
applied
sciences

Article

Obstacle Avoidance in a Three-Dimensional Dynamic
Environment Based on Fuzzy Dynamic Windows

Ce Xu 1,2, Zhenbang Xu 1,3,* and Mingyi Xia 1

����������
�������

Citation: Xu, C.; Xu, Z.; Xia, M.

Obstacle Avoidance in a Three-

Dimensional Dynamic Environment

Based on Fuzzy Dynamic Windows.

Appl. Sci. 2021, 11, 504. https://

doi.org/10.3390/app11020504

Received: 25 November 2020

Accepted: 1 January 2021

Published: 6 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 CAS Key Laboratory of On-Orbit Manufacturing and Integration for Space Optics System,
Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,
Changchun 130033, China; xuce16@mails.ucas.ac.cn (C.X.); xiamingyi@ciomp.ac.cn (M.X.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences,

Beijing 100049, China
* Correspondence: xuzhenbang@ciomp.ac.cn

Abstract: This paper presents a real-time path planning approach for controlling the motion of
space-based robots. The algorithm can plan three-dimensional trajectories for agents in a complex
environment which includes numerous static and dynamic obstacles, path constraints, and/or
performance constraints. This approach is extended based on the dynamic window approach (DWA).
As the classic reactive method for obstacle avoidance, DWA uses an optimized function to select
the best motion command. The original DWA optimization function consists of three weight terms.
Changing the weights of these terms will change the behavior of the algorithm. In this paper,
to improve the evaluation ability of the optimization function and the robot’s ability to adapt to the
environment, a new optimization function is designed and combined with fuzzy logic to adjust the
weights of each parameter of the optimization function. Given that DWA has the defect of local
minima, which makes the robot hard to escape U-shaped obstacles, a dual dynamic window method
and local goals are adopted in this article to help the robot escape local minima. By comparison, the
proposed method is superior to traditional DWA and fuzzy DWA (F_DWA) in terms of computational
efficiency, smoothness and security.

Keywords: obstacle avoidance; space-based robots; dynamic window approach; fuzzy logic; path plan-
ning

1. Introduction

It is expected that space autonomous robotics will be used to complete complex and
dangerous tasks in space as space technology develops [1]. As a robot completes a mission,
it needs to plan a safe trajectory from a starting point to a target point. Collisions and path
optimization are the main issues relating to the planning of the trajectory (i.e., navigation).
Currently, navigation algorithms fall into two categories: global planning algorithms and
local navigation algorithms. Previous studies have also combined the above two types of
algorithms to achieve better navigation, but such a combination depends on the robot’s
autonomy and environmental factors [2].

Some notable global navigation algorithms avoid the collision problem by building
a global environment map: e.g., A* [3], D* [4], FD* [5], and RRT [6]. When planning a
path on a map, the optimization goal is usually the shortest path or the lowest energy use.
However, considering that in the planning process, the speed, and accuracy of graph-based
search methods depend on the granularity of the search space, those approaches are not
suitable for real-time application.

To improve real-time performance, some studies have proposed local navigation al-
gorithms. Currently, the simplest local navigation algorithms are bug-based algorithms,
e.g., bug1, bug2 [7], and tangent bug [8]. When the robot encounters an obstacle, the robot

Appl. Sci. 2021, 11, 504. https://doi.org/10.3390/app11020504 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app11020504
https://doi.org/10.3390/app11020504
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11020504
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/2/504?type=check_update&version=3

Appl. Sci. 2021, 11, 504 2 of 23

will move along the boundary of the obstacle until it avoids the obstacle. The classical
reactive navigation methods include the VFH (vector field histogram) [9] and its extended
versions VFH+ [10] and VFH* [11], which are all based on the virtual vector field method.
The moving direction of histogram methods is given by dividing the surrounding envi-
ronment into different angular sectors of the polar histogram and the next direction of
the robot’s movement is obtained according to the proximity of an obstacle. Another
classical reactive navigation method is the velocity space approach. This approach uses
the evaluation function such as safety and smoothness to calculate the next movement
direction. Some well-known velocity space algorithms are dynamic-window approach
(DWA) [12,13] and curvature velocity method (CVM) [14]. As for the nonlinear problem
of moving obstacles, Seder, M. and Petrovic, I. [2] proposed an extension of the DWA
algorithm (i.e., the time-varying dynamic-window algorithm), where the moving obstacles
are modeled as moving cells in a gridded map. Considering the time factor in the process of
obstacle avoidance, Molinos, E. J. et al. proposed DW4DO and DW4DOT methods based on
CVM (curvature velocity method) to plan a safer and longer obstacle avoidance path [15],
and applied the methods in a dynamic environment. However, the main drawback of
the local navigation algorithms is the local minima, especially in the vase of U-shaped
obstacles. One approach of avoiding the local minima problem is to select a local target
of the robot’s surroundings and calculate the direction of the next step. Lane-Curvature
Method (LCM) [16] and Beam-Curvature Methods (BCM) [17] algorithms are representa-
tives of this approach and are based on the CVM algorithm. The LCM algorithm obtains
the local target by dividing the channel, whereas the BCM obtains the local target by
dividing the sector. Moon, J. et al. proposed a hybrid dynamic window approach that
can avoid the agent falling into the local minima, which is superior to DWA [18]. Yu, X. Y.
et al. proposed a dynamic window method with virtual goal in dynamic environments,
which can make the robot escape the concave trap [19]. In addition to these algorithms,
there are evolutionary algorithms that are based on neural networks or fuzzy logic [20–22].
Tarokh, M. proposed a hybrid intelligent approach that combines fuzzy logic and genetic
algorithm to enable robots to quickly find an optimal path that avoids rough areas, which
effectively solves the path planning of highly mobile robots in rough environments [23].
Chen, L. et al. proposed a conditional deep Q-network with fuzzy logic, which aims
to handle the issues of directional planning in end-to-end autonomous driving systems
and the independence of different motion commands. This approach has better learning
performance and driving stability performance, but it does not take into account obstacles
such as cars and pedestrians [24].

Whether it is a graph-based search method or a local navigation algorithm, they mostly
aim at a flat environment. For path planning in a space environment, popular approaches
are mainly to integrate obstacles, speeds, and path lengths into constraints and generate
trajectories by curve parameterization [25,26]. Most of the numerical methods use path
point parameterization to define splines, polynomials, and so on. However, for nonlinear
problems, these parameterization algorithms require a lot of computing resources. Without
further assumptions or simplifications, these methods are not suitable for solving the
problem of dynamic obstacles. Then, based on a local parameterized guidance vector
field, Marchidan, A. et al. proposed a method that can generate a constant velocity vector
field by the decomposition of unmanned aerial vehicle (UAV) kinematics into normal
and tangential components with respect to the obstacle boundary [27]. This method
can effectively avoid static obstacles and dynamic obstacles. However, it also has one
limitation; that is, it assumes that agents are at a constant height and hence simplifies the
three-dimensional (3D) problem to a two-dimensional (2D) problem. Due to the different
power modes provided by the thrusters, the problems of the UAV and the space agent in
obstacle avoidance and trajectory planning are not completely the same. However, in terms
of multi-objective path planning [28,29], collaborative path planning [30,31] and cluster
motion [32], they have similar path planning problems. Based on the Legendre polynomial
method, Chamitoff, G. E. et al. proposed the ASTRO (Admissible subspace trajectory

Appl. Sci. 2021, 11, 504 3 of 23

optimizer) method which transforms the complex cost function into a simple convex form
and applied it to cope with the problem of optimizing real-time three-dimensional (3D)
trajectory [33]. Nonetheless, when the constraints are complex, the numerical method still
has the problem of local minima in the optimization process.

