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Abstract: Correlation filter (CF) based trackers have gained significant attention in the field of visual
single-object tracking, owing to their favorable performance and high efficiency; however, existing
trackers still suffer from model drift caused by boundary effects and filter degradation. In visual
tracking, long-term occlusion and large appearance variations easily cause model degradation. To
remedy these drawbacks, we propose a sparse adaptive spatial-temporal context-aware method
that effectively avoids model drift. Specifically, a global context is explicitly incorporated into the
correlation filter to mitigate boundary effects. Subsequently, an adaptive temporal regularization
constraint is adopted in the filter training stage to avoid model degradation. Meanwhile, a sparse
response constraint is introduced to reduce the risk of further model drift. Furthermore, we apply the
alternating direction multiplier method (ADMM) to derive a closed-solution of the object function
with a low computational cost. In addition, an updating scheme based on the APCE-pool and
Peak-pool is proposed to reveal the tracking condition and ensure updates of the target’s appearance
model with high-confidence. The Kalam filter is adopted to track the target when the appearance
model is persistently unreliable and abnormality occurs. Finally, extensive experimental results on
OTB-2013, OTB-2015 and VOT2018 datasets show that our proposed tracker performs favorably
against several state-of-the-art trackers.

Keywords: visual tracking; sparse learning; adaptive spatial-temporal context; correlation filters;
high-confidence updating

1. Introduction

Visual object tracking is one of the fundamental research topics in the computer vision
community, with a plethora of practical applications in areas including autonomous driv-
ing [1], intelligent video monitoring [2,3], human-computer interaction [4], and trajectory
prediction [5,6]. The general object tracking task is, given the initial state (e.g., central posi-
tion and extent) of a target in the first frame in an image sequence, to automatically estimate
the target’s state in the subsequent frames [7,8]. Various visual tracking algorithms have
been proposed under different scenarios for several decades, and impressive progress has
been made in recent years. It remains a challenging problem to develop a robust, real-time,
and accurate tracker, owing to interference, such as partial/full occlusion, background
clutter, non-rigid deformation, illumination variation, and boundary effects [8].

In the past 20 years, a variety of single-object tracking algorithms have been proposed
in succession. According to the built tracking model, existing object tracking algorithms
can generally be divided into generative methods and discriminative methods. The core of
the generative method is to model the appearance of the target, such as the sparse repre-
sentation model [9,10] or subspace learning model [11]. These methods locate the target by
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searching for the candidate region that is most similar to the target template. Although
effective, burdensome calculations and low accuracy limit their further development [12].
In contrast, the discriminative method usually regards object tracking as a binary classifica-
tion problem and discriminates the target from its surrounding environment. The early
discriminative methods mainly focus on training classifiers that utilize statistical machine
learning approaches, such as multiple instance learning [13], Boosting [14], support vector
machines (SVMs) [15,16], Random forests [17], and Metric learning [18]. Recently, the
discriminative correlation filter (DCF) [19–21] and deep learning [22–24] have emerged in
succession. Among them, methods based on DCF [19–21] have attracted extensive atten-
tion due to their favorable performance in terms of accuracy and robustness in tracking
benchmarks [7,8,25] while maintaining high speed. There are two significant reasons for
the success of this tracking paradigm. On the one hand, these methods train the classifier
by generating thousands of simulating negative samples through the cyclic shift of the
target patch. Thus, the discrimination of the filter is improved. On the other hand, the
Circular convolution theorem is utilized to transform the convolution operation in the time
domain into element-wise multiplication in the frequency domain. The time-consuming
convolution operation is avoided, and real-time tracking is realized.

Although methods based on DCF have obtained favorable performance and high
efficiency, these trackers still face model drift caused by spatial boundary effects and
temporal filter degradation. The periodic assumption of training samples for both training
and detection produces unwanted spatial boundary effects [26]. Such boundary effects can
easily lead to model drift when the search region is small. In addition, in the case of a few
challenging scenarios, such as out-of-plane rotation, partial/full occlusion and fast motion,
the target’s appearance model undergoes large variations. Owing to the lack of integration
of historical appearance information, the appearance model updating mechanism via linear
interpolation will cause temporal filter degradation, eventually leading to model drift.

To address these challenges, the existing trackers mainly improve the tracking per-
formance from two aspects: (a) imposing regularization constraints (including spatial
and temporal constraints) when constructing the model [26–35], and (b) by introducing a
high-confidence updating mechanism [36–38]. SRDCF [26] extended the search region and
introduced an explicit spatial regularization constraint to suppress background regions
during filter learning. Danelljan et al. further optimized the SRDCF by dynamically ad-
justing the weight of the training sample [29,30]. CSR-DCF [32] constructed a color-based
reliable binary mask for penalty filter coefficients with low spatial reliability. Although
the boundary effect is mitigated to some extent, updating the model with a fixed learning
rate is prone to cause model degradation in the case of occlusion and out-of-plane. To this
end, different temporal regularization constraints and confidence verification have been
widely utilized to avoid model degradation [27,35]. Among those trackers adopted with
fixed penalty parameters, this will easily lead to model drift and even tracking failure once
the filter is corrupted. Wang et al. proposed a novel confidence verification based on the
response map to alleviate filter over-fitting [36]. Han et al. [38] proposed a kurtosis-based
high-confidence updating scheme; however, these trackers could hardly benefit from the
variation between different frames, increasing the risk of model drift.

To handle these limitations, we propose a novel anti-drift tracking algorithm based
on sparse adaptive spatial-temporal context-aware (Ad_SASTCA). In Ad-SASTCA, the
target and its surrounding patches are considered jointly to mitigate boundary effects.
Furthermore, by making full use of local-global variations in response map and appearance
variations between different frames, we incorporate adaptive temporal regularization
constraint and sparse response constraint into the DCF framework to avoid filter degra-
dation. Finally, the ADMM is employed to optimize the Ad_SASTCA model with a low
computational cost. In addition, we propose a high-confidence update scheme by using
the feedback from the historical response map, and the Kalman filter is utilized to track the
target when the model is persistently unreliable and abnormality occurs.

The main contributions of our proposed method are summarized as:
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(1) The Ad_SASTCA method is presented by incorporating sparse response, adaptive
temporal and spatial regularization constraints into the DCF framework. Based on
the sparse adaptive spatial-temporal constrain, the Ad_SASTCA tracker provides a
more robust appearance to avoid model drift in the case of occlusion, deformation
and out-of-plane rotation.

(2) An ADMM algorithm is employed to derive a closed-form solution of the Ad_SASTCA
model in the Fourier domain. Thus, a favorable tracking performance is obtained
without sacrificing the computational efficiency.

(3) A novel high-confidence updating scheme is proposed based on feedback from the
historical response map to enhance the tracking performance further. The Kalman
filter is fused in a tracking framework to tackle the situation in which the model is
persistently unreliable and abnormality occurs.

