of the proposed method, the goal of the optimization is to
achieve smaller aberrations and better image quality by only
optimizing the secondary mirror using the RBF-Slope model
with 256 basis functions. Therefore, we focus on the optimiza-
tion of basis functions of the RBF-Slope model in this paper,
and the parameters of the primary mirror and the radius of the
secondary mirror are fixed during the optimization procedure.

Before the optimization is implemented, a fixed conic
parameter k = 4 and coefficient of Zernike terms Zi (i = 1∼

Table 3. Specifications of the Two-mirror Telescope

Parameter Value

Effective focal length 1292 mm
Field of view 1.2◦ × 1.2◦

Working wavelength 632.8 nm
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Table 4. Initial Parameters of the Two-mirror Telescope (unit: mm)

Surface Type Conic Constant Radius Thickness Semi-aperture

PM(stop) Conic −0.6475 −742.7795 mm −260.5773 mm 75 mm
SM Sphere None −311.7356 mm 382.8867 mm 25 mm
FP Infinity

Fig. 6. Optical layout of the two-mirror telescope.

Fig. 7. Comparison of the theoretical and actual values when the
Zernike terms (Zernike terms’ coefficients all equal to 0.005, and conic
parameter equal to 4) are added onto the secondary mirror.

18)= 0.005 are added onto the secondary mirror to validate
the aberrations’ contribution demonstrated in Section 2.B.
The comparison of the generated i th aberration between the
actual values given by CODE V and the theoretical values
achieved from Table 2 are shown in Fig. 7. From the figure, it can
be seen that the types and the values of the actually generated
aberrations coincide with the theoretical results approximately.
So the method of aberration analysis and calculation with NAT
could be expected to be utilized as useful tool for coaxial system
optimization.

In the optimization process, 121 field points are set within
1.2◦ × 1.2◦ field of view, the paraxial marginal ray height y and
the paraxial chief ray height ȳ on the secondary mirror can be
obtained using real ray trace in Code V, and the factor a and b
can be calculated by Eqs. (3) and (4) as shown in Table 5.

By using the above method of aberration analysis and calcu-
lation with NAT, the gradient descent algorithm is utilized to
solve the optimal conic and Zernike coefficients. In our gradient

Table 5. Ray Height on the Secondary Mirror and the
Factors a and b

y ȳ a b

22.3496 mm 2.7289 mm 0.8940 0.1092

Table 6. Optimal Coefficients of Zernike Terms and
the Conic Parameter

Conic Parameter
and Zernike Terms Coefficient

Zernike
Fringe Term Coefficient

k −7.424 10 7.924e-14
1, 2, 3, 16 0 11 1.031e-14
4 −5.825e-3 12 1.987e-4
5 9.667e-5 13 −6.481e-14
6 −3.154e-14 14 7.909e-15
7 −3.262e-16 15 3.689e-14
8 2.308e-14 17 5.138e-6
9 −1.566e-3 18 −9.166e-15

descent algorithm, all the Zernike terms coefficients are set to
0.005 and the conic parameter is set to 4 initially. The step of
gradient descent is 1.0× 10−9. Through the iterative process,
the optimal coefficients of the Zernike terms and conic param-
eter will be obtained when the value of the objective function is
minimum as shown in Table 6.

To accomplish the initial optimization by fitting the Zernike
terms with the RBF-Slope model, and to perfectly transform
the optimized Zernike surface into the RBF-Slope surface, it
is necessary to avoid the optimization loss caused by the fitting
accuracy in the fitting process as much as possible. We used 256
basis functions and 1000 sample points to fit the Zernike terms.
The sample points are uniformly and regularly distributed in
the aperture. Least squares was used to fit the Zernike terms with
Householder transformation, which can effectively deal with
the ill-condition problems of least squares [25]. Root-mean-
square (RMS) error and peak-to-valley (PV) error to evaluate the
fitting precision are 8.0231e-13 and 3.8854e-11, respectively.
In addition, the fitting error of the RBF-Slope model is shown
in Fig. 8, which demonstrates that the fitting precision is high
enough for RBF-Slope to describe the shape of Zernike terms
accurately. Then we can bring the fitting result to the secondary
mirror and set a small amount of parameters as variables, such
as coefficient, shape factor, and location of the basis functions,
and we can make the following optimization automatically via
optical software to achieve high imaging quality.