To address the navigation problem in the three-dimensional environment, this paper
proposes a fuzzy dynamic window approach (DF_DWA). According to the traditional
DWA, it is believed that the values of 0.8, 0.1, and 0.1 for the parameters of azimuth,
obstacle clearance, and speed, respectively can provide good results in some situations [2].
Nevertheless, as the environment becomes more complex, this set of weights is not suitable
in all situations. Different working environments using the same weight coefficient will
result in obstacle avoidance failure or make the machine stop working [15]. Zhang, H. et al.
suggested using fuzzy logic to update the weight of DWA objective function by analyzing
the distribution of eight obstacles [34]. Abubakr, O. A. et al. simplified the distribution
of obstacles to three situations, thereby reducing the number of fuzzy logic rules, and im-
proving computational efficiency [35]. However, the two methods mentioned update the
weight of the objective function only by the distribution of obstacles, without considering
the distance of the obstacles. As a result, the robot can easily fall into U-shaped obstacles
or the local minima [36,37]. Moreover, the existing objective function does not consider the
pointing problem when the agent approaches the target. In this article, by adding the term
of the distance target, a new objective function is established to eliminate the influence of
angle orientation. The weight parameters are adjusted by fuzzy logic so that the space robot
can adapt to environmental changes. The dual dynamic window method and local goal
method are used to avoid the agent trapping in the local minima and U-shaped obstacles.

The paper is organized as follows: Section 2 describes the collision-avoidance problem.
Section 3 designs fuzzy rules and describes the dynamic-window approaches. The effec-
tiveness of the method is analyzed by simulation in Section 4. Finally, conclusions are
drawn from the results of the study in Section 5.

2. Formulation of the Collision-Avoidance Problem

In this paper, we mainly focus on the 3D real-time trajectory planning of the kind of
space-based robots, such as SPHERES [38] and astronaut assistant robots [39]. The agent
can work in a space station or specific working range in which the flying distance is much
shorter than the radius of the orbit. In addition, the algorithm can also be extended to
other types of agent 3D trajectory planning. This section provides the mathematical model
of the motion and the attitude of the spatial agent. In a 3D environment, the attitude of
the agent is represented by the pitch angle θ, yaw angle ψ, and roll angle φ, as shown in
Figure 1. Under reference coordinate system (Xf, Yf, Zf), the equation of the agent’s motion
is written as:  X f (t+1)

Yf (t+1)
Z f (t+1)

 =

 X f (t)
Yf (t)
Z f (t)

+ ∆t ∗R f
b

 vb
x

vb
y

vb
z

 (1)

where the ∆t is the sampling time. The conversion between the reference coordinate
system oXfYfZf and the body coordinate system oXbYbZb is in the order of 321. Therefore,
the transformation matrix from the body coordinate system to the reference coordinate
system is:

R f
b =

 cψcθ −sψcφ + cψsθsφ sψsφ + cψsθcφ

sψcθ cψcφ + sψsθsφ −cψsφ + sψsθcφ

−sθ cθsφ cθcφ

 (2)

where c and s are the cosine and sine, respectively. The relationship between the angular
velocity component and Euler angle is:

R(ξ) =

 1 0 −sθ

0 cφ sφcθ

0 −sφ cφcθ

 (3)

Appl. Sci. 2021, 11, 504 4 of 23

.
ξ = R(ξ)−1ω (4)

where ξ = [φ, θ, ψ]T, ω = [ωx, ωy, ωz]T, ωx, ωy and ωz are the components of the angular
velocity ω in the axis of the body coordinate. The equation of the attitude of the agent is
written as:  φ(t+1)

θ(t+1)
ψ(t+1)

 =

 φ(t)
θ(t)
ψ(t)

+
.
ξ ∗ ∆t (5)

Figure 1. Agent coordinate system.

The trajectory of the agent is generated by Equations (1) and (5). Due to the limitation
of the sensor, the activity range that the agent can perceive in a certain time is limited;
for example, the effective detection distance of a vehicle-mounted lidar is within 6–8 m.
Taking the geometric center of the agent as the origin, the range can be obtained by:

S(t) =
{

p ∈ R3 : ‖p(t)− p‖ ≤ rs

}
(6)

where P = [x, y, z] is the position of the agent, P(t) is the point within the detection range of
the agent. rs is the detection radius of the sensor. Within this range, the space occupied by
obstacles can be expressed as:

(t) =
{

p ∈ R3 : ‖p(t)− po(t)‖ ≤ ro

}
(7)

where Po(t) = [xo(t), yo(t), zo(t)] is the position of the obstacles, ro is the radius of the
obstacles. In this paper, obstacles and agents are assumed to be spherical with the radius
of Robstacle and Ragent. Users can also refer to the reference [40] to configure agents and
obstacles by different boundary constraints. In addition, the obstacle information can be
obtained by the sensors [41]. All the admissible positions of the agent can be expressed as:

Ω(t) = S(t) ∩ (o(t) + Sb(t)) (8)

where the Sb(t) is an added safety zone that accounts for measurement and process uncer-
tainty. Because of the limitation of sensors, new obstacles will appear in the search area,
and the environment within the search range is changing, which requires the algorithm
itself to be able to adapt to the change. In addition, some obstacles may also be dynamic,
so the admissible range of the agent is a time-varying area. In response to these problems,
we propose a fuzzy dynamic window method, which will be discussed in Section 3.

3. Proposed Dynamic Window Approach

DWA is one of the commonly used methods for local obstacle avoidance. During
an iteration, the algorithm can calculate all feasible speed groups for the next iteration.
The optimal motion combination is then selected by the evaluation function. The algorithm
adopted in the present paper differs from the original algorithm as described below:

Appl. Sci. 2021, 11, 504 5 of 23

(1) DWA is extended to a 3D dynamic environment.
(2) New evaluation items are added to the original evaluation function and therefore a

new evaluation function is established. Fuzzy logic is also introduced to adjust the
weight of each evaluation item according to the working conditions. The distance
from the agent to the goal and the distance between the agent and the obstacle are the
basis for assessing the adjustment.

(3) Two different velocity windows are evaluated at the same time. To ensure the safety
of the trajectory, the maximum velocity window is adopted to calculate the braking
distance and the distance to the obstacle.

(4) Local goals are used to avoid large obstacles or U-shaped obstacles.

Figure 2 summarizes the algorithm workflow.

Figure 2. The DF_DWA flowchart.

3.1. The Two Velocity Windows

Due to the acceleration and velocity limitations, the agent cannot move as required.
Meanwhile, the high rate iteration of the algorithm or obstacles may cause the agent
speed to be extremely slow, which may cause the speed group to be ignored and run
errors. Therefore, two-level velocity windows are used to deal with this problem, as shown
in Figure 3.

Figure 3a shows the two-level velocity windows. The black cube represents the agent
and the blue cube represents the ‘local window’. The local window is the reachable velocity
by the agent in the next iteration, which is limited by the agent acceleration and maximum
velocity. The light cube represents the window of the maximum speed that the agent can
reach. The maximum speed window can ignore the kinematic constraints of the agent.
In Figure 3b, according to the elevation and azimuth angles, the agent’s motion is divided
into different motion planes to form a 3D fan-shaped area. The dense part of the 3D sector
represents that the agent can reach predicted positions if the agent maintains its velocity for
3 s. The dark-blue area represents the positions where the agent can reach at the maximum
speed. The red rectangular prism represents the position of the agent selected by the
evaluation function.