2. Related Work

For a comprehensive review of visual single-object tracking, readers who are interested
can be referred to recent surveys [12,39]. In this section, we focus on reviewing the two types
of approaches most relevant to this study, including DCF-based trackers, and modified
DCF framework-based trackers.

2.1. DCF-Based Trackers

MOSSE [19] first introduced the correlation filter in the field of signal processing for
object tracking, with a speed of up to 699 frames per second (FPS), which inaugurated the
tracking framework based on the correlation filter (CF). The success of this framework is
predominantly attributed to its superior computational efficiency and advanced online
learning formulations. There are several outstanding trackers in this framework. For
example, Henriques et al. proposed CSK [20] that utilized circulant matrix to generate
dense training samples through cyclically shifting the foreground target patch, thus im-
proving the discrimination of the classifier; however, both the MOSSE and CSK tracker
adopted a single grayscale feature with low precision. To further improve CSK, KCF
incorporated multi-dimensional HOG [40] features and non-linear Gaussian kernel into the
DCF framework [21], which significantly improves the tracking accuracy and robustness.
Meanwhile, multi-channel color attributes (CN) features were applied in [41]. The above
methods still cannot handle scale variation. To this end, Li and Zhu fused the grayscale
feature, HOG feature and CN feature, and adopted the scale pool method to estimate the
target’s scale variation at seven scales [42], although effective, such performance improve-
ments were time-consuming. In contrast to the method in [42], Danelljan et al. proposed
DSST [43], which augmented the scale filter specifically for accurate scale estimation based
on a translation filter, and the two filters worked independently of each other. To further
boost DSST, standard principal component analysis (PCA) was employed in fDSST [44]
to reduce the scale filter dimensions. Compared with the exhaustive scale search in [42],
the scale estimation strategy of fDSST is generic and efficient, it can be combined with any
tracker without the scale estimation component. Thus, it is widely adopted by subsequent
algorithms [26–34,45]. Staple [45] integrated the complementary cues into the ridge re-
gression framework, and the DCF and color histogram (CH) response were fused as the
final model response to achieve fast and robust tracking. Compared with these methods,
ROT [37], TLD [46] and LCT [47] were more concentrated on redetecting the object in the
case of tracking failure for long-term tracking, they all incorporated a re-detector into the
DCF framework. Recently, inspired by the successful applications of deep neural networks
(CNN) in the object recognition fields, the deep features trained by large datasets were
utilized for target tracking [30,48,49]. Lately, the Siamese network has been directly applied
to construct a new tracking framework for object tracking [50–52]. Although accuracy
and robustness were effectively improved, object tracking was sensitive to time. With the
increased complexity of the training network, the trackers based on the Siamese network
cannot satisfy the requirements of actual applications, which limits its further development.
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2.2. Modified CF Framework Based Trackers

To further improve tracking performance, significant attention in recent studies has
focused on directly modifying the objective function of the DCF [26–28]. Danelljan et al.
introduced the spatial regularization constraint to penalize the filter coefficient in the
boundary region during the filter learning stage, and named it SRDCF [26]. Taking ad-
vantage of SRDCF, they proposed the C-COT [29] and ECO [30] tracker, which further
enhanced the discrimination of the filter; however, these methods improved the tracking
accuracy at the expense of speed. To this end, BACF [31] densely extracted real negative
samples from the target’s surroundings to train the filter, and applied ADMM to optimize
the model, which improved the discriminant while maintaining computational efficiency.
Furthermore, a temporal regularization term is introduced into the SRDCF tracker to han-
dle the inefficiency problem of SRDCF [27]. Li et al. further optimized STRCF [27], and
proposed the AutoTrack method, which can automatically tune the penalty parameters of
spatial-temporal regularization term online [34]. Different from the regularization weight
constructed in SRDCF [27], CSR-DCF [32] utilized object foreground/background color
models to construct a reliable binary mask to constrain the filter. In CACF [28], global
context information is integrated into the DCF framework to suppress potential distrac-
tions in the background. To update the target’s appearance model efficiently. LMCF [36]
proposed a high-confidence update strategy based on the current response map, which can
effectively handle the model drift caused by filter overfitting. Han et al. [38] proposed a
kurtosis-based high-confidence updating scheme. However, these methods only adopted
the current frame information to judge the target’s state; once the detection is wrong, the
model is prone to drift.

In this study, in contrast to the existing methods, we jointly consider the target and
its surroundings, sparse response and temporal information to construct the appearance
model and adaptively tune the temporal regularization hyper-parameter. Furthermore, a
novel confidence verification scheme is proposed to avoid the model drift caused by noisy
updates. Finally, we fused a Kalman filter into our method to handle the situation in which
the model is persistently unreliable, and malfunction occurs. It should be mentioned that
our proposed high-confidence update strategy cannot increase the storage burden since
confidence is verified against historical response maps of the filter.

3. The Proposed Method

In this section, we first introduce an adaptive spatial-temporal context-aware correla-
tion filter, which not only utilizes a large number of real negative samples surrounding the
target to train the filter against model drift caused by potential distractions in the training
stage, but also considers appearance and local-global response variations between different
frames, to prevent filter degradation and reduce the risk of model-drift. Moreover, an
additional sparse response regularization constrains across the adaptive spatial-temporal
framework, which can further improve the discrimination of the model under target fre-
quently transforms scenarios. The globally optimal solution of the model is then obtained
using the ADMM model. Finally, a high-confidence update scheme is introduced to avoid
filter overfitting caused by incorrectly updating the target’s appearance model. The main
framework of the proposed approach is illustrated in Figure 1. Further details are described
in the following subsections.
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Figure 1. Flow chart of the Ad_SASTCA framework.

3.1. Baseline Tracker

In this study, we consider the CACF tracker as our baseline tracker. As previously
mentioned, CACF incorporated the global context information into the DCF framework.
The feature circulant matrix of the target and its surrounding patches are denoted as
X0 ∈ Rn and Xi ∈ Rn(i ∈ [1, k]), respectively. The goal of the CACF tracker is to learn a
filter w that has a strong response at the object patch, and is close to zero at contextual
patches, which is formulated by minimizing the following loss function:

min
w
‖X0w− y‖2

2 + λ1‖w‖2
2 +

k

∑
i=1

λ2‖Xiw‖2
2 (1)

where y is the ideal Gaussian-shaped response ranging from one to zero, λ1 represents
the regularized parameter to avoid overfitting, λ2 is the parameter that controls context
patches to regress to zeros. Transform the expression of the primal objective function, let

A =


X0√
λ2X1

...√
λ2Xk

 y =


y
0
...
0


the regularized loss function in Equation (1) can be redefined as:

min
w
‖Aw− y‖2

2 + λ1‖w‖2
2 (2)

Because the loss function in Equation (2) is convex, the closed-form solution can be
obtained by setting the gradient to zero. Thus:

w = (AT A + λ1)
−1

ATy (3)
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where date matrix A is stacked with the feature circulant matrix of the target and its
surrounding patches. Utilizing the property that the circulant matrix can be diagonalized
in the Fourier domain. Thus, Equation (3) can be expressed in the Fourier domain as:

ŵ =
x̂∗0 � y

x̂∗0 � x̂0 + λ1 + λ2
k
∑

i=1
x̂∗i � x̂i

(4)

where ŵ represents the Discrete Fourier Transform (DFT) of the filter w, symbol � is the
Hadamard product of two elements, x̂∗0 means the complex conjugate of x̂0.

