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ABSTRACT Polar code is a kind of capacity-approaching code with explicit structure as part of the next
generation wireless communication standard. The performance of the polar code is directly determined by
the construction method, in which there are three important parameters: code rate (R), block-length (N ), and
designSNR (DSNR). It is very difficult to obtain an optimal construction because all these three parameters
should be optimized in a recursive structure model. In this article, an efficient method, which constructs the
desired optimal polar code by simultaneously selecting the three parameters in terms of the error probability,
is presented. In the proposed construction, a dimensionality reduction search method is used to solve a fore
mentioned optimization problem and to find the relation between the performance of polar code and design
parameters. At the same time, the optimal parametersN and R can be obtained under anyDSNR by taking the
average group accuracy rate as the evaluation criterion. Through thismethod, the appropriate solution of three
parameters in the construction of the polar code can be determined according to the required error probability.
The proposed construction method is verified by numerical simulation, and the optimal performance to N ,
R and DSNR is compared and discussed.

INDEX TERMS Polar code, Gaussian approximation, ABLCR, dimensionality reduction.

I. INTRODUCTION
Polar code, constructed by using channel polarization with
encoding and decoding complexity O(Nlog2N) is the first
one proved to achieve Shannon’s symmetric capacity in
Binary-input Discrete Memoryless Channel (B-DMC). Com-
pared with other encoding methods such as turbo codes and
low-density parity-check (LDPC) codes [1]–[3], polar code
takes great advantages in short block length and addresses a
latency issue of successive cancellation decoding. Also, it has
been applied in the fifthgeneration (5G) wireless communi-
cation systems in [4]–[11] In 2016, polar code became the
final solution for enhanced mobile broadband (eMBB) scene
of the 5G control channel.

During the polar code construction process, code rate (R),
block-length (N ), error probability (pe) and the quality of
the channel (W ) are of interest to us Moreover, the quality
of the channel can be expressed as its capacity I (W ) or its
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Bhattacharyya parameter Z(W ) in different methods and
channels To quantize the channel, especially the Additive
White Gaussian Noise(AWGN) channel, the specified value
of signal-to-noise ratio (SNR), which is known as design-
SNR(DSNR), dictates the generation of the polar codes due
to the nonuniversality of these codes. As [12] mentioned,
the polar code has a nonasymptotic structure. For this rea-
son, [13], [14] concluded that it is a consensus that the
extraction of formulation for these critical parameters is very
difficult. Although the classic polar code construction meth-
ods [15]–[19] demonstrate that the defect of algorithm com-
plexity is solved and it is applicable to a variety of channels,
there is no further research on the problem of formulating
the exact description of the parameters In recent years, more
and more researches have been carried out in this field by
simplifying this problem, but only studying the relationship
between other parameters when some parameters are fixed.
As [20]–[22] presented in order to design a universal polar
code, which is not constrained byDSNR, the study of the par-
tial order is effective for engineering practical applications.
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Another option to tackle this problem is to consider the
relationship between the error probability and the blocklength
with the remaining parameters fixed. Such as Arikan et al.
demonstrated in [23], the upper bound of the block error
probability under a binary-input memoryless symmetric
(BMS) channel when the rate is fixed and N is large enough.
Moreover, a more accurate result is given to this upper bound
in [24] Furthermore, [25] gives the mathematical relationship
between the error probability and the code length N with a
fixed rate. Also, some other scholars have studied the rela-
tionship between the block-length and the rate while fixing
other parameters. For example, [12], [24], [26] show that the
minimumpossible block-lengthN is required to achieve a rate
R with a fixed error probability. Meanwhile, [13] describes
that the relationship between the block length and the rate
when the error probability is fixed, and it is applicable to all
BMS channels In addition, [14] gives tighter upper bound for
the scaling exponent when the quality of the channel W and
the error probability are fixed. In 5G standard the method
of selection parameters depends roughly on the quantity and
type of information data A mother polar code of length
N = 2n is calculated as:

n = max(min(n1, n2, nup), nlow) (1)

