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Optical and SAR Image Registration Using
Complexity Analysis and Binary

Descriptor in Suburban Areas
Zhihua Xie , Jinghong Liu, Chenglong Liu, Yujia Zuo, and Xin Chen

Abstract— Optical and synthetic aperture radar (SAR) image
registration is a challenging task due to significant geometric
and radiometric differences. In particular, the strong scattering
phenomenon in SAR images can seriously affect the registration
results. Accordingly, to solve the low repeatability of the key
points in optical and SAR images, a complexity analysis scheme is
proposed. In the first phase, the complexity distribution diagram
is calculated by the threshold sliding window in the edge images
obtained from the maximum moment of the phase congruency.
Then morphological operation and connected regions are used to
obtain the high-complexity regions and mask them to avoid the
extraction of the interference points. Next to solve the limitations
of the local self-similarity (LSS) descriptor in the optical and
SAR image registration, such as poor discrimination, expensive
computational complexity, and sensitivity to large geometric and
radiometric difference, we propose a binary LSS descriptor
(BLSS). We replace the correlation surface of the LSS with the
local gradient orientation histogram. Furthermore, we construct
descriptors based on the XY-coordinate system and convert the
correlation of the regions to binary descriptors. Finally, the fast
sample consensus (FSC) is used to remove false correspondences.
The experiments conducted on several optical and SAR image
pairs verify the effectiveness of the proposed algorithm.

Index Terms— Binary descriptor, complexity analysis, image
registration, local self-similarity (LSS).

I. INTRODUCTION

MULTISENSOR image registration plays a vital role in
remote sensing image processing and is widely used in

geological exploration, counterterrorism, data fusion, and other
applications [1], [2]. Two operations are crucial for image
registration tasks, namely, feature detection and descriptor
construction. In particular, the considerable geometric and
radiometric distortions for synthetic aperture radar (SAR)
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images create a bottleneck problem for aligning optical and
SAR images.

At present, feature-based algorithms have undergone rapid
development in remote sensing image registration. These algo-
rithms can be composed of discriminative feature detectors
and descriptors. First, there are many types of feature detec-
tors, including Harris detector [3], Hessian detector [4], and
others. Among them, the Harris detector is the most popular
for multimodal image registration. However, it is vulnerable
to noise and images with less structural information. Thus,
some improved algorithms are proposed to optimize it. For
example, since the Harris detector is sensitive to scale changes,
Xiang et al. [5] proposed a multiscale Harris detector that can
robustly tackle large-scale differences. To tackle the influence
of speckle noise, Fan et al. [6] proposed a uniform nonlinear
diffusion algorithm (UND-Harris). Furthermore, Ye et al. [7]
proposed a novel key point detector by integrating both corners
and blobs, which can improve key point repeatability and
registration accuracy. However, these detectors are sensitive
to the strong scattering phenomenon in SAR system. Hence,
traditional algorithms are incapable of matching images with
high-complexity regions.

Once key points are detected, feature descriptors are estab-
lished for these key points. Commonly used descriptors are
the scale-invariant feature transform (SIFT) [8] descriptor, the
histogram of oriented gradients (HOGs) [9], the local binary
patterns (LBPs) descriptor [10], the local self-similarity (LSS)
descriptor [11], and others. However, the above traditional
descriptors are not suitable for optical and SAR image regis-
tration because of the various differences between the optical
and SAR images, including geometric differences, radiometric
differences, the strong scattering phenomenon, and others.
Hence, many descriptors have been proposed to overcome
these problems. For example, Ye et al. [12] proposed the
histogram of oriented phase congruency (HOPC) to address
nonlinear radiometric differences. HOPC reflects the struc-
tural properties of images based on phase congruency (PC).
However, HOPC is sensitive to scale and geometric changes.
Paul and Pati [13] proposed a structural descriptor using
PC to solve the geometric differences. Since the descriptor
dimensions are comparatively high, complicated computations
are needed. Ye et al. [14] improved the LSS descriptor by
combining the LSS descriptors in several small regions to
overcome the nonlinear intensity difference; however, this
method is computationally expensive.

In summation, the key to the optical and SAR image regis-
tration is to improve key point repeatability and the robustness
and efficiency of descriptors. We propose a method to solve
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the low repeatability of key points in optical and SAR images
caused by the high-complexity and strong scattering regions,
which are collectively referred to as high-complexity regions;
and improve the matching efficiency using a novel binary
descriptor. Strong scattering is caused by the high-reflectivity
regions where the metal target or dihedral target is located
in SAR images, which do not exist in optical images. Thus,
the imaging characteristics of these regions are quite different
and difficult to match. In addition, we use the Harris detector
to extract key points from the optical and SAR edge images.
Furthermore, we use the Hamming distance and fast sample
consensus (FSC) [15] to complete the matching process. The
main contributions of this letter are as follows.