3.2. Adaptive Spatial-Temporal Context-Aware Correlation Filter

As discussed above, a significant variation in appearance may lead to temporal
filter degradation. To address the limitation, inspired by the existing work [34], we
proposed a sparse adaptive spatial-temporal context-aware correlation filter that could
jointly model the spatial, temporal and sparse response information of the target. After
fully considering the target appearance variations and local-global response variations
between different frames, we introduced an adaptive temporal regularization constraint
into the CACF tracker. The i− th element of the local relative response variation vector
∆ = [

∣∣∆1
∣∣, ∣∣∆2

∣∣, · · · , ∣∣∆T
∣∣] is defined as follows:

∆i =
Ri

t [ϕ∆]− Ri
t−1

Ri
t−1

(5)

where Ri represents the i-th element of response map vector R = [R1, R2, · · · , RT ], ϕ∆
denotes the displacement of the corresponding peak in both two response maps, and [ϕ∆]
is the cyclic shift operator. To dynamically penalize the filter’s variation for two adjacent
frames, we define a reference value µ̃ for the temporal regular-term parameter.

µ̃ =


2ζ

1+log(υ||∆||22+1)
+ ε ‖∆‖2

2 < φ

µ0 else
(6)

where, ζ, υ represent hyper-parameters, µ0 denotes initial reference value, ε is the noise with
the anti-interference ability to the environment. Furthermore, to suppress the appearance
model degradation during the training stage, the objective function in Equation (1) can be
modified as follows:

min
w
‖X0w− y‖2

2 + λ1‖w‖2
2 +

k

∑
i=1

λ2‖Xiw‖2
2 + µ‖w− wt−1‖2

2 +
1
2
‖µ− µ̃‖2

2 (7)

where µ represents the parameter of the temporal regularization term.

3.3. Sparse Adaptive Spatial-Temporal Context-Aware Correlation Filter

During tracking, frequent changes in the appearance model may cause unexpected
crests in the response map, which will eventually lead to model drift and even tracking
failure. To overcome this drawback, we further introduce a sparse response constraint
based on an adaptive spatial-temporal context-aware correlation filter. The new objective
function is as follows:

min
w
‖X0w− y‖2

2 + λ1‖w‖2
2 +

k

∑
i=1

λ2‖Xiw‖2
2 + µ‖w− wt−1‖2

2 +
1
2
‖µ− µ̃‖2

2 + λSR‖X0w‖2
2 (8)

where λSR is a parameter that controls the importance of the sparse response regulariza-
tion term.
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Because the objective function in Equation (8) is convex, we optimize by introducing
an auxiliary variable w ≡ g. The overall objective can be written as:

min
w

‖X0w− y‖2
2 + λ1‖wt‖2

2 +
k
∑

i=1
λ2‖Xiw‖2

2 + µ‖w− wt−1‖2
2+

λSR‖X0w‖2
2 +

1
2‖µ− µ̃‖2

2
s.t. w = g

(9)

The augmented Lagrange multiplier (ALM) method is utilized to merge the equality
constraint into the objective function. Thus, the Augmented Lagrange form of the object
function in Equation (9) is as follows:

L(w, g, µ) = ‖X0w− y‖2
2 + λ1‖g‖2

2 +
k
∑

i=1
λ2‖Xiw‖2

2 + µ‖w− wt−1‖2
2

+λSR‖X0w‖2
2 +

1
2‖µ− µ̃‖2

2 + s(w− g) + γ
2 ‖w− g‖2

2

(10)

where s is the complex Lagrange multiplier and the parameter γ > 0 is step size. The last
two terms in Equation (10) can be merged into γ

2 ‖w− g + η‖2
2 by introducing dual variable

η = γ
s . Thus, the Augmented Lagrange function can be rewritten as follows:

L(w, g, µ) = ‖X0w− y‖2
2 + λ1‖g‖2

2 +
k
∑

i=1
λ2‖Xiw‖2

2 + µ‖w− wt−1‖2
2

+λSR‖X0w‖2
2 +

1
2‖µ− µ̃‖2

2 +
γ
2 ‖w− g + η‖2

2

(11)

The ADMM algorithm is adopted to optimize the following three sub-problems:

w : w = argmin
w
‖X0w− y‖2

2 +
k
∑

i=1
λ2‖Xiw‖2

2 + µ‖w− wt−1‖2
2

+ λSR‖X0w‖2
2 +

γ
2 ‖w− g + η‖2

2
g : g = argmin

g
λ1‖g‖2

2 +
γ
2 ‖w− g + η‖2

2

µ : µ = argmin
µ

µ‖w− wt−1‖2
2 +

1
2‖µ− µ̃‖2

2

(12)

Subproblem w: Given µ, g and η, to optimize w, the sub-problem w in Equation (12)
has a closed-form solution:

ŵ =
x̂∗0 � ŷ + µŵt−1 +

γ
2 ĝ− γ

2 η̂

(1 + λSR)(x̂∗0 � x̂0) +
k
∑

i=1
λ2(x̂∗i � x̂i) + µ + γ

2

(13)

where, the symbol ÷ represents element-wise division operation. The detailed derivation
for the closed-form solution of sub-problem w can be found in Appendix A.

Subproblem g: Given w, µ and η, to optimize g, taking the derivative of the sub-
problem g be zero, we can get the closed-form of the sub-problem g:

g =
γ(w + η)

2λ + γ
(14)

Subproblem µ: Given w, g and η, to optimize µ, similar to the sub-problem g, the
closed-form optimal solution can be represented as

µ = µ̃− ‖w− wt−1‖2
2 (15)

Updating Lagrange multiplier η: Given w, µ and g, η can be updated by:

η = η + (w− g) (16)
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Updating the quadratic penalty parameter γ: The quadratic penalty parameter γ can
be updated according to the following equation:

γ = (γmax, ργ) (17)

where γmax denotes the maximum of penalty parameter γ and ρ is the scale factor, The
optimization process is summarized in Algorithm 1:

Algorithm 1 The filter optimization using ADMM in frame t.