where nlow and nup give a lower and an upper bound on the
mother code length, and n2 = log2(8K ), n1 = log2(E)Where
E is the codeword length and K is the length of information
bits Therefore, when using these algorithms or methods to
guide and design polar code structures, the fixed parameters
can only be roughly designed based on experience or simple
strategies, such as in 5G application, which solves this prob-
lem in the rate matching step This is obviously not accurate
enough, at least not optimal and the performance of polar
code is reduced in this way, because of the lack of the impact
of fixed parameters on performance. The main motivation
of this article is to use the shortest N under the expected
error probability to find the optimal polar code construction
method by all parameters The proposed algorithm avoids
the direct theoretical derivation of other algorithms, and is
a traversal search algorithm, which can accurately obtain
the relationship between all design parameters and perfor-
mance. Thus, an approximately optimal polar code structure
is constructed

In practice, it is desirable that the constructed polar code
has the required block-length N and the rate R with a desired
error probability. Meanwhile, the shortest encoding length is
of great interest in terms of the rate R and a wider adapta-
tion range of possible SNRs The shorter the N , the smaller
the resource is required for realizing the polar code con-
struction, and the faster the encoding and decoding speed
will be. In order to achieve the above objectives, a dimen-
sionality reduction polar code construction algorithm was
implemented. Firstly a simulation model of the channel was
established. Secondly according to Gaussian approximation
theory, which can characterize the performance of the coding,
the average block correct rate was obtained. Finally, a simple

search algorithm, which can find the relationship between the
code performance and polar code construction parameters is
put into effect. As a result the optimal polar code construction
algorithm among all the parameters can be acquired. The
relationship obtained in this way is particularly beneficial to
the selection and dynamic adjustment of the parameters in
the polar code construction. To verify the effectiveness of the
algorithm, the encoding process and the decoding process
of the polar code were simulated, and the results show the
consistency between the algorithm proposed in this article
and the Monte Carlo algorithm. The performance is also
better than the polar code structure in the 5G standard

II. PRELIMINARIES
In this section, some useful notations and definitions, which
will be used in the sequel, are presented.

A. NOTATION
Polar codes are constructed based on a phenomenon called
channel polarization by combining and splitting. As the
block-length N increases, the polarization phenomenon
occurs and the reliability of some channels will increase,
while others will decrease. The construction of polar code is
the selection of the best K bit-channels as information bits
and the worst N-K bit-channels as frozen bits among N The
code rate(R) is equal to K/N
Let uN1 = (u1, u2, · · · , uN ) be the input bit vector and

xN1 = (x1, x2, · · · , xN ) be the output bit vector. The input
vector uN1 consists of the K information bits and the N − K
frozen bits. Themapping uN1 → xN1 denotes xN1 = uN1 GN by a
matrixGN .GN is the generator matrix of polar code and there
is a formula for GN = BNF⊗n where respects bit-reversal

operator F⊗n = F ⊗ · · · ⊗ F (n copies), F =
(
1 0
1 1

)
, and

⊗n denotes the Kronecker power

B. SIMULATION MODEL
A typical communication system model including channel
coding operations is shown in Fig.1. In the transmitter, the K
information bits are encoded with a polar code as N encoded
bits. These bits are modulated with Binary Phase Shift Key-
ing (BPSK) modulation, respectively. Then, the modulated
symbols are transmitted over the AWGN channel. At the
receiver, the reverse processes, including BPSK demodula-
tion, successive cancellation (SC) decoding perform channel
decoding task to reconstruct the information bits by removing
noise

In an AWGN channel, the modulated signal s(t) has noise
n(t) added to it prior to reception. The noise n(t) is a white
Gaussian random process withmean 2/σ 2 and variance 4/σ 2,
where σ 2 is equal to power spectral density (PSD) N0/2. The
received signal is thus r(t) = s(t) + n(t). The received SNR is
defined as the ratio of the received signal power to the noise
power within the bandwidth of the transmitted signal s(t).
Since the noise n(t) has uniform PSD N0/2, the total noise
power within the bandwidth 2B is N = N0/2 · 2B = N0 · B.
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FIGURE 1. The typical communication model.