Appl. Sci. 2021, 11, 504 6 of 23

Figure 3. Two-level (a) velocity space and (b) Cartesian space.

By setting two-level velocity windows, when the agent iteration speed is extremely
slow, the best trajectory between the maximum speed is first determined. Then the agent
moves to near the optimal position in the next iteration. Based on this, we can further
analyze how the agent determines the best local goal when it encounters a large obstacle or
a U-shaped obstacle.

3.2. The Candidate Local Goal

As shown in Figure 4, the candidates for local goal points are generated in a safe
fan-shaped area where the agent can fly, and the optimal value of the candidate local goal
point is then detected.

Figure 4. (a) Local goals in trajectory planning and (b) the position of the local goals.

The candidates for local goal points are defined by:

goallocal(i) = (X(t), φi(t), θi(t)) + Rs ∗ (η, j
π

mRs
, k

π

mRs
) (9)

where goallocal(i) is the candidates for local points, φi(t) is the azimuth of the candidates for
local points. θi(t) is the elevation of the candidates for local points, X(t) is the position of
the agent, and RS is the safe separation of the agent and obstacles. j, k and m are the index
and number of the candidate local goals. The larger the value of m is, the more local goal
points can be selected, and the better the optimization result of the local goal can get. RS is
defined by:

Rs = Rr + r0 + Rbraking(t) (10)

Appl. Sci. 2021, 11, 504 7 of 23

Rbraking(t) =
vt

2

amax
(11)

η =

 cos(φi)cos(θi)
sin(φi)cos(θi)

sin(θi)

 (12)

where Rr is the agent radius, Rbraking is the braking distance of the agent, vt is the current
velocity of the agent, and amax is the maximum acceleration that the agent can achieve.

3.2.1. Distance-to-the-Virtual Goal Term

This evaluation term is used to select the candidate virtual local goal point closest to
the real goal.

dist1 = 1−
dist(Pgoal local → Pgoal)

d1max
(13)

where Pgoal is the position of the real goal, Pgoallocal is the position of the virtual local goal,
d1max is the distance between the real goal and the current position of the agent.

Rs1 = Rr + Rbraking(t) (14)

A safe area is established between the agent and the local target, and the safe area
is defined as a cuboid area, as shown in Figure 5. If there exist obstacles in the safe area
between the agent and the candidate local goals, the candidate local goal in the cuboid area
will be deleted from goallocal(i).

Figure 5. The selection of the candidate local goals.

3.2.2. Orientation-to-the-Local Goal Term

This evaluation term is used to select the candidate local goal point with the smallest
angle between the real goal and the local goal points.

headinglocal = 1−
arccos(Pgoal local → Pgoal)

π
(15)

3.2.3. Distance-to-the-Obstacle Term

This evaluation term is used to select a local goal point far away from obstacles.

dist2 =
dist(Pgoal local → Pobstacle)

∑m
i=1 dist(Pgoal local → Pobstacle)

(16)

where Pobstacle is the position of obstacles detected by the agent, m is the number of obstacles.

Appl. Sci. 2021, 11, 504 8 of 23

The optimal local goal is selected by the evaluation function Equation (17):

gend = µdist1•dist1 + µhead1•headinglocal + µdist2•dist2 (17)

where µdist1, µdist2 and µhead1 are the weights of the functions. The goallocal (i) point corre-
sponding to the larger set of results in gend is used as the local goal.

3.3. The Evaluation Function for DF_DWA

Once the dynamic window is set, each set of speeds (linear and angular velocities) is
evaluated to select the best combination in the iteration. This paper uses the speed, goal
distance, goal orientation, and obstacle clearance as components of the evaluation function.
The detailed content of the algorithm DF_DWA is given in Algorithm 1.

Algorithm 1. DF_DWA.

1: Procedure DF_DWA(goal, x_initial = [x0, y0, z0], parameter_initial, Kinematic, p_e, r0)
2: i←1, ♦ iteration counter
3: for I = 1:5000
4: If norm(x(i)-goal)>p_e ♦ p_e is the allowable position error
5. If norm(x(i)-obstacle(i))<= r0
6: break;
7: If (there are large obstacles or U-shaped obstacles) then
8: gend←(Equation (9), Equation (10), Equation (14), Equation (15), Equation (16));
9: goal_r←goal && goal←V_goal;
10: If norm(x(i)- goal)<= p_e;
11: goal←goal_r;
12: end if
13: end if
14: EvalParameter←evalfis([distance(x(i)-goal), distance(x(i)-obstacle(i))]; ♦ Calculate parameters by fuzzy rule.
15: [Vmin (i), Vmax (i),ωmin (i),ωmax (i)]←DynamicWindow(x(i), Kinematic);
16: f (V(t),ω(t),distgoal(t), distobstcles(t), heading(yaw(t), pitch(t)), Evalparameter)←Equation (23);
17: ind(i)←max(f); ♦ Find the velocity group with the highest evaluation function value
18: [u(i)]←Kinematic(ind,1:3); ♦ Finding the optimal speed group
19: x(i + 1)←P(x,u); ♦ Iteration
20: else If norm(x(i)-goal)<p_e
21: break;
22: end if
23: end
24: end Procedure

3.3.1. Speed Term

The speed term is used to evaluate whether the agent advances at the optimal speed.
There are two scenarios in the process of an agent flying toward a goal. One is that the
agent faces the goal while the other is that the agent faces away from the goal. If the goal is
in front of the robot, the reward value of this term can be gotten as follow:

speed(vt) =
vt

vmax
(18)

When the agent faces away from the target, it only needs to rotate motion to save
energy:

speed(vt, ωt) = (
vt

vmax
) ∗ α + (

ωt

ωmax
) ∗ β (19)

where α and β are the proportional parameters of the linear velocity and angular velocity.
The value of α and β is between 0 and 1. The angular velocity has two maximum values:
(1) vt = 0, ωt = ωmax; (2) vt = 0, ωt = −ωmax. As the linear velocity increases, the rotation
speed will decrease until vt = vmax, ωt = 0.

Appl. Sci. 2021, 11, 504 9 of 23

3.3.2. Distance-to-the-Goal Term

This term prizes the trajectory that makes the agent move towards the goal. The dis-
tance from the starting point to the goal is defined as the maximum distance dmax. Also,
the reward function is normalized between 0 and 1. Therefore,

distgoal(vt, ωt) = 1−
dgoal(t)

dmax
(20)

where dgoal is the distance from the position of the agent to the goal, and dmax is the distance
from the starting point to the goal.

3.3.3. Orientation-to-the-Goal Term

This heading term prizes the curvature arcs that head the agent towards the goal.
The direction angle between the end of the trajectory and the goal is compared with the
azimuth of the agent (i.e., φerror, θerror). As shown in Figure 6, the φerror and θerror can be
given by:

φerror = φ′ − φ (21)

θerror = θ′ − θ (22)

Figure 6. Angle θerror and φerror to the goal.

The reward function is given by 180-φerror, 180-θerror and normalized between 0 and 1.

headingpitch(vt, ωt) = 1−

∣∣∣arctan2(ygoal − y(t), xgoal − x(t))− thpitch(t)
∣∣∣

π
(23)

headingyaw(vt, ωt) = 1− (

∣∣∣arctan2(zgoal−z(t),sqrt((ygoal−y(t))2+(xgoal−x(t))2))
∣∣∣

π
−
∣∣thyaw(t)

∣∣/π)
(24)

where (xgoal, ygoal, zgoal) is the coordinate of the goal point and (thpitch, thyaw) is the attitude
angle of the agent.