Input: Target patch’s feature a0 and context patch’s feature ai(i ∈ [1, k]) in current frame, previous
response map Rt−1 and learned filter w̃t−1, maximum number of iterations N. And
response map Rt in frame t.

Output: the optimized filter w̃t in current frame t.

1 Calculate the reference value µ̃ of temporal regularization parameter µ from Rt−1 and Rt
via Equation (6)

2 Initialize iteration number i = 0, µ0 = 28.5, ρ = 3, γ0 = 5 and γmax = 25. auxiliary variable
ĝ0 ← zeros and Lagrange multiplier ŝ0 ← zeros .

3 Repeat
6 Calculate filter w̃i+1 based on ĝi, µi and ŝi via Equation (13).
7 Calculate auxiliary variable ĝi+1 based on w̃i+1 with Equation (14).
8 Calculate temporal regularization parameter µi+1 based on w̃t−1, µ̃ and w̃i+1 using

Equation (15).
9 Update Lagrange multiplier ŝi+1 based on ĝi+1, w̃i+1 and ŝi with Equation (16).
10 Update step size parameter ri+1 from ri and ρ using Equation (17).
11 Until stop condition

Complexity analysis: It should be mentioned that we employed the ADMM model to
optimize the objective function in Equation (11). Unlike other CF trackers [27,31], which
adopted ADMM, the computational complexity of our proposed model mainly focuses on
optimizing the filter w. In optimizing subproblem w, we make full use of the property that
the circulant matrix can be diagonalized in the frequency domain and avoid the inverse
operation of the matrix. All of the operations in Equation (13) are performed element-wise,
without involving the complex matrix multiplication or inversion, except for DFT; thus, the
complexity of solving w is nearly-linear O(N). In addition, if taking the DFT and inverse
DFT into account in Equation (13), the computational complexity of our tracker is the
same as the KCF [21] method, that is O(NlogN). Moreover, the BACF tracker has to utilize
the Sherman–Morrison formula to solve the matrix inversion for each system of linear
equations since the introduction of the clipping matrix. This is intractable for real-time
tracking. Thus, our tracker reduces the cost of computation and data storage, it can be
employed in real-time applications.

Convergence: The objective function in Equation (11) is convex and each sub-problem
in Equation (12) has a closed-form solution. Thus, the convergence of the objective function
can be guaranteed under the condition that the original residual ‖w− g‖2

2 of the i − th
iteration is very small [53]. We found that most of the sequences will converge when the
maximum number of iterations is three through the experiments on OTB-2013, OTB-2015,
and VOT2018 datasets. Therefore, we set this value to 3.

To handle the scale variation during tracking. we follow the SAMF to achieve the
target position and scale estimation simultaneously. Specifically, when new current image
It emerges, we extract the image patches set

{
zpatch

t

}
with multiple scales centered at the

previous target position Pt−1, t = {t1, t2, . . . . tn} where n represents the number of scales.
More details can be referred to [42].
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3.4. High-Confidence Updating Scheme

Most existing DCF-based trackers update the target’s appearance model at each frame
or few frames to avoid filter overfitting, without considering whether the tracking result is
accurate or not; however, once the tracking result is unreliable, the model may drift owing
to noise updates. Wang et al. utilized the peak and average peak-to-correlation energy
(APCE) of the current response map to judge whether the detection is reliable [36]. Inspired
by their study, we propose a high-confidence updating scheme based on the historical
APCE and peak of response map. Furthermore, we introduce the Kalman filter into our
DCF framework to address the model being successively unreliable and the occurrence of
abnormality. The APCE is defined as follows:

APCE =

∣∣∣∣Rmax − Rmin
∣∣|22

( ∑
w,h

(Rw,h − Rmin)
2)/wh

(18)

where Rmax and Rmin denote the maximum and minimum of response map, respectively.
Rw,h is the response value for the w-th row h-th column. The APCE and peak reveal the
confidence level of the tracking results in some extent.

As illustrated in Figure 2, these two criteria have changed constantly; however, the
APCE and peak change slightly when the background is homogeneous. The APCE and
peak far away from the current frame could not represent the state of the target well. We
are more interested in how these two criteria have changed over the past few frames rather
than all the historical frames. Based on this assumption, we utilize the nearest samples with
high-confidence to construct a short-term APCE-pool and Peak-pool to guide the model
updating correctly. Thus, model drift can be effectively avoided. The structure of this pool
is similar to FIFO (first input first output) in the field of microelectronics, i.e., the k samples
are arranged in a chronological queue, and when the new sample with high-confidence
arrives, the first element entering the queue leaves the queue and the new sample is ranked

at the top of the queue. We denote the APCE-pool and Peak-pool as
{

APCEp
t,m

}k

m=1
and{

Rp
max,t,m

}k

m=1
for frame t, respectively. Before providing more details, we first define

APCEt
w and Rt

max−w for frame t:

APCEt
w =

k

∑
j=1

β j · APCEt,j (19)

Rt
max−w =

k

∑
j=1

β j · R
t,j
max (20)

β j =
( e

2 )
k−j

k−1
∑

j=0
( e

2 )
k

(21)

where, the symbol · denotes the product of two scalar elements APCEt,j and Rt,j
max represent

the j-th element in the corresponding pool, and β = [β1, β2, . . . , βk] is the weighted vector.
We can observe from Equations (19) and (20) that the samples adjacent to frame t are given
greater weight and those far away are given less weight. In fact, APCEt

w and Rt
max−w are

the weight averages of APCE and peak for the current frame, respectively, and k is the
length of the pool.

For frame t, we can obtain these two criteria and their corresponding weighted average
APCEt

w and Rt
max−w. Because we determine whether the tracking result is accurate or not

based on the weighted average of the samples with high-confidence in the respective pools,
when one of the two criteria, APCE and Peak, is greater than certain ratios δ1, δ2, the
tracking results are considered to be high-confidence in the current frame, and the target’s
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appearance model is updated normally. Once APCEt < δ3 APCEt
w and Rmax,t < δ4Rt

max−w,
we consider the target in the current frame as severely occluded or missing, and the
filter model stops updating. Except for those two cases, we utilize the self-learning rate
α to update the model. The calculation formula for self-learning rate is expressed in
Equation (22). For the sake of notation, we denote ρ1 and ρ2 as follows:

ρ1 =
APCEt

w
APCEt

and ρ2 =
Rt

max−w
Rmax,t

 

 

 

 

 

 

/*********************************************************************************/ 

Point 4: Format error 

[ Original Version] Section 4.3, Page 17, Table 2 

Figure 2. The APCE and peak normalized change curve of our Ad_SASTCA model on the sequence “Liquor” from
1200 frame to 1380 frame. Severe occlusion in frames 1237, 1287, 1230 and 1356 nearby will lead the APCE and peak of
response to dropping sharply in a short period. Because the Ad_SASTCA does not fuse excessive incorrect information into
the appearance model, the response map still indicates a sharp unimodal peak, and the model drift is avoided.