Hence the received SNR is given by SNR = Pr
N0B
=

Eo
N0BT0

=

Eb
N0BTb

, where Es is the symbol energy and Eb is the bit
energy. For pulse shaping with Tb = 1/B (e.g., raised cosine
pulses equal 1), there is SNR = Eb

N0
for binary signaling.

According to the principle of conservation of transmission
symbol energy, the relationship between EsN0 and EbN0 can
be described as follows:

Es
N0
= f ∗

Eb
N0
= R · log2M ∗

Eb
N0

(2)

where f is the number of information bits per symbol, which
might be influenced by the size of the modulation alpha-
bet (M-ary signaling) or the code rate of an error-control
code (R). To simplify simulation, bits in the signal s(t) are
modulated by BPSK Here M=2 and

Es
N0
= R∗

Eb
N0
= R∗SNR (3)

Usually, the energy per symbol is set equal to 1,
1
N0
=

1
2σ 2 = R∗ SNR. Therefore, the code rate R and SNR are

inversely proportional in a specified mean Gaussian channel

III. ANALYSIS OF RELIABILITY ESTIMATION
In an AWGN channel, the noise distribution is N ∼ (0, σ 2)
according to [27]–[30]. When indicating an input signal and
an output signal, 0 and 1 are expressed by +1 and −1 with
BPSK modulation; therefore 1-2x indicates the modulation
signal. When n is the noise signal, the probability density
function is expressed as:

P(n) =
1

√
2πσ 2

exp
(
−
(n)2

2σ 2

)
. (4)

So we can get the conditional probability

P(y | x = 0) =
1

√
2πσ 2

exp
(
−
(n− 1)2

2σ 2

)
(5)

and

P(y | x = 1) =
1

√
2πσ 2

exp
(
−
(n+ 1)2

2σ 2

)
(6)

It can be obtained that the Log-Likelihood Ratio (LLR)
message of every bit channel by properties of conditional
probability

L(y) = ln
P(y | x = 0)
P(y | x = 1)

=
2y
σ 2 . (7)

Hence L(y) is also a Gaussian distribution N ( 2
σ 2
, 4
σ 2
)

According to the recursive structure of the polar code,
the results of the two convolution operations performed by
the probability density functions of the twoGaussian distribu-
tions are very similar to the distributions. Since the Gaussian
distribution can only be expressed by the mean variance and
there is a two-fold relationship between the variance and
the mean, therefore the LLR follows a Gaussian distribution
that is only related to the mean of the Gaussian distribution.
Assuming the mean is E[L(i)N ] the calculation of the LLR is
converted into a recursive process of the mean:

E
[
L(i)N

]
= φ−1

(
1−

(
1− φ

(
E
[
L(i+2)/2N/2

])))2
, (8)

E
[
L(i)N

]
= 2E

[
L(i/2)N/2

]
, (9)

E
[
L(1)1

]
=

2
σ 2 , (10)

where

φ(x) , 1−
1
√
4πx

∫
∞

−∞

tanh
(τ
2

)
e−

(τ−x)2
4 x dτ

The simplified way demonstrated in [30] is

φ(x) =


e−0.4527 e

0×6
+0.0218, 0 < x < 10√

π

x
e−

e
4

(
1−

10
7 x

)
, x ≥ 10

(11)

Thus, the probability density function of each channel is
obtained, and then the error probability of each sub channel
is acquired with SC decoding.