1) A novel method is proposed to identify high-complexity
and strong scattering regions from optical and SAR edge
images, which are obtained from the maximum moment
of the PC. Then these regions are masked to avoid
processing and reduce the extraction of interference
points.

2) A binary LSS descriptor (BLSS), is developed based on
the local gradient orientation histogram to address the
complicated computations and geometric and radiomet-
ric differences between optical and SAR images.

The remainder of this letter is organized as follows. Sec-
tion II describes the complexity analysis method and the
novel BLSS. Section III analyzes the performance of the
proposed algorithm. Section IV presents the conclusion and
recommendations for future study.

II. METHODOLOGY

This section first introduces the complexity analysis method
and then illustrates the novel binary descriptor design process.

A. Complexity Analysis Method

Due to the large intensity differences between the opti-
cal and SAR images, we use the maximum moment of
the PC [16] to extract the edge information. In addition,
we found that the edge information of the high-complexity
regions in high-resolution SAR images is inconsistent with
the corresponding regions in optical images. As Fig. 1 shows,
the regions marked with red and green lines have high
complexity. A comparison of Fig. 1(c) and (f) corresponding
to the regions marked with red lines shows that there is
no consistency of the edge information, and it is easy to
extract more corner points whose surrounding information is
disorganized. Thus, the descriptors are not representative and
cannot be matched. These key points, called inference points,
can increase the computation and lower their repeatability in
optical and SAR images.

Accordingly, this letter proposes a complexity analysis
method based on edge images to avoid the extraction of
interference points from high-complexity regions and improve
key point repeatability. In this method, the binary image
f (i, j) is generated from the edge image I (i, j)

f (i, j) =
{

1, I (i, j) �=0
0, I (i, j) = 0.

(1)

Then a N × N nonoverlapping sliding window is moved
over the binary image. To prevent the misjudgment of the

Fig. 1. Comparison of optical and SAR images. (a) Optical image. (b) Optical
edge image. (c) Enlarged view of the red line marked region in (b). (d) SAR
image. (e) SAR edge image. (f) Enlarged view of the red line marked region
in (e).

Fig. 2. Diagram of complexity distribution. (a) Optical image. (b) SAR
image.

Fig. 3. Key points on two edge images. (a) Optical image. (b) SAR image.

high-complexity regions when sliding along the edge orienta-
tion, we count the intensity values f (i, j) in four orientations
with θ = {0◦, 90◦, 180◦, and 270◦} and obtain the complexity
distribution diagram f ′

θ (x, y) in the single orientation θ and
the final complexity distribution diagram B(x, y)

f ′
θ (x, y) =

∑
(i, j)∈N

fθ (i, j), ((x, y) ∈ round((i, j)/N)) (2)

B(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1,

4∏
θ=1

f ′
θ (x, y) ≥ Tm

0,

4∏
θ=1

f ′
θ (x, y) < Tm

(3)

where the size of the sliding window is N = 5 and the
threshold Tm = 13. The resulting edge complexity is shown
in Fig. 2.

Fig. 2 shows that the upper left region corresponds to the
high-complexity region. Furthermore, Fig. 3 shows that there
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Fig. 4. Schemes of the BLSS descriptor computation.

TABLE I

COMPARISONS ON REPEATABILITY RATES

are many interference points in the corresponding region. Once
the complexity distribution diagram is obtained, by combin-
ing the “open operation” (a basic morphological operation)
with the four connected regions methods, the high-complexity
regions are obtained and masked to avoid extracting key points
from this region. Here we extract key points from edge images
using the Harris detector. Table I shows the repeatability rate
γ between optical and SAR images, to the method with
complexity analysis (CA) and the method without complexity
analysis (NCA). The threshold between repeatable key points
is set to 2. Table I shows that CA gains approximately 4%
points compared with NCA. Therefore, CA can improve the
key point repeatability rate. As shown, the two methods have
low repeatability on the optical and SAR images because of
serious nonlinear radiometric differences, which means that
the optical and SAR image registration is a challenging task.

B. Construction Method of BLSS Descriptor

Since the LSS descriptor calculates the self-similarity in a
single orientation, it cannot provide enough discriminability,
and the initial correspondences between optical and SAR
images may have many-to-one cases. Therefore, this letter
proposes a BLSS descriptor based on edge images to highlight
the structural characteristics of optical and SAR images. The
region around a key point is divided into small bins, and
the structural characteristics in each bin are described by the
local gradient orientation histogram instead of the correlation
surface in LSS to improve descriptor determination. Addition-
ally, the correlation between small bins is mapped into binary
mode to improve algorithm efficiency. The BLSS descriptor
construction process is illustrated in Fig. 4.