Thus, the self-adaptive learning rate is defined as:

α =


α0 i f ρ1>δ1 || ρ2 > δ2

α0 · exp(θ · (min(( τ1 · ρ1 + τ2 · ρ2−1), 0))) i f ρ1 > δ3 && ρ2 > δ4

0 elsei f

(22)
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where α0 ∈ [0, 1] is the basis learning, θ, δ1, δ2, δ3, δ4 are fixed parameters. In the t-th frame,
the model is updated as follows:

wt
model = (1− α)wt−1

model + αwt (23)

When the target’s appearance model changes significantly, the APCE and peak of
the response map in the current frame decrease. At this time, how to update these two
pools is our main concern. A simple idea is that the updating of the pool is related to the
calculation of the self-adaptive learning rate without adding additional computation.

Thus, we can utilize Equation (22) cleverly if ρ1 < δ3 or ρ2 < δ4, we consider that the
APCE and peak are unreliable. However, different from the filter’s update strategy, those
two pools are not updated immediately. Once the two criteria of the next frame are still
unreliable, APCE-pool and peak-pool will stop updating. Otherwise, these two criterion
pools update as normal, with the first element to enter the pool leaving the queue, and the
APCE and peak of the current frame arranged at the top of the pool. More details are given
in Algorithm 2.

Algorithm 2 Ad_SASTCA tracker at time step t.

Input: Previous object position Pt−1 and scale st−1, Image It in frame t. APCE-Pool

{APCEt−1,m}k
m=1, Peak-pool

{
Rt−1,m

max

}k

m=1
, response map R in current frame and the

counter m. R1 and APCE1 of initial frame
Output: Target position Pt and scale st, the Updated filter wt

model , Updating APCE-pool

{APCEt,m}k
m=1 and Peak-pool, the counter m.

1 Extract target patch’s features a0 and context patches’s features ai(i ∈ [1, k]) from Image It
at previous object position Pt−1 and scale st−1.

2 Calculate response map in current frame Rt.
3 Calculate APCEt and Rt

max in current frame and Rw
max,t and APCEw

t
4 If Rt

max < 0.4Rt
max−w&&APCE < 0.3APCEt

w
5 m = m + 1
6 If m =1

7 Update APCE-pool {APCEt,m}k
m=1, Rmax-pool

{
Rt,m

max

}k

m=1
, KF_flag = 0.

8 Elseif 1 < m ≤ 4
9 Stop updating two criterial pools, i.e., {APCEt,m}k

m=1 = {APCEt−1,m}k
m=1,{

Rt,m
max

}k

m=1
=
{

Rt−1,m
max

}k

m=1
and set KF_flag = 0

10 Elseif
11 Stop updating these two criterial pools and set KF_flag = 1
10 Endif
12 Elseif Rt

max < 0.6Rt
max_mean&&APCE < 0.6APCEt

mean
13 If Rt

max < 0.15R1&&APCE < 0.15APCE1
14 Stop updating two pools as in step (7) and set KF_flag = 1.
15 Else
16 Updating two pools as in step (5) and set KF_flag = 0.
17 End
18 Endif
19 If KF_flag =1
20 Detecting the target’s position Pt based on Kalman filter with Equations (24)–(32), and

st = st−1, wt
model = wt−1

model
21 Else
22 Detecting the target’s position Pt and scale st in current frame t via the response map Rt

calculated in the step 3.
23 Obtain the training filter wt in current frame via Algorithm 1.
24 Calculate self-adaptive rate α with Equation (22).
25 Update the filter via Equation (23)
26 Endif
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3.5. Kalman Filter Tracking

The proposed Ad_SASTCA model may be unable to track the target in the case where
the appearance model is persistently unreliable, and abnormality occurs. This is because the
update strategy in the previous section inevitably incorporates incorrect information into
the filter when the aforementioned situation occurs. With cumulative incorrect information,
model drift will occur. To address these limitations, we introduce the Kalman filter into
our Ad_SASTCA model to handle these circumstances. The process and measurement
equations of Kalman filter can be formulated as:

Xt = At,t−1Xt−1 + Wt−1 (24)

Yt = HtXt + Vt (25)

where Xt and Xt−1 represent the state of the target in the frames t and frame t − 1,
respectively. At,t−1 denotes the state transition matrix from frame t − 1 to frame t, Ht is the
observation matrix in frame t, and Wt−1 and Vt represent the state and observation noise,
respectively. The Kalman filter includes two main parts: prediction and correction. The
system state is described as: Xt = [xt, yt, vx, vy], where (xt, yt) represents the central position
of the target at frame t, and vx and vy are the horizontal and vertical velocities, respectively.
For simplicity, we assume that the dynamic system motion model is a constant velocity
model and regard the target as a point when using the Kalman filter to track the target;
thus, the state transition and measurement matrices are defined as:

At,t−1 =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 (26)

In this study, we observed the central position of the target. Therefore, the measure-
ment matrix Ht is defined as:

Ht =

[
1
0

0
1

0
0

0
0

]
(27)

The KF mainly includes two parts: prediction and correction.

(1) The prediction part of the system

The prediction part can be formulated using Equations (28) and (29).

Xt = At,t−1Xt−1 (28)

St = ASt−1 AT + Q (29)

where S denotes the covariance matrix, and Q is the covariance matrix of state noise W.

(2) The update part of the system

The correction part mainly includes the state, Kalman gain and error covariance
correction. The three parts can be formulated as:

Kt = St−1Ht−1
T(Ht−1St−1Ht−1

T + R)
−1

(30)

Xt = Xt + Kt(Yt − HtXt) (31)

St = (I − KtHt)St (32)

where, Kt represents the Kalman gain, and R is the covariance matrix of Q. It is important
to note that the value of the bar on top in Equations (24)–(32) denotes predicted values.

As aforementioned, to avoid model drift, the tracker should choose from the two work
modes of the CF model and Kalman filter according to the condition. In the normal mode,
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the proposed CF model achieves the target position and scale estimation simultaneously.
The Kalman filter tracks the target object if the target’s appearance model is persistently un-
reliable, or if an abnormality occurs. Because these aforementioned situations occasionally
occur and have a short duration, it should be mentioned that, when adopting a Kalman
filter to track the target, the scale of the target remains invariant, based on the assumption
that the target scale would not change significantly between consecutive frames. The
tracking framework is summarized in Algorithm 2.

4. Experiments

In this section, we present the implementation and evaluation criteria. Meanwhile,
to verify the effectiveness of our method, we perform qualitative and quantitative experi-
mental evaluations on popular tracking benchmarks OTB-2013, OTB-2015, VOT2018, and
compared them with several state-of-the-art trackers in recent years.