3.3.4. Distance-to-the-Obstacle Term

This term prizes that the agent travels far from the obstacles. The distance to obstacles
includes the distance to static obstacles and the predicted distance to moving obstacles.
If the value of this term is small, the agent will be close to obstacles. In contrast, if the value
of this term is big, the agent will be far from obstacles.

distobstacle(i) = norm(x(t)− xobstacle(t), y(t)− yobstacle(t), z(t)− zobstacle(t))− r0 (25)

distobstacle = diststatic + distdynamic − r0 (26)

Appl. Sci. 2021, 11, 504 10 of 23

where (xobstacle, yobstacle, zobstaclel) are the coordinates of obstacles. Distance to obstacles
includes distance to static obstacles (diststatic) and distance to dynamic obstacles (distdynamic).

For the dynamic obstacle, the position and velocity direction of the dynamic obstacle
are measured by the sensor in real time, and then the position that the dynamic obstacle
can reach in each time interval (∆t) in the next prediction time is calculated as the predicted
position of the dynamic obstacle. Then, among these positions, the shortest distance
to the agent is used as the dynamic obstacle distance (distdynamic), as shown in Figure 7.
By considering this distance, the agent plans the next motion command. In actual operation,
the polynomial fitting algorithm [19] and extended Kalman filtering method [33] can be
used to predict the trajectory of obstacles. In addition, choosing the shortest distance as the
distance of the dynamic obstacles increases the threat posed by the dynamic obstacle to the
agent. Therefore, fuzzy rules can increase the weight of distance to the obstacle item and
the agent can avoid obstacle as quickly as possible.

distdynamic = min
(

norm
(

x(t)− xpreob(ti), y(t)− ypreob(ti), z(t)− zpreob(ti)
))

(27)

where (xpreob, ypreob, zpreob) are the predicted position of the dynamic obstacle.

distobstacle(i) =
distobstacle(i)

∑n
i=1 distobstacle(i)

(28)

Figure 7. Perception prediction planning architecture.

The reward value of the iteration is calculated using Equation (29). Among all the
speed groups being evaluated, the largest speed pair among the evaluation function values
is selected as the motion instruction.

f (vt, ωt) = εspeed•speed(vt, ωt) + εgoal•distgoal(vt, ωt)
+εpitchheading•headingpitch(vt, ωt) + εyawheading•headingyaw(vt, ωt)
+εobstacle•distobstacle(i)

(29)

where εspeed is the reward value of speed, εgoal is the reward value of the distance from the
candidate points to the goal. εobstacle is the reward value of the distance from the agent to
the obstacles, and (εpitchheading, εyawheading) is the heading reward value.

3.4. The Fuzzy Rule for the DF_DWA

According to the evaluation function (26), the agent selects the best speed group in the
predicted trajectory as the action command. The reward value in the evaluation function
determines the weight of each evaluation term in the process of predicting the trajectory.
Therefore, with different weight settings, the selected trajectories are also different. In the
next paragraphs, we will discuss the impact of the weight settings on trajectory generation
and obstacle avoidance, in which each reward value of the evaluation function will be set
to zero or predominant parameter.

Appl. Sci. 2021, 11, 504 11 of 23

To test the influence of the reward value weight in the evaluation function on the
trajectory generation, we set scenarios as shown in Figures 8 and 9, and the test data is
given in Table 1. The starting point of the agent is (0,0,0) and the goal point of the agent is
(4,4,4). α is the number of iterations in each case. υ and ω are the average linear velocity
and the average angular velocity of the agent, respectively. Meanwhile, the variance of
linear velocity (σv

2) and angular velocity (σω2) is used to evaluate the smoothness of
the trajectory. In the test, the speed of the agent is limited to 2 m/s (linear velocity) and
60 degree/s (angular velocity). The acceleration is limited to 0.5 m/s2 (linear velocity) and
90 degree/s2 (angular velocity).

Figure 8. The path planning results with each reward value of the evaluation function being set to
predominant weight: (a) front view (b) side view.

Appl. Sci. 2021, 11, 504 12 of 23

Figure 9. The path planning results with each reward value of the evaluation function being set to
zero: (a) front view (b) side view.

It can be seen from Figure 8 that when εobstalce is set as the predominant weight,
the planned trajectory can avoid obstacles. If other terms are set as the predominant
weight, the trajectory can cross through obstacles, resulting in failure of obstacle avoidance.
Meanwhile, Figure 9 shows that if the value of εobstalce is set to zero, the trajectory cannot
avoid obstacles. When εspeed is set as the predominant weight, it can be observed from
Table 1 that the number of iterations is the least. If εspeed is set to zero, although the agent
can safely reach the target position, the number of iterations doubles. It can be observed
from Figures 8 and 9 that the same situation occurs when εheading is set to zero or εgoal is set
as the predominant weight. In other words, the trajectory reaches the goal after a full circle,
which increases the number of iterations and causes the trajectory to be not smooth enough.

Appl. Sci. 2021, 11, 504 13 of 23

It can also be analyzed from Figure 9 that when there is no εpitchheading, the trajectory has a
horizontal rotation, and when εyawheading is absent, there is a vertical rotation. Therefore,
the weight of these two evaluation items should not deviate too much when being set. In
addition, Figure 9a shows that if εgoal is zero, the agent will fall into local minima.

Table 1. The results of the parameter test.

Configuration α υ ¯
ωpitch

¯
ωyaw σ2

ν σ2
ωpithch

σ2
ωyaw

No εpitchheading 282 0.7204 0.0034 −0.386 0.0091 0.0029 02630
Predominant

εpitchheading
197 0.3621 0.0039 0.0495 0.056 0.0231 0.0040

No εyawheading 219 0.7165 −0.1571 0.0515 0.0107 0.2323 0.0048
Predominant

εyawheading
462 0.16 0.006 0.0244 0.0258 0.0123 0.0073

No εgoal 100 0.0318 0.0602 0.0779 7.12 × 10−4 0.003 0.0047
Predominant εgoal 354 0.6429 0.0282 0.4408 0.0282 0.0240 0.1436

No εobstacle 234 0.3038 0.0142 0.0417 0.0372 0.0147 0.0048
Predominant εobstacle 187 0.2055 0.0095 0.0415 0.0438 0.0109 0.0093

No εspeed 340 0.2139 0.0097 0.0429 0.0446 0.0114 0.0091
Predominant εspeed 169 0.4195 0.0293 0.0817 0.0723 0.0178 0.0039

The above analysis shows that, in the evaluation function, a single or constant com-
bination of reward values cannot guarantee the safety of the agent’s trajectory. When the
environment changes, the agent cannot make changes to adapt to the environment. There-
fore, based on the traditional DWA, this paper introduces fuzzy rules to adjust the reward
value.

When setting a fuzzy rule to adjust the weights of parameters, the distance to the
obstacle and the distance to the target are used as the inputs of the fuzzy rule, and the
evaluation coefficients of the speed, distance to the goal, distance to the obstacle, and the
direction to the goal are used as outputs. The fuzzy rule is shown in Figures 10 and 11.

(1) When the distance to the goal and the distance to the obstacles are long (i.e., longer
than 5 agent radii), the agent does not need to avoid obstacles first. The agent should
accelerate to a certain speed and approach the goal with moderate attention. εobstalce
can therefore be set at a small value. The value of εgoal can be increased moderately.
εheading can be set at a large value.

(2) When the distance to the goal is long and the distance to obstacles is short (i.e., shorter
than 2 agent radii), the agent should avoid obstacles first and not rush to approach
the goal. The weight of the agent speed should be reduced to guarantee that the agent
has enough time to adjust the forward direction. Therefore, εobstalce should be set at a
large value while εgoal, εheading, and εspeed should be set at a small value.