In order to prove the advantages of the proposed method, we
compared it with the classic methods commonly used in surface
optimization. Figure 9 shows the RMS wavefront error (WFE)
of the system over full FOV in different cases; we can see the
default optimization of the optical software is no convergence
with large aberration, while the proposed optimization can
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Fig. 8. Sag error as fitted with the RBF-Slope model with 256 basis
functions.

Fig. 9. RMS wavefront error (WFE) in the full FOV of the optical
system (a) before optimization, (b) with optimization by the default
method of optical software, and (c) with optimization by proposed
method.

achieve better aberration balance and optical performance. The
reason why the effect of the default optimization is worse than
before optimization is that the system default optimization
process does not converge due to the large number of optimiza-
tion variables of RBF-Slope, which makes the optimization
stagnate in the process of finding local extrema. In addition,

Table 7. Average Value of the Aberration Coefficients
for the Three Situations (unit: waves)

Before
Optimization

Default
Optimization

Proposed
Optimization

Method

RMS Wavefront
Error

0.6326 1.2959 0.5939

Defocus –0.1222 –0.3473 –0.2284
Astigmatism 0.1482 0.7235 0.2662
Coma 1.7515 1.5227 1.0986
Spherical Aberration 0.0008 4.0372 0.8322

Table 8. Standard Deviation of the Aberration
Coefficients for the Three Situations (unit: waves)

Before
Optimization

Default
Optimization

Proposed
Optimization

Method

RMS Wavefront
Error

0.2118 0.0546 0.1360

Defocus 0.3183 0.6775 0.3898
Astigmatism 0.0926 0.4517 0.1574
Coma 0.6489 0.5648 0.4219
Spherical Aberration 0.0006 0.0010 0.0043

the average value and the standard deviation value of RMS
WFE, defocus, astigmatism, coma, and spherical aberration for
the three situations are calculated and listed in Tables 7 and 8.
The average values in Table 7 show that coma is improved after
optimization by the proposed method, and the uniformity of
coma is tremendously improved as well as shown in Table 8.
In contrast, the spherical aberration increases greatly. Actually,
during the optimization procedure, it can be observed that
coma is gradually compensated with the increase of spheri-
cal aberrations. Finally, the average value and uniformity of
RMS wavefront error aberration are both improved with all
primary aberrations balanced, which means that the overall
image quality become better. Thus, the results prove that the
proposed optimization method for the RBF-Slope model can
effectively balance the system aberrations and solve problems
in optimization such as no convergence, low efficiency, and low
convergence speed.

5. CONCLUSION

In this paper, we use Zernike polynomials to link the RBF-Slope
model to aberration correction and propose a new optimization
method for coaxial imaging systems using the RBF-Slope model
based on NAT. The method utilized Zernike terms to link the
RBF-Slope model with aberration correction and optimization
by NAT. Based on NAT, the aberration generated by the conic
parameter and Zernike terms up to Z17/18 can be calculated,
which helps establish the quantitative relationships between
the generated aberration and the system aberration. Then the
gradient descent algorithm is used to obtain the optimal conic
and Zernike coefficients. After that, the initial optimization can
be completed by fitting the Zernike terms with the RBF-Slope
model, and further optimization can be implemented auto-
matically in optical software. Finally, the optimization result of
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the secondary mirror of a two-mirror telescope using the RBF-
Slope model indicated that better optical performance could
be achieved, and the existing problems like slow convergence
speed, no convergence, and low efficiency can be solved by the
proposed optimization method. It is believed that the research
in this paper offers a good reference for RBF-Slope-based coaxial
imaging system optimization with NAT. In the future, we will
carry out further research on the optimization method for the
refraction freeform system. The optimization method for the
RBF-Slope model in off-axis imaging systems using enhanced
NAT and an improved optimization algorithm will be inves-
tigated, which is more useful to the applications of freeform
optical systems.
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Grabovičkić, P. Benítez, J. C. Miñano, H. Thienpont, and F. Duerr,
“Compact illumination optic with three freeform surfaces for
improved beam control,” Opt. Express 25, 29627–29641 (2017).

10. X. Wu, G. Jin, and J. Zhu, “Freeform illumination design model for
multiple light sources simultaneously,” Appl. Opt. 56, 2405–2411
(2017).

11. R. W. Gray, C. Dunn, K. P. Thompson, and J. P. Rolland, “An analytic
expression for the field dependence of Zernike polynomials in rota-
tionally symmetric optical systems,” Opt. Express 20, 16436–16449
(2012).