4.1. Experiment Setup

In this study, the regularization parameters, λ1, λ2 and λSR in Equation (10) are set
to 10−4, 0.4 and 5, respectively. To solve the augmented Lagrange function, the initial
penalty parameter γ = 5 and the scale factor ρ = 3, the maximum of the penalty parameter
γmax is set to 25, while the number of iterations is set to 3 to balance the efficiency and
accuracy. For the hyperparameter in Equation (6), we set ζ = 14, φ = 3000, ε = 0.5, µ0 = 25.
For the high-confidence updating section, the four threshold parameters δ1, δ2, δ3, δ4 in
Equation (23) are set to 0.70, 0.75, 0.4, 0.3, respectively. The two weighted parameters τ1
and τ2 satisfy τ1 + τ2 = 1, we set τ1 to 0.6, while θ equals to 1, and basic learning rate α0
is equal to 0.005. The scaling pool S is {0.985, 0.99, 0.995, 1, 1.005, 1.01, 1.015}. For the
parameters of the Kalman filter, we set ∆t = 0.1.

All comparative experiments are implemented on the MatlabR2018a platform based
on a computer with an Inter(R) Core (TM) i7-10700F CPU@2.90 GHz with a 16 GB RAM. For
fairness, all comparison trackers utilize the original parameters and source code provided
on the websites of the author.

4.2. Evaluation Criterial on OTB Datasets

To evaluate and analyze the performance of the proposed tracker, we utilize the
success rate and precision to measure each candidate tracker on the OTB-2013 and OTB-
2015 datasets.

The success rate metric is based on the intersection over union (IoU) between the
predicted and ground truth bounding boxes, defined as the percentage of frames in which
IoU is beyond a given threshold. It can be formulated as:

Success rate =
{

1 IoU ≥ Tr
0 IoU < Tr

(33)

IoU =
Area(Bpr ∩ Bgt)

Area(Bpr ∪ Bgt)
(34)

where Bpr and Bgt denote the areas of the predicted and ground truth bounding boxes,
respectively. The symbol ∩ represents the intersection, and the symbol ∪ is the union of
the two elements. Tr ∈ [0, 1] is a specified threshold, we can plot the success rate curve by
taking different thresholds between 0 and 1. Then we utilize the area under the success
rate curve (AUC) for ranking trackers.

Precision is defined as the proportion of total video frames in which the Euclidean
distance between the predicted target center and ground truth target center locations are
smaller than the given threshold in a video sequence. It can be formulated as:

precision =
1
N

N

∑
i=1

f (35)
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f =

{
1 CLE ≤ d
0 CLE > d

(36)

CLE =
√
(xpr − xgt)

2 − (ypr − ygt)
2 (37)

where, N represents the total number of frames in the video sequence, (xpr, ypr) and
(xgt, ygt) represents the predicted and ground truth target center locations, respectively.
CLE denotes the center location error. d is a given threshold. A common threshold of
20 pixels is utilized for ranking trackers in the experiments.

4.3. Overall Performance on OTB Datasets and Discussion

We compared our proposed tracker with nine original and recent state-of-the-art meth-
ods on the OTB-2013 and OTB-2015 datasets. These trackers include KCF [21], ROT [37],
fDSST [44], SAMF_CA [28], Staple [45], STAPLE_CA [28], SRDCF [26], AutoTrack [34]
and CSR_DCF [32]. To better distinguish the differences between the compared methods,
we summarize the compared methods from several aspects: published journal, feature
representations, high-confidence updating, multimodal tracking, scale estimation and
baseline in Table 1.

Table 1. The differences of the compared methods in the aspects such as published journals, feature representations,
multimodal tracking, high-confidence updating, scale estimation and baseline.

Tracker Published at Feature
Representations

High-Confidence
Updating

Multimodal
Tracking

Scale
Estimation Baseline

Ours This work HOG+CN+gray Yes Yes Yes SAMF_CA

STAPLE_CA [28] CVPR2017 HOG+CH No No Yes Staple

AutoTrack [34] CVPR2020 HOG+CN+gray No No Yes STRCF

CSR_DCF [32] CVPR2017 HOG+CN+HSV No No Yes KCF

Staple [45] CVPR2016 HOG+CH No No Yes KCF

SRDCF [26] ICCV2015 HOG+CN+gray No No Yes KCF

SAMF_CA [28] CVPR2017 HOG+CN+gray No No Yes SAMF

fDSST [44] PAMI017 HOG+gray No No Yes DSST

ROT [37] IEEE2017 CN+gray Yes Yes Yes CN

KCF [21] PAMI2015 HOG No No No CSK

4.3.1. The OTB-2013 Benchmark

As can be observed from Figure 3, among all the trackers compared here, our approach
achieved the best comprehensive performance, with a precision rate of 85.9% at a threshold
of 20 pixels and an AUC score of 62.9%. Compared to our baseline SAMF_CA tracker,
the precision rate and AUC score of Ad_SASTCA were improved by 5.6% and 3.2%,
respectively. Moreover, Ad-SASTCA also achieved a very high precision rate of 3.1%,
compared the top-2 STAPLE_CA method. The AUC score is 0.2% higher than STAPLE_CA.

We notice that our tracker has a significantly higher success rate than other trackers
when the threshold is small. As the threshold is greater than 0.5, the success is slightly
lower than that of the other trackers, and finally, the AUC score is solely 0.2% higher than
the STAPLRE_CA approach in the success rate plot in Figure 3. This phenomenon also
exists in [38,54], the main reason for which we enforce the response of the context patches
surrounding the target to regress to zeros when we construct the target’s appearance model.
Thus, the tracker is insensitive to frequent scale variations; however, this imperfection does
not affect the tracking performance, because it can indicate that the proposed tracker does
not cause model drift as the target center predicted by our method does not deviate from
the ground-truth center position.
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4.3.2. The OTB-2015 Benchmark

As Figure 4 shows, the overall performance of our proposed tracker is superior to the
other 11 state-of-the-art trackers. Compared to the baseline tracker, Ad_SASTCA tracker
improved the precision rate by 4.8% and the AUC score by 3%. In addition, in terms of
both precision and AUC score, our proposed tracker provides a gain of 3.1% and 0.6%
compared to ranked 2 STAPLE_CA method.

Figure 4. Overall results of precision plot (a) and success plot (b) comparing Ad_SASTCA with nine state-of the art trackers
on OTB-2015 dataset. The trackers in figures (a) and (b) are sorted according to precision and AUCs, respectively.

For completeness, we reported the accuracy of all trackers at a threshold of 20 pixels,
as well as the tracking average speed in Table 2. The KCF tracker has the fastest tracking
speed at 413.42 frames per second, followed by Staple (112.03 FPS) and ROT (62 FPS). The
tracking speed of our tracker is over 25 FPS, reaching 26.87 FPS. This allows our proposed
approach to be applied in scenarios with real-time applications.
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Table 2. Precision rates (% at CLE = 20 pixs) of our proposed Ad_SASTCA versus other state-of-the-art trackers on OTB-2013
and OTB-2015. The best method is indicated in red, and the second and third are indicated in blue and green, respectively.