(3) When the distance to the goal is short and the distance to obstacles is long, the agent
should approach the goal first and not rush to avoid obstacles. The weight of the
agent speed should be appropriately reduced to ensure that it reaches the goal safely.
εobstalce and εspeed can therefore be set at a small value, while εgoal being set as the
predominant weight and εheading being set at a medium value.

(4) When the distance to the goal and the distance to obstacles are short, the agent should
avoid obstacles first and approach the goal with moderate attention. The weight of
the agent’s speed should be reduced. εspeed and εheading should therefore be set at a
small value. εobstalce should be set at the predominant weight. εgoal should be set at a
medium value.

Appl. Sci. 2021, 11, 504 14 of 23

Figure 10. Fuzzy input membership functions.

Figure 11. Fuzzy output membership functions.

The fuzzy rules Distgoal, Diatobstacle and εgoal, εobstalce, εspeed, εheading are shown in
Tables 2–5.

Appl. Sci. 2021, 11, 504 15 of 23

Table 2. Fuzzy control rules of Distgoal, Distobstacle, and εgoal.

Distobstacle

Distgoal ZS PS PM PB PH

Z PM PM PM PB PH
PS PS PS PM PB PH
PM Z PS PM PB PB
PB Z Z PS PM PB
PH Z Z Z PS PM

Table 3. Fuzzy control rules of Distgoal, Distobstacle, and εobstacle.

Distobstacle

Distgoal ZS PS PM PB PH

Z PB PB PM PS Z
PS PH PB PM PS Z
PM PH PB PM PS Z
PB PH PB PM PS PS
PH PH PH PB PM PS

Table 4. Fuzzy control rules of Distgoal, Distobstacle, and εspeed.

Distobstacle

Distgoal ZS PS PM PB PH

Z ZS ZS PS PM PB
PS ZS ZS PS PM PB
PM ZS ZS PS PM PB
PB ZS PS PM PM PB
PH ZS PS PM PB PH

Table 5. Fuzzy control rules of Distgoal, Distobstacle, and εyawheading.

Distobstacle

Distgoal ZS PS PM PB PH

Z Z Z Z PS PS
PS Z Z PS PS PS
PM PS PS PS PS PS
PB PS PS PM PM PB
PH PS PS PM PB PB

where Z is zero; ZS is the zero small; PS is small; PM is the middle; PB is big; PH is the height big.

The Mamdani fuzzy inference algorithm is used while defuzzification adopts the
center-of-gravity method. The evaluation function can be obtained:

f (vt, ωt) =
_
ε speed•speed(vt, ωt) +

_
ε goal•distgoal(vt, ωt)

+
_
ε pitchheading•headingpitch(vt, ωt) +

_
ε yawheading•headingyaw(vt, ωt)

+
_
ε obstacle•distobstacle(i)

(30)

Based on fuzzy rules, if the minimum value of the input obstacle distance is set larger,
the agent’s reaction time for obstacle avoidance will be earlier. Meanwhile, the minimum
value of the εspeed and εheading fuzzy domain is not set to zero, which can prevent the agent
from falling into local minima because of the slow velocity. The specific steps of DF_DWA
algorithm are as follows.

Appl. Sci. 2021, 11, 504 16 of 23

4. Simulation Results

In this section, the simulation results will be discussed. The simulations were run
with 64 bit MATLAB R2018a on the Intel Core I7-9750H, 2.6GHz processor. The parameters
used in the numerical simulations are listed in Table 6.

Table 6. Agent and obstacles parameters.

Parameters Value

The limited linear velocity (m/s) 2
The minimum linear velocity (m/s) 0

The limited angular velocity (degree/s) 60
The limited linear acceleration (m/s2) 0.5

The limited angular acceleration (degree/s2) 90
The radius of the agent Ragent (m) 0.15

The radius of the obstacles Robstacle (m) 0.15
The safe distance (m) 0.3

The allowable position error: p_e (m) 0.1
Prediction time (s) 3

4.1. Static Obstacle Avoidance

In this scenario, there are multiple static obstacles in the space. Meanwhile, an L-
shaped obstacle with a height of 2.4 m and a length of 1.8m is added to the obstacles.
We have discussed the performance of the planned trajectory when the reward value takes
different weights in the second section. In this test, the fuzzy logic is introduced to adjust
the weight of the parameters.

Figure 12a shows the trajectories planned by the three methods. Figure 12b shows the
velocity change of the agent. Table 7 shows the number of iterations and the minimum
distance between the agent and obstacles. In terms of the time spent in planning the
trajectory, it can be seen from Figure 12b and Table 7 that it takes the most time when
using F_DWA to plan trajectory, and DWA spends the least time in planning trajectory.
Regarding the safety factor, it can be seen that the trajectory planned by DF_DWA is the
farthest from obstacles, so the trajectory is the safest. The minimum distance between the
trajectory planned by DWA and obstacles is 0.28mm, less than the safety distance of 0.3 mm,
meaning that although agents can reach the goal with the least time when following the
DWA planned trajectory, the safety is lowered. F_DWA takes the most time to plan the
trajectory because of the velocity falling into the local minima many times. Therefore,
DF_DWA is superior to F_DWA and DWA in terms of computational efficiency and safety.

Figure 12. (a) planning trajectory and (b) velocity in the static obstacle avoidance scenario.

Appl. Sci. 2021, 11, 504 17 of 23

Table 7. The iteration time and minimum distance.

Method Iteration Time Minimum Distance (mm)

DWA 179 0.28
F_DWA 2230 0.35

DF_DWA 289 0.4

It can be seen from the simulation results that compared with the algorithms DW,
BUG, and PF in the literature [19], DF_DWA can ensure that the agent’s trajectory is safer
when escaping the local minima. Compared with the hybrid dynamic window method [18],
DF_DWA can make agent keep a safer distance from obstacles when escaping U-shaped
traps. Compared with DW4DO [15], DF_WDA can adjust the parameter weight of the
optimization function according to the changes in the obstacle scene.

4.2. Dynamic Obstacle Avoidance

In space activities, multiple agents are sometimes required to complete tasks at the
same time. For one agent, the other agents are regarded as dynamic obstacles. Each agent
is equipped with sensors that can perceive the external environment around it. Therefore,
for abnormal situations, if an agent is chasing the agent ahead, it can be perceived by the
agent ahead.

In this section, the agent can detect the location of other agents by sensors and calculate
the distance between them [19,33,42]. When using DF_DWA, although the speed does not
change much, it is not constant. Therefore, the safety distance between obstacles must be
strictly ensured. In this paper, the current maximum window speed is used to calculate the
braking distance (i.e., Rbraking).

(1) Two agents
To further test the obstacle avoidance ability of the algorithm in a dynamic environ-

ment, we set up a scenario in which two agents move to each other and are obstacles to
each other. As shown in Figure 13a, the starting point of Agent 1 is (0,0,3). The goal point
of Agent 1 is (8,0.5,5). The starting point of Agent 2 is (8,0,3). The goal point of Agent 2 is
(0,0.7,5). It is observed from the test result that this situation is safe in that Agent 1 moves
upward and Agent 2 moves downward when the separation of the two agents is short.
The black dotted line is the predicted trajectory of Agent 2 to Agent 1.

Figure 13. (a) planning trajectory and (b) the changes in the weight of reward value during iterations in two dynamic
obstacle avoidance scenarios.