In detail, before the BLSS, we first compute the gradient
magnitude D(Xi ) and orientation θ(Xi) of pix Xi from edge
images based on the XY-coordinate system. They are computed
as follows:

D(Xi) =
√

Dx(Xi)
2 + Dy(Xi)

2 (4)

θ(Xi) = tan−1
(

Dy(Xi )/Dx(Xi)
)
. (5)

Then we normalize them to [0 ∼ 1) and [0◦ ∼ 180◦),
respectively. All small bins are divided into three circles;

and there are 8, 16, and 24 bins in each circle, respectively.
We obtain the statistics of the gradient orientation histogram
of each bin as a self-similarity vector. Generally, angles
ranging from 0◦ to 180◦ are divided into eight orientation
bins. However, it is unsuitable for our proposed descriptor.
We compress the eight orientation bins to five orientation
bins, which can reduce the dimensionality of the descriptor
and solve the problem that the binary descriptor is sensitive to
orientation information. The compression method converts the
middle six orientation bins into three orientation bins. In this
way, large values can be obtained on the dimension, which
makes the structural characteristics more significant.

For each bin, we define the statistic of the gradient ori-
entation histogram in five orientations as a vector di, j . The
variations between adjacent bins in each circle are calculated
as a self-similarity vector DAdjace, which is given by

DAdjace = {
�d1,1, . . . ,�d1,8,�d2,1, . . . ,

�d2,16,�d3,1, . . . ,�d3,24
}

(6)

where di, j represents the vector corresponding to the j th bin of
the i th circle calculated by the gradient orientation histogram.
�di, j is given by

�di, j =
{

di, j+1 − di, j , i = 1, 2, 3 j = 1, 2, . . . , 8 × i − 1
di,1 − di,8×i , i = 1, 2, 3 j = 8 × i.

(7)

Then the variations between the surrounding bins and the
center bin are calculated as another self-similarity vector
DCentral, which is given by

DCentral = {
�d ′

1,1, . . . ,�d ′
1,8,�d ′

2,1, . . . ,�d ′
2,16,

�d ′
3,1, . . .�d ′

3,24

}
(8)

�d ′
i, j = di, j − d0,0, i = 1, 2, 3 j = 1, 2, . . . , 8 × i (9)

where d0,0 represents the vector of the center bin calculated
by the local gradient orientation histogram.

Finally, the above self-similarity vectors are concatenated
to obtain {DAdjace, DCentral}. Because the positive and negative
elements in the self-similarity vectors reflect the variation
tendency of the structural characteristics in each orientation,
we convert the positive and negative elements into the binary
modes 1 and 0 to obtain the final descriptor B.

The sorting rules of neighbor bins are as follows: First,
the main orientation bin of the support region bin0 is calcu-
lated. Then the starting bin in each circle is calculated by
bin0 × i(i = 1, 2, 3) and sorted in counterclockwise order.

Authorized licensed use limited to: Changchun Inst of Optics Fine Mechanics & Physics. Downloaded on March 01,2022 at 03:04:51 UTC from IEEE Xplore.  Restrictions apply. 



6002705 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 19, 2022

Fig. 5. Distributions of Hamming distances for matching correspondences
and nonmatching correspondences.

Fig. 5 evaluates the performance of our descriptor. We use
the distribution of the Hamming distance to evaluate our
descriptor. We extract approximately 2500 correspondences
from Pair A in Section III and exhibit the distributions of
the Hamming distances between matching points and non-
matching points in Fig. 5. Since the dimensionality of our
binary descriptor is 480, the maximum possible Hamming
distance is 480 bits. As Fig. 5 shows, the distribution of
the Hamming distances for nonmatching points is roughly
Gaussian and centered around a larger value than the matching
points overtly. There are large geometric and radiometric
differences between optical and SAR images, so the Hamming
distance of matching correspondences does not start from a
very small value such as binary robust independent elementary
features (BRIEF) [17]. However, the distance between the
expectations of the two curves is relatively large. This indicates
that the Hamming distance between matching and nonmatch-
ing correspondences is obvious and separable. Therefore, our
descriptor is discriminative and robust.

Additionally, we compare the running time of LSS and
the proposed BLSS descriptor under similar numbers of key
points. The average running times of LSS and BLSS are
17.8098 and 8.7035 s, respectively. This means that BLSS
is superior to LSS in computational efficiency. In addition,
the Hamming distance is used to measure the similarity of
descriptors in our algorithm, and outliers are removed by FSC
to obtain the final matching pairs for optical and SAR images.
Finally, we use the affine transformation to rectify the sensed
image.

III. EXPERIMENTS

This section evaluates the capability of the proposed algo-
rithm with optical and SAR images. The optical-to-SAR SIFT
method (OS-SIFT) [5], radiation-variation insensitive feature
transform method (RIFT) [18], and robust optical and SAR
image registration based on PC method (ROS-PC) [19] algo-
rithms are used for comparison. ROS-PC is an improvement
of RIFT, and the three algorithms show good performances
for optical and SAR image registration. Their implementation
was obtained from the authors’ personal websites. Note that
our test images are based on geographic coordinates, so there
are no large rotational differences between optical and SAR
images. All experiments were conducted using the MATLAB
R2016a software.