Ours STAPLE_CA AutoTrack CSR_DCF Staple SRDCF SAMF_CA fDSST ROT KCF

OTB-2013 85.9 83.2 83.0 80.3 78.2 83.8 80.3 80.3 74.4 74.0
OTB-2015 84.1 81.0 79.0 79.7 78.4 78.8 79.3 72.5 69.5 69.6
Avg.FPS 26.87 61.69 32.22 13.2 112.03 9.89 26.87 39.68 62.00 413.42

4.4. Attributes Based Evaluation and Discussion

Figure 5 illustrates the precision of the attribute-based evaluation performed on the
OTB-2015 datasets for all CF-based trackers. The precision rate of each tracker for each
attribute is indicated in square brackets. The experimental results indicate that among
the 11 challenge attributes of the OTB datasets, our proposed Ad_SASTCA approach
is superior to other DCF-based trackers in seven attributes, which are occlusion, scale
variation, out-of-plane rotation, deformation, out-of-view, background clutter and motion
blur. In addition, our tracker ranks second in illumination variation, fast motion and
in-plane rotation attributes.

The experimental results suggest that, compared with the baseline SAMF_CA, the
proposed approach achieves significant improvements in the two attributes of out-of-
plane rotation and background clutter, with accuracy gains of 6.5% and 3.6%, respectively.
Our high-confidence updating component and model persistent unreliability handling
mechanism also lead to improvements in tracking performance. Compared with ROT,
which has an occlusion-handling mechanism, our method provides a gain of 18.7% and
14.9% in the case of out-of-view and occlusion, respectively. In addition, all trackers utilized
a comparison scale adaptive scheme except for KCF. Ad_SASTCA obtains a significant
improvement of 14.6% over fDSST, which is designed specifically to handle scale changes.
This indicates that the SAMF_CA scale estimation strategy is not just incorporated into our
tracker, which can effectively handle the scale change of the object, because we introduce
adaptive temporal regularization and background constraint in filter construction. As for
the deformation attribute, Ad_SASTCA achieves a 3.2% improvement upon CSR-DCF. In
particular, our proposed tracker obtains 2.8% gains over its baseline SAMF_CA tracker on
the motion blur attribute.

4.5. The Qualitative Analysis and Discussion

For qualitative analysis and discussion, we compared our proposed approach with
four state-of-the-art trackers, STAPLE_CA [28], SRDCF [26], CSR-DCF [32] and Auto-
Track [34]. Figure 6 illustrates the results on eight video sequences in the OTB-2015
datasets, where each sequence may have several different challenges. Benefiting from our
adaptive tracking strategy and the handling mechanism when the model is continuously
unreliable. The target on the girls2 sequence undergoes long-term severe occlusion (ap-
proximately 16 frames) and out-of-view. Other trackers lost the target while our tracker
never caused model drift throughout. A similar situation also appears in the lemming and
Bird1 video sequences, where the Ad-SASTCA tracker is one of only two to re-capture the
object when it disappears from the camera for a long period of time. Meanwhile, in the
video sequences Board and jogging1, with significant deformations and shaking sequences
with out-of-plane rotation attributes, our tracker can track the target very well. This is
mainly attributed to the adaptive temporal regularization constraints. In addition, our
tracker can effectively handle scale variations, such as the Human 3 sequences; however,
we notice from sequence Bird1 that our tracker could not accurately estimate the scale
change of the target when the target moved rapidly. However, such defects did not af-
fect our tracker’s overall performance. Specifically, the Ad-SASTCA tracker is expert in
solving out-of-view and occlusion (girl2, lemming, bird1), out-of-plane rotation (Shaking),
significant deformation (jogging1, Board) and scale variation (Human3) scenarios.
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Figure 5. Attribute based evaluation. Precision plots (a–k) are indicated on the OTB-2015 dataset for 11 challenge attributes.
Precision rates are reported in brackets. The title of each plot includes the number of videos related attributes.

4.6. Ablation Studies and Discussion

To further validate the effectiveness of our proposed method, ablation studies are
conducted on the OTB-2013 benchmark to evaluate the contribution of each incremen-
tal part, that is, the Kalman filter module (KF), adaptive temporal (AT) constraint and
sparse response (SR) constraint in Equation (8). The baseline tracker is SAMF_CA, which
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is equipped with similar features as our method. The overall results are illustrated in
Figure 7. With each component and their combinations added to the Baseline, the tracking
performance is smoothly improved. Compared with the Baseline, the adaptive temporal
constraint (Baseline_AT) and sparse response constraint (Baseline_SR) improved precision
by 4.4% and 2.7%, respectively. The combination of two regularization constraints achieves
(Baseline_AT_SR) a performance gain from 80.3% to 84.9% in precision and from 59.7% to
61.8% in AUC scores. Intuitively, the adaptive temporal constraint enables the learned filter
to obtain a more robust appearance model, and the sparse response constraint reduces
the risk of model drift. The combination of each regularization constraint and Kalman
filter module also led to improvements in the tracking performance. Compared with
Baseline_SR, the Kalman filter module (Baseline_SR_KF) improves the tracking perfor-
mance in terms of precision and AUC by 1.3% and 0.9%, respectively. The introduction of
the KF module also improves the tracking performance of the Baseline_AT tracker. Note
that the KF module enables when the appearance model is unreliable persistently and
abnormality occurs. The gains from the KF module are not as high as the regularization
constraint. However, the KF module still improves the tracking performance. This shows
that our multimodal tracking is effective. Because we did not contaminate the appearance
model, thus, the model drift is avoided. In addition, the combination of all incremental
parts is precisely the proposed Ad_SASTCA tracker, which achieved the best performance
compared with the other combinations. The above results demonstrate the effectiveness of
the proposed Ad_SASTCA.

Figure 6. Cont.
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Figure 6. Illustration of qualitative tracking results on challenging sequences (From top to bottom: (a) lemming, (b) BlurOwl,
(c) Girl2, (d) Bird1, (e) Shaking, (f) Board, (g) Human2 and (h) Human3). The colour bounding boxes are the corresponding
results of Ad_SASTCA, STAPLE_CA [28], CSR_DCF [32], SRDCF [26] and AutoTrack [34].
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Figure 7. The performance of different components and their combinations in Ad_SASTCA, evaluated on OTB-2013. The
trackers in figures (a) and (b) are sorted according to precision and AUCs, respectively.