It can be seen from Figure 13b that the parameter εspeed is set as a predominant
weight when the two agents are far apart initially. As the two agents approach each other,
the weight of the εobstalce gradually increases. When the agents reach the obstacle avoidance

Appl. Sci. 2021, 11, 504 18 of 23

range, the weight of the εobstalce exceeds 0.9. After escaping the threat posed by one another,
the first task of each agent is to reach its goal. Therefore, εgoal gradually increases. When the
goal is about to be reached, the weight of the agent speed should be decreased to prevent
the agent from passing over the goal while traveling at an extremely high speed.

(2) Four agents
In the previous section, when two agents move towards each other, each agent has

sufficient space for movement. However, when multiple agents fly close to each other,
the space to avoid obstacles will be shrunk. To verify the obstacle avoidance ability of the
agent in this situation, two scenarios are set up in this section: one is that four agents fly to
four locations within the same plane that are close to each other (FFLSP), and the other is
that four agents cross each other and fly to the designated locations (FFCL).

In the FFLSP scenario, four agents fly to different positions at the same height to
complete tasks similarly to formation or assembly. The starting point of Agent 1 is (0,2,0).
The goal point of Agent 1 is (5,4,5). The starting point of Agent 2 is (0,0,0). The goal point of
Agent 2 is (5,6,5). The starting point of Agent 3 is (4,2,0). The goal point of Agent 3 is (3,4,5).
The starting point of Agent 4 is (4,0,0). The goal point of Agent 4 is (3,6,5). As shown
in Figure 14a, the agents safely reach their goal positions. Meanwhile, Figure 14c shows
the minimum distance between agents, that is, the smallest value in the set of distances
between each agent and other agents at the same moment during the flight. It can be seen
that the minimum distance of Agent 1 and Agent 2 is similar before the 95th iteration.
This result shows that Agent 1 and Agent 2 are the main obstacles to each other. When
running the 78th iteration, the minimum safety distance is 0.5324 m, which is greater than
the safety distance of 0.3 m.

Figure 14. Dynamic obstacle avoidance: ((a) four agents flying to the same plane; (b) four agents
crossing each other; (c) the minimum obstacle distance between the agents at the same moment
during the iterations in FFLSP scenario; (d) the minimum obstacle distance between the agents at the
same moment during the iterations in FFCL scenario).

Appl. Sci. 2021, 11, 504 19 of 23

In the FFCL scenario, four agents fly from four diagonal directions. This setting is
used to simulate multiple agents reaching their positions at the same time to carry out
their operational tasks, respectively. During the process, the agents pass through similar
path points. The four agents are unknown dynamic obstacles to each other. The starting
position of Agent 1 are (7,1,1). The goal point of Agent 1 is (8,1,1). The starting position
of Agent 2 is (0,2,0). The goal point of Agent 2 is (5,4,5). The starting position of Agent 3
is (0,7,4). The goal position of Agent 3 is (8,1,1). The starting position of Agent 4 is (6,5,4).
The goal position of Agent 4 is (1,1,1). It can be seen from Figure 14b that the agents safely
reach their goal points, respectively. Figure 14d shows the results of the minimum distance
between agents at the same moment. At the 69th iteration, the minimum distance between
Agent 1 and Agent 3 is 1.258 m, which is far greater than the safety distance of 0.3m.

The analysis of the minimum distance shows that the planned trajectory is safe and
reliable. Figure 15 shows the weight of reward value changes in FFLSP and FFCL scenarios.
In FLSP scenario, when an agent starts moving, the distance to its goal, and the distance to
the obstacles are relatively long. Therefore, in Figure 12a, the weight of εgoal is set as the
predominant weight at the beginning. As the agents approach the goal point, the weight of
εobstacle of the Agent 1 and Agent 2 gradually increases before the 75th iteration, and the
weight of εobstacle is set as the predominant weight until the 95th iteration. Corresponding
to Figure 14c, the minimum obstacle distance of Agent 1 and Agent 2 is also in this iteration
interval, so the agents avoid obstacles first. Then, when Agents 1 and 2 escape the collision
threat, the weight of εobstacle gradually decreases, whereas the weight of εgoal gradually
increases. For Agent 3, since the weight of εgoal is always set as the predominant weight,
it is more likely that the Agent 3 will not be collided during operation. As for Agent 4,
the weight of εobstacle gradually increases since the 59th iteration, and reaches the maximum
at the 91st iteration. It is noticeable from Figure 14c that Agent 4 reaches the smallest
collision position at the 91st iteration. The agent needs to avoid obstacles first, and then fly
to the goal, so the weight of εobstacle is the maximum.

It can be seen from Figure 14d that as the minimum obstacle distance is far longer than
the safe distance of 0.3m, the distance between the agents is safe. Therefore, in Figure 15b,
the weight of the reward value slightly fluctuates. In the process of approaching the
goal, the weight of the εspeed and εobstacle gradually decreases, while the weight of the
εgoal gradually increases. When approaching the goal, the weight of the εspeed and εobstacle
reaches the minimum, but the weight of the εgoal reaches the maximum. The analysis of
the parameter changes shows that DF_DWA is effective, because the weight of the reward
value can be adjusted with the change of the environment, thereby ensuring the safety of
the agent’s trajectory. Compared with DW4DO [15], DF_DWA can ensure the smoothness
of operation by moving obstacles in advance. Compared with ASTRO [33], it reduces the
mathematical constraints between two motion agents, thus making it more conducive for
multiple agents to operate together and complete space tasks through data sharing. Table 8
shows all the numerical results of the dynamic obstacle avoidance test. It is obvious that the
planned trajectory is smooth, and it is suitable for application in the navigation framework.

Appl. Sci. 2021, 11, 504 20 of 23

Appl. Sci. 2021, 11, x FOR PEER REVIEW 21 of 24

εgoal gradually increases. For Agent 3, since the weight of εgoal is always set as the predom-
inant weight, it is more likely that the Agent 3 will not be collided during operation. As
for Agent 4, the weight of εobstacle gradually increases since the 59th iteration, and reaches
the maximum at the 91st iteration. It is noticeable from Figure 14c that Agent 4 reaches
the smallest collision position at the 91st iteration. The agent needs to avoid obstacles first,
and then fly to the goal, so the weight of εobstacle is the maximum.

(a)

(b)

Figure 15. The changes in the weight of the reward value during iterations in (a) FFLSP and (b) FFCL scenarios.

Appl. Sci. 2021, 11, 504 21 of 23

Table 8. Dynamic obstacle avoidance: numerical results.

Experiment Agents α υ ¯
ωpitch

¯
ωyaw σ2

ν σ2
ωpithch

σ2
ωyaw

Two agents Agent1 222 0.4045 0.0223 −0.066 0.0535 0.0136 0.0251
Agent2 222 0.4824 −0.0516 0.0085 5.37 × 10−4 0.0034 0.0487

FFLSP

Agent1 133 0.5476 0.1548 0.0395 0.0029 0.1059 0.033
Agent2 148 0.6463 0.0709 0.0828 0.0073 0.1152 0.021
Agent3 129 0.5007 0.1288 0.2764 0.0578 0.1003 0.0099
Agent4 137 0.6686 0.1802 0.1684 0.0269 0.0924 0.1031

FFCL

Agent1 132 0.5214 −0.0114 0.1871 0.0615 0.0937 0.0373
Agent2 173 0.6789 0.0139 0.1799 0.0411 0.1245 8.8 × 10−4

Agent3 159 0.6081 −0.023 0.0534 0.0036 0.1388 0.0012
Agent4 143 0.6 −0.1670 −0.205 0.0439 0.1085 0.0746

5. Conclusions

This paper proposes a three-dimensional obstacle-avoidance approach for dynamic
environments based on DWA. The weight of each parameter in the evaluation function
adjusts in real-time in different working environments to ensure an agent selects a safe
trajectory. By the simulation test, the approach responds well to large obstacles and
dynamic obstacles and plans a safe trajectory. In addition, the numerical results show that
the planned trajectory is smooth and is applicable in the navigation framework. Compared
with other methods, the developed DF_DWA does not require complicated constraint
formulas. Also, it reduces calculation requirements and increases the ability to respond
to environmental changes. In future work, we will continue to study obstacle avoidance
algorithms for dynamic obstacles and improve experimental conditions.