12. G. W. Forbes, “Shape specification for axially symmetric optical sur-
faces,” Opt. Express 15, 5218–5226 (2007).

13. O. Cakmakci, I. Kaya, G. E. Fasshauer, K. P. Thompson, and J. P.
Rolland, “Application of radial basis functions to represent optical
freeform surfaces,” Proc. SPIE 7652, 76520A (2010).

14. O. Cakmakci, B. Moore, H. Foroosh, and J. P. Rolland, “Optimal local
shape description for rotationally non-symmetric optical surface
design and analysis,” Opt. Express 16, 1583–1589 (2008).

15. K. Tong, Y. Zheng, Z. Zhang, X. Zhao, B. Zhang, L. Song, L. Wang, C.
Wang, and P. Wu, “Model of radial basis functions based on surface
slope for optical freeform surfaces,” Opt. Express 26, 14010–14023
(2018).

16. R. V. Shack and K. P. Thompson, “Influence of alignment errors of a
telescope system,” Proc. SPIE 251, 146–153 (1980).

17. K. P. Thompson, “Aberration fields in unobscured mirror systems,” J.
Opt. Soc. Am. 103, 159–165 (1980).

18. K. P. Thompson, “Description of the third-order optical aberrations of
near-circular pupil optical systems without symmetry,” J. Opt. Soc.
Am. A 22, 1389–1401 (2005).

19. K. P. Thompson, “Multinodal fifth-order optical aberrations of optical
systems without rotational symmetry: spherical aberration,” J. Opt.
Soc. Am. A 26, 1090–1100 (2009).

20. K. P. Thompson, “Multinodal fifth-order optical aberrations of optical
systems without rotational symmetry: the comatic aberrations,” J.
Opt. Soc. Am. A 27, 1490–1504 (2010).

21. K. P. Thompson, “Multinodal fifth-order optical aberrations of optical
systems without rotational symmetry: the astigmatic aberrations,” J.
Opt. Soc. Am. A 28, 821–836 (2011).

22. T. Yang, J. Zhu, and G. Jin, “Nodal aberration properties of coaxial
imaging systems using Zernike polynomial surfaces,” J. Opt. Soc.
Am. A 32, 822–836 (2015).

23. Y. Zhong and H. Gross, “Vectorial aberrations of biconic surfaces,” J.
Opt. Soc. Am. A 35, 1385–1392 (2018).

24. A. Bauer, E. M. Schiesser, and J. P. Rolland, “Starting geometry cre-
ation and design method for freeform optics,” Nat. Commun. 9, 1756
(2018).

25. X. Lin, X. G. Liu, Y. Li, and G. Wei, “A new orbit fitting algorithm of
space-borne SAR based on householder transformation,” in Asian-
Pacific Conference on Synthetic Aperture Radar (APSAR) (2009),
pp. 832–835.

https://doi.org/10.1364/OE.19.021919
https://doi.org/10.1364/OE.22.013896
https://doi.org/10.1364/AO.56.000901
https://doi.org/10.1364/AO.55.003794
https://doi.org/10.1364/AO.55.003794
https://doi.org/10.1364/AO.55.002353
https://doi.org/10.1364/AO.55.002353
https://doi.org/10.1364/OE.25.014598
https://doi.org/10.1364/OE.21.028693
https://doi.org/10.1364/OE.21.028693
https://doi.org/10.1364/OE.23.010233
https://doi.org/10.1364/OE.25.029627
https://doi.org/10.1364/AO.56.002405
https://doi.org/10.1364/OE.20.016436
https://doi.org/10.1364/OE.15.005218
https://doi.org/10.1117/12.871820
https://doi.org/10.1364/OE.16.001583
https://doi.org/10.1364/OE.26.014010
https://doi.org/10.1117/12.959464
https://doi.org/10.1364/JOSAA.22.001389
https://doi.org/10.1364/JOSAA.22.001389
https://doi.org/10.1364/JOSAA.26.001090
https://doi.org/10.1364/JOSAA.26.001090
https://doi.org/10.1364/JOSAA.27.001490
https://doi.org/10.1364/JOSAA.27.001490
https://doi.org/10.1364/JOSAA.28.000821
https://doi.org/10.1364/JOSAA.28.000821
https://doi.org/10.1364/JOSAA.32.000822
https://doi.org/10.1364/JOSAA.32.000822
https://doi.org/10.1364/JOSAA.35.001385
https://doi.org/10.1364/JOSAA.35.001385
https://doi.org/10.1038/s41467-018-04186-9