4.7. The VOT2018 Benchmark

We evaluate our approach with 6 participating trackers on the VOT2018 benchmark,
which contains 60 challenging video sequences. These trackers include SAMF_CA [28],
KCF [21], DSST [43], SRDCF [26], STAPLE [45] and CSR_DCF [32]. We employ three metrics
to evaluate the tracking performance: measures accuracy (A), robustness (R) and expected
average overlap (EAO). The accuracy is the average overlap over successfully tracked
frames. The robustness measures the average number of tracking failures during tracking.
Furthermore, the EAO averages the no-reset overlap of a tracker on several short-term
sequences. Table 3 shows the results of the mentioned metrics. We can see from Table 3
that our proposed method performs better than other state-of-the-art trackers in terms of
accuracy metrics. As for the robustness and EAO metric, CSR_DCF generates the highest
EAO and robustness of 0.2503 and 24.9102, respectively, and our Ad_SASTCA obtains
second place of the robustness and EAO. Overall, the results on the VOT2018 dataset show
that our Ad_SASTCA can achieve better tracking performance.

Table 3. A comparison with the state-of-the-art trackers on VOT-2018 dataset. The best method is shown in red, and the
second and third are shown in blue and green, respectively.

Tracker Our CSR_DCF Staple SAMF_CA SRDCF DSST KCF

Accuracy 0.5122 0.4728 0.5035 0.4881 0.4634 0.3849 0.4394
Robustness 39.9532 24.9102 45.3015 52.3152 66.8433 96.7834 50.9617

EAO 0.1825 0.2503 0.1621 0.1490 0.1134 0.0780 0.1347

5. Conclusions

In this study, a novel anti-drift object tracking algorithm was proposed, which not
only considers the target’s temporal and spatial information, but also the sparse and local-
global response variation. Moreover, we established a high-confidence update strategy
and self-adapting learning rate based on the APCE-pool and Peak-pool. According to
the evaluation results, we chose the CF tracker or the Kalman filter for target tracking to
effectively avoid model drift. Finally, we compared the proposed Ad_SASTCA tracker
with other state-of-the-art trackers on well-known benchmarks OTB-2013, OTB-2015 and
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VOT2018, for qualitative and quantitative evaluation. The experimental results showed
that our tracker obtains remarkable performance.

Owing to the high precision and real-time performance of the proposed tracker,
the Ad_SASTCA method can be successfully used in the field of autonomous driving
and intelligent video monitoring applications. In the future, we will further improve
our proposed tracker on several aspects, such as scale estimation, feature representation
(such as deep CNN features) and model parameters optimization while ensuring real-
time performance.
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Appendix A

Here, we provide a detailed process for solving the sub-problem w in Equation (13).
Before solving this problem, we briefly introduce the two very useful theorems we used.

Theorem A1. If X is a circulant matrix generated by vector x, the matrix X can be diagonalized in
the Fourier domain, and can be expressed as:

X = diag(x) (A1)

where, F denotes the discrete Fourier transform (DFT) matrix that is independent of the vector x, x̂
is the DFT of vector x, and x̂∗ means the Complex conjugate of the vector x̂, the FH and FT stand
for the Hermitian transpose and transpose of F, respectively, that is FH = (F∗)T .

Theorem A2. If matrix X is the diagonal matrix spanned by vector x, that is X = diag(x), the
product of the diagonal matrix X and the vector y can be expressed as their element-wise product.

Xy = diag(x)y = x� y (A2)

The object function of subproblem w in the spatial domain can be rewritten as:

w = argmin
w
‖X0w− y‖2

2 +
k

∑
i=1

λ2‖Xiw‖2
2 + µ‖w− wt−1‖2

2 + λSR‖X0w‖2
2 +

γ

2
‖w− g + η‖2

2 (A3)

Since object function in Equation (A3) is convex, there is a unique solution of w, taking
the derivate of the Equation (A3) and setting the gradient equal to zero.

∇ww = X0
H(X0w− y) +

k
∑

i=1
λ2Xi

HXiw + µ(w− wt−1)

+λSRXH
0 X0w + γ

2 (w− g + η) = 0
(A4)

the minimizer of the w in the time domain is given as:

w = [(1+λSR)XH
0 X0 +

k

∑
i=1

λ2XH
i Xi + (µ +

γ

2
)I]
−1

(XH
0 y + µwt−1 +

γ

2
g− γ

2
η) (A5)
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since the X0 and Xi i ∈ [1, k] are circulant matrix, we can utilize the property of the circulant
matrix in Theorem 1 to obtain the following identity, that is:

XH
0 X0 = Fdiag(x̂∗0 � x̂0)FH and XH

i Xi = Fdiag(x̂∗i � x̂i)FH i ∈ [1, k] (A6)

where, x̂∗ � x̂ represents the Handmard product of vector x̂∗ and x̂, so we can utilize
Equations (A1) and (A6) to further simplify w, that is:

w = [(1+λSR)XH
0 X0 +

k
∑

i=1
λ2XH

i Xi + (µ + γ
2 )I]

−1

(XH
0 y + µwt−1 +

γ
2 g− γ

2 η)

= [(1+ λSR)Fdiag(x̂∗0 � x̂0)FH +
k
∑

i=1
λ2Fdiag(x̂∗i � x̂i)FH + F(µ + γ

2 )FH ]−1

(Fdiag(x̂∗0)FHy + µwt−1 +
γ
2 g− γ

2 η)

(A7)

then, Equation (A7) is equivalent to

w = Fdiag((1+λSR)(x̂∗0 � x̂0) +
k
∑

i=1
λ2(x̂∗i � x̂i) + µ + γ

2 )
−1

FH(Fdiag(x̂∗0)FHy + µwt−1 +
γ
2 g− γ

2 η)

(A8)

so, we further simplify to obtain

Fw = diag( x̂∗0

(1+λSR)(x̂∗0�x̂0)+
k
∑

i=1
λ2(x̂∗i �x̂i)+µ+ γ

2

)Fy+

diag( 1

(1+λSR)(x̂∗0�x̂0)+
k
∑

i=1
λ2(x̂∗i �x̂i)+µ+ γ

2

) F(µwt−1 +
γ
2 g− γ

2 η)
(A9)

for any vector z, we can obtain its DFT ẑ = Fz

ŵ = diag( x̂∗0

(1+λSR)(x̂∗0�x̂0)+
k
∑

i=1
λ2(x̂∗i �x̂i)+µ+ γ

2

)ŷ+

diag( 1

(1+λSR)(x̂∗0�x̂0)+
k
∑

i=1
λ2(x̂∗i �x̂i)+µ+ γ

2

)(µŵt−1 +
γ
2 ĝ− γ

2 η̂)
(A10)

we utilize Theorem 2 to obtain

ŵ =
x̂∗0 � ŷ + µŵt−1 +

γ
2 ĝ− γ

2 η̂

(1 + λSR)(x̂∗0 � x̂0) +
k
∑

i=1
λ2(x̂∗i � x̂i) + µ + γ

2

(A11)
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