Author Contributions: Conceptualization, C.X.; methodology, C.X.; validation, C.X.; formal analysis,
C.X.; investigation, C.X.; data curation, C.X.; writing—original draft preparation, C.X.; writing—
review and editing, M.X.; funding acquisition, Z.X. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is supported in part by the National Science Foundation of China (No.11672290,
No.11972343, No. 91848202).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: This work is supported in part by the National Science Foundation of China
(No.11672290, No.11972343, No. 91848202).

Conflicts of Interest: No conflict of interest exists in the submission of this manuscript, and the
manuscript is approved by all authors for publication.

References
1. Rybus, T. Obstacle avoidance in space robotics: Review of major challenges and proposed solutions. Prog. Aerosp. Sci. 2018,

101, 31–48. [CrossRef]
2. Seder, M.; Petrović, I. Dynamic window based approach to mobile robot motion control in the presence of moving obstacles.

In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007; pp.
1986–1991. [CrossRef]

3. Szczerba, R.J.; Galkowski, P.; Glickstein, I.S.; Ternullo, N. Robust algorithm for real-time route planning. IEEE Trans. Aerosp.
Electron. Syst. 2000, 36, 869–878. [CrossRef]

4. Stentz, A. Optimal and efficient path planning for partially-known environments. In Proceedings of the 1994 IEEE International
Conference on Robotics and Automation, San Diego, CA, USA, 8–13 May 1994; pp. 3310–3317. [CrossRef]

5. Stentz, A. The Focussed D* Algorithm for Real-Time Replanning. In Proceedings of the 14th International Joint Conference on
Artificial Intelligence, IJCAI’95, San Francisco, CA, USA, 1995; Volume 2, pp. 1652–1659.

http://doi.org/10.1016/j.paerosci.2018.07.001
http://doi.org/10.1109/ROBOT.2007.363613
http://doi.org/10.1109/7.869506
http://doi.org/10.1109/robot.1994.351061

Appl. Sci. 2021, 11, 504 22 of 23

6. Bruce, J.; Veloso, M.M. Real-time randomized path planning for robot navigation. In Robot Soccer World Cup; Springer:
Berlin/Heidelberg, Germany, 2003; Volume 2752, pp. 288–295. [CrossRef]

7. Lumelsky, V.J.; Stepanov, A.A. Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of
arbitrary shape. Algorithmica 1987, 2, 403–430. [CrossRef]

8. Kamon, I.; Rivlin, E.; Rimon, E. New range-sensor based globally convergent navigation algorithm for mobile robots. In Proceed-
ings of the IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, 22–28 April 1996; Volume 1, pp.
429–435. [CrossRef]

9. Borenstein, J.; Koren, Y. The vector field histogram—Fast obstacle avoidance for mobile robots. IEEE Trans. Robot. Autom. 1991,
7, 278–288. [CrossRef]

10. Ulrich, I.; Borenstein, J. VFH+: Reliable obstacle avoidance for fast mobile robots. In Proceedings of the 1998 IEEE International
Conference on Robotics and Automation (Cat. No.98CH36146), Leuven, Belgium, 20–20 May 1998; Volume 2, pp. 1572–1577.
[CrossRef]

11. Ulrich, I.; Borenstein, J. VFH*: Local obstacle avoidance with look-ahead verification. In Proceedings of the 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), San
Francisco, CA, USA, 24–28 April 2000; Volume 3, pp. 2505–2511. [CrossRef]

12. Fox, D.; Burgard, W.; Thrun, S. The dynamic window approach to collision avoidance. IEEE Robotics Autom. Mag. 1997, 4, 23–33.
[CrossRef]

13. Ozdemir, A.; Sezer, V. A hybrid obstacle avoidance method: Follow the gap with dynamic window approach. In Proceedings of
the 2017 First IEEE International Conference on Robotic Computing (IRC), Taichung, Taiwan, 10–12 April 2017; pp. 257–262.
[CrossRef]

14. Simmons, R. The Curvature-velocity method for local obstacle avoidance. In Proceedings of the IEEE International Conference on
Robotics and Automation, Minneapolis, MN, USA, 22–28 April 1996; Volume 4, pp. 3375–3382. [CrossRef]

15. Molinos, E.J.; Llamazares, Á.; Ocaña, M. Dynamic window based approaches for avoiding obstacles in moving. Rob. Auton. Syst.
2019, 118, 112–130. [CrossRef]

16. Nak, Y.K.; Simmons, R.G. The lane-curvature method for local obstacle avoidance. In Proceedings of the 1998 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190),
Victoria, BC, Canada, 17 October 2002; pp. 1615–1621. [CrossRef]

17. Fernández, J.L.; Sanz, R.; Benayas, J.A.; Diéguez, A.R. Improving collision avoidance for mobile robots in partially known
environments: The beam curvature method. Rob. Auton. Syst. 2004, 46, 205–219. [CrossRef]

18. Moon, J.; Lee, B.Y.; Tahk, M.J. A hybrid dynamic window approach for collision avoidance of VTOL UAVs. Int. J. Aeronaut. Sp.
Sci. 2018, 19, 889–903. [CrossRef]

19. Xinyi, Y.; Yichen, Z.; Liang, L.; Linlin, O. Dynamic window with virtual goal (DW-VG): A new reactive obstacle avoidance
approach based on motion prediction. Robotica 2019, 37, 1438–1456. [CrossRef]

20. Balan, K.; Manuel, M.P.; Faied, M.; Krishnan, M.; Santora, M. A fuzzy based accessibility model for disaster environment. In Pro-
ceedings of the IEEE International Conference on Robotics and Automation, Montreal, QC, Canada, 20–24 May 2019; pp. 2304–2310.
[CrossRef]

21. Mbede, J.B.; Melingui, A.; Zobo, B.E.; Merzouki, R.; Bouamama, B.O. zSlices based type-2 fuzzy motion control for autonomous
robotino mobile robot. In Proceedings of the 2012 IEEE/ASME 8th IEEE/ASME International Conference on Mechatronic and
Embedded Systems and Applications, Suzhou, China, 8–10 July 2012; pp. 63–68. [CrossRef]

22. Mohanty, P.K.; Parhi, D.R. Path generation and obstacle avoidance of an autonomous mobile robot using intelligent hybrid
controller. In International Conference on Swarm, Evolutionary, and Memetic Computing, Proceedings of the International Conference on
Swarm, Evolutionary, and Memetic Computing, Maribor, Slovenia, 10–12 July 20109; Springer: Berlin/Heidelberg, Germany, 2012;
Volume 7677, pp. 240–247. [CrossRef]

23. Tarokh, M. Hybrid intelligent path planning for articulated rovers in rough terrain. Fuzzy Sets Syst. 2008, 159, 2927–2937.
[CrossRef]