A. Parameter Settings
In our experiments, the sizes of the “open operation”

templates are set to 9 × 9 and 6 × 6 to partition the
complexity regions in optical and SAR images. The key point

TABLE II

DETAILS OF THE TEST IMAGES

Fig. 6. Registration and check board fusion results of the proposed method.
(a) Pair A. (b) Pair B. (c) Pair C.

detection thresholds are both set between 0.02 and 0.08,
and we empirically select a larger radius of 91 pix for the
support region around a key point to obtain more information.
The parameter settings of the two state-of-the-art comparative
algorithms follow their authors’ instructions, and we fine-tuned
the detection thresholds to obtain similar numbers of key
points.

B. Registration Performance of the Proposed Algorithm

The performance is evaluated using three optical and SAR
image pairs that have significant imaging differences. Table II
shows the details of the three test image pairs. Fig. 6 shows the
matching and checkerboard fusion results for a visual check.

All three image pairs describe suburban areas with sig-
nificant geometric and radiometric differences. Especially for
Pairs A and B, it is a challenging task since there are many
roofs in the images. The side-looking mechanism of airborne
SAR sensors causes roof areas to suffer from strong scattering
and shadows, which do not exist in the corresponding optical
images. However, Fig. 6 shows that the matching points of the
three image pairs are all located in the correct positions, and
the checkerboard fusion results are satisfactory.
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TABLE III

CMNS AND RMSES OF SEVERAL METHODS FOR TEST IMAGES

C. Experiment Analysis

The correct matching number (CMN) and the root-
mean-square error (RMSE) are used to evaluate the perfor-
mance of the above methods. CMN is obtained by removing
outliers from the initial matches using FSC. RMSE is com-
puted as follows:

RMSE =
√√√√ 1

m

m∑
i=1

[(
xo1

i − xs
i

)2 + (
yo1

i − ys
i

)2
]
. (10)

Twenty checkpoints are manually selected from optical and
SAR images to estimate the affine transformation matrix
H . (xo

i , yo
i ) and (xs

i , ys
i ) are the coordinates of the i th cor-

respondence after FSC. (xo1
i , yo1

i ) denotes the transformed
coordinates of (xo

i , yo
i ) by H , and m is the number of the

correspondences after FSC.
Table III shows the quantitative results of the four methods.

For Pair A, RIFT and ROS-PC fail to register the images
because the highly complex regions in the images can reduce
the number of repeatable key points, and the PC information in
these regions varies greatly. RIFT and ROS-PC, both use PC
to describe the structural information, and the descriptors can
be seriously affected by the disorganized PC information in
these regions. Although several correct correspondences are
obtained by OS-SIFT, the CMN and RMSE are obviously
inferior compared to those of the proposed method. This is
due to the complexity analysis scheme of the proposed method.
For Pair B with strong radiometric differences, there is rich
structural information, and there are fewer high-complexity
regions than Pair A. OS-SIFT fails to correctly register the
images due to the obvious gradient difference and scattering
in the SAR image. RIFT performs better than OS-SIFT since
it uses PC to capture structural information. ROS-PC has a
larger CMN and smaller RMSE than RIFT since its descriptor
is constructed using multiscale features, which make it more
robust. Although the RMSE of the proposed method is above
4 pix, it is superior to ROS-PC in both the CMN and
RMSE. The BLSS descriptor is based on the self-similarity
of the PC information, so it can better overcome the strong
radiometric difference. For Pair C, there are small geometric
and radiometric differences between the optical and SAR
images, and the proposed method achieves the largest CMN
and smallest RMSE, benefiting from the robust feature detector
and the discriminative BLSS descriptor, both based on the
maximum moment of PC. Note that the RMSEs in Table III
are relatively large due to the high-resolution images with
significant nonlinear distortions. The affine transformation
used cannot effectively address these distortions. However,
the experimental results demonstrate that our method gives
the best performance among the four methods.

IV. CONCLUSION

In this letter, a complexity analysis scheme is proposed to
improve the key point repeatability of the optical and SAR
images. Furthermore, a novel binary descriptor generation
method is proposed for optical and SAR images with geo-
metric and radiometric differences. The experimental results
show that our algorithm achieves comparable performance
to solve the large geometric and radiometric differences and
notably improves the matching accuracy. Our algorithm can be
used for optical and SAR image registration with geographic
information encoding. The limitations are that it is sensitive
to rotation invariance, and the matching accuracy is not
quite satisfactory. We will employ the rotation invariance of
descriptors and improve the accuracy in the future works.
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