24. Chen, L.; Hu, X.; Tang, B.; Cheng, Y. Conditional DQN-based motion planning with fuzzy logic for autonomous driving.
IEEE Trans. Intell. Transp. Syst. 2020, 1–12. [CrossRef]

25. Upadhyay, S.; Ratnoo, A. Smooth path planning for unmanned aerial vehicles with airspace restrictions. J. Guid. Control. Dyn.
2017, 40, 1596–1612. [CrossRef]

26. Mattei, M.; Blasi, L. Smooth flight trajectory planning in the presence of no-fly zones and obstacles. J. Guid. Control. Dyn. 2010,
33, 454–462. [CrossRef]

27. Marchidan, A.; Bakolas, E. Collision avoidance for an unmanned aerial vehicle in the presence of static and moving obstacles.
J. Guid. Control. Dyn. 2020, 43, 96–110. [CrossRef]

28. Hu, C.; Zhang, Z.; Yang, N.; Shin, H.S.; Tsourdos, A. Fuzzy multiobjective cooperative surveillance of multiple UAVs based on
distributed predictive control for unknown ground moving target in urban environment. Aerosp. Sci. Technol. 2019, 84, 329–338.
[CrossRef]

29. Allen, R.E. A real-time framework for kinodynamic planning in dynamic environments with application to quadrotor obstacle
avoidance. Rob. Auton. Syst. 2019, 115, 174–193. [CrossRef]

http://doi.org/10.1007/978-3-540-45135-8_23
http://doi.org/10.1007/BF01840369
http://doi.org/10.1109/robot.1996.503814
http://doi.org/10.1109/70.88137
http://doi.org/10.1109/ROBOT.1998.677362
http://doi.org/10.1109/ROBOT.2000.846405
http://doi.org/10.1109/100.580977
http://doi.org/10.1109/IRC.2017.25
http://doi.org/10.1109/robot.1996.511023
http://doi.org/10.1016/j.robot.2019.05.003
http://doi.org/10.1109/iros.1998.724829
http://doi.org/10.1016/j.robot.2004.02.004
http://doi.org/10.1007/s42405-018-0061-z
http://doi.org/10.1017/S0263574719000043
http://doi.org/10.1109/ICRA.2019.8793602
http://doi.org/10.1109/MESA.2012.6275538
http://doi.org/10.1007/978-3-642-35380-2_29
http://doi.org/10.1016/j.fss.2008.01.029
http://doi.org/10.1109/TITS.2020.3025671
http://doi.org/10.2514/1.G002400
http://doi.org/10.2514/1.45161
http://doi.org/10.2514/1.G004446
http://doi.org/10.1016/j.ast.2018.10.017
http://doi.org/10.1016/j.robot.2018.11.017

Appl. Sci. 2021, 11, 504 23 of 23

30. Zhen, Z.; Chen, Y.; Wen, L.; Han, B. An intelligent cooperative mission planning scheme of UAV swarm in uncertain dynamic
environment. Aerosp. Sci. Technol. 2020, 100, 105826. [CrossRef]

31. Zhang, N.; Gai, W.; Zhong, M.; Zhang, J. A fast finite-time convergent guidance law with nonlinear disturbance observer for
unmanned aerial vehicles collision avoidance. Aerosp. Sci. Technol. 2019, 86, 204–214. [CrossRef]

32. Rastgoftar, H.; Atkins, E.M. Safe multi-cluster UAV continuum deformation coordination. Aerosp. Sci. Technol. 2019, 91, 640–655.
[CrossRef]

33. Chamitoff, G.E.; Saenz-Otero, A.; Katz, J.G.; Ulrich, S.; Morrell, B.J.; Gibbens, P.W. Real-time maneuver optimization of space-based
robots in a dynamic environment: Theory and on-orbit experiments. Acta Astronaut. 2018, 142, 170–183. [CrossRef]

34. Hong, Z.; Chun-Long, S.; Zi-Jun, Z.; Wei, A.; De-Qiang, Z.; Jing-Jing, W. A modified dynamic window approach to obstacle
avoidance combined with fuzzy logic. In Proceedings of the 2015 14th International Symposium on Distributed Computing and
Applications for Business Engineering and Science (DCABES), Guiyang, China, 18–24 August 2015; pp. 523–526. [CrossRef]

35. Abubakr, O.A.; Jaradat, M.A.K.; Hafez, M.A. A reduced cascaded fuzzy logic controller for dynamic window weights optimization.
In Proceedings of the 2018 11th International Symposium on Mechatronics and its Applications (ISMA), Sharjah, UAE, 4–6 March
2018; pp. 1–4. [CrossRef]

36. Faisal, M.; Hedjar, R.; Al Sulaiman, M.; Al-Mutib, K. Fuzzy logic navigation and obstacle avoidance by a mobile robot in an
unknown dynamic environment. Int. J. Adv. Robot. Syst. 2013, 10. [CrossRef]

37. Zavlangas, P.G.; Tzafestas, S.G. Industrial robot navigation and obstacle avoidance employing fuzzy logic. J. Intell. Robot. Syst.
Theory Appl. 2000, 27, 85–97. [CrossRef]

38. Morrell, B.J.; Chamitoff, E.; Gibbens, P.W. Autonomous operation of multiple free-flying robots on the international space station.
In Proceedings of the 25th AAS/AIAA Spaceflight Mechanics Conference, Williamsburg, VA, USA, 11–15 January 2015.

39. Gao, Q.; Liu, J.; Tian, T.; Li, Y. Free-flying dynamics and control of an astronaut assistant robot based on fuzzy sliding mode
algorithm. Acta Astronaut. 2017, 138, 462–474. [CrossRef]

40. Yang, H.I.; Zhao, Y.J. Trajectory planning for autonomous aerospace vehicles amid known obstacles and conflicts. J. Guid.
Control. Dyn. 2004, 27, 997–1008. [CrossRef]

41. Park, J.; Baek, H. Stereo vision based obstacle collision avoidance for a quadrotor using ellipsoidal bounding box and hierarchical
clustering. Aerosp. Sci. Technol. 2020, 103, 105882. [CrossRef]

42. Llamazares, Á.; Ivan, V.; Molinos, E.; Ocaña, M.; Vijayakumar, S. Dynamic obstacle avoidance using Bayesian occupancy filter
and approximate inference. Sensors 2013, 13, 2929–2944. [CrossRef]

http://doi.org/10.1016/j.ast.2020.105826
http://doi.org/10.1016/j.ast.2019.01.021
http://doi.org/10.1016/j.ast.2019.05.002
http://doi.org/10.1016/j.actaastro.2017.10.001
http://doi.org/10.1109/DCABES.2015.136
http://doi.org/10.1109/ISMA.2018.8330141
http://doi.org/10.5772/54427
http://doi.org/10.1023/A:1008150113712
http://doi.org/10.1016/j.actaastro.2017.05.025
http://doi.org/10.2514/1.12514
http://doi.org/10.1016/j.ast.2020.105882
http://doi.org/10.3390/s130302929

	Introduction
	Formulation of the Collision-Avoidance Problem
	Proposed Dynamic Window Approach
	The Two Velocity Windows
	The Candidate Local Goal
	Distance-to-the-Virtual Goal Term
	Orientation-to-the-Local Goal Term
	Distance-to-the-Obstacle Term

	The Evaluation Function for DF_DWA
	Speed Term
	Distance-to-the-Goal Term
	Orientation-to-the-Goal Term
	Distance-to-the-Obstacle Term

	The Fuzzy Rule for the DF_DWA

	Simulation Results
	Static Obstacle Avoidance
	Dynamic Obstacle Avoidance

	Conclusions
	References