P (Ci) =
1
2
erfc

(
0.5

√
E
[
L(i)N

])
, (12)

erfc(x) = (2/
√
π )
∫
∞

x
e−η

2
dη. (13)

According to the theory of the polar code constructed by
Gaussian approximation, the block error rate can be obtained,
which is expressed as:

P(ε) = 1− Pr
(
εc
)
= 1−

∏
i∈0

(1− P (Ci)) , (14)

then the block correct rate (BCR) is Pbcr (εc =
∏
i∈0

(1−P(Ci))

The block correct rate of the polar codes with different
N andK is redefined as PK (N ). If the length of each transmit-
ted data is L, the data will be divided into L/K blocks. The
total correct probability can be expressed as:

Pc(L) = PK (N )L/K . (15)

After normalization, it can be considered that L is 1, and take
the logarithmic transformation on both sides of the equation
to get the average block correct rate (ABLCR)

Cablcr (K ) =
lnPK (N )

K
. (16)

The average block correct rate indicates the average correct
probability of each bit. The block correct rate of data is the
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sum of their average block correct rates. Also, the sum of the
block error rate and the block accuracy rate is 1. Therefore,
the average block accuracy rate can be used to evaluate the
coding performance, which is like the concept of the bit error
rate. If the specified block error probability of polar code
is (15), the required average block correct probability is (16).

According to the theory of polar codes in [16], when
the code length increases, some channels tend to be perfect
channels with a capacity close to 1 (no errors), and other
channels tend to be pure noise channels with a capacity
close to 0. Therefore, if the channels are reordered by the
error probability according to the steps in the polar code
construction, a typical sigmoid function will be obtained. The
error probability of the i-th bit channel can be approximately
expressed as:

P(Ci) = α +
κ

1+ (χi/ν)β
, χi = i/N (17)

According to the nature of the polar code, the lower bound
of the error probability is close to 0, which is P(Ci) = 0.
So α ≈ 0 is obtained. At the same time, when i → 1,
the upper bound of the error probability approximately equals
to κ by (17). According to (12), the LLR corresponding to
the largest error probability is also the smallest. Formula (8)
approximately diverges within a certain range in the iterative
process, while (9) converges. Therefore, the smallest LLR is
n-1 iterations of (8). When the iterative transformation of (8)
is expressed as H, the smallest LLR is

LLRmin
= Hn(σ 2). (18)

Then

κ = P(LLRmin), (19)

is obtained, where 1/σ 2
= 2 ∗ R ∗ 100.1∗DSNR. When ν = χi,

it is clear that P(Ci) = κ/2 from (17). It shows that when the
error probability is κ/2, the corresponding χi is equal to ν.
The calculation process can be expressed as

P−1(κ/2) = LLRi, (20)

v = i/N . (21)

As the code length N increases, the polarization phenomenon
becomes more serious. Therefore, the parameter β in (17) is
a function of N , where

n = log2(N ). (22)

Then (17) can be simplified to

P(Ci) =
κ

1+ (χi
ν
)n
, (23)

According to (19) (21)and (22), the parameters κ(σ 2,N ),
ν(σ 2,N) and n can be determined. So according to (14)
and (16), it can be obtained that the approximate estimation
function (AF) for the average block correct rate about σ 2,
N and K , as Cablcr (K) = ϕ(σ 2,N,K). In Fig.2, the approx-
imate estimation function (AF) and the error probability cal-
culation method (EPC)by (12) in the polar code construction

are compared. The estimation of the upper and lower bounds
of AF is relatively accurate. In table 1, the root mean squared
error (RMSE) of AF is less than 3% and the coefficient of
determination (R-square) of AF is greater than 90%. In addi-
tion, if the parameter β is more accurate, the accuracy of the
two arcs in the sigmoid function will be improved, thereby
improving the estimation accuracy of AF in Fig.2.

FIGURE 2. The comparison of the error probability of AF and EPC.

TABLE 1. Error of the approximate estimation function.

FIGURE 3. The steps of ABLCR calculation method.

IV. POLAR CODE CONSTRUCTION ALGORITHMS
By calculating the reliability of each channel, the error prob-
ability of each bit channel can be acquired, and the average
block correct rate can be obtained. The ABLCR is used to
evaluate the performance of different polar codes. For the
construction of a polar code with a specified block error rate
(BLER), the BLER can be converted into an ABLCR rate
by an expression Cablcr (k) = ln(1 − Pe)/K . The problem
of the polar code construction is how to choose the three
parameters (N, K, DSNR) where DSNR is the design-SNR
Firstly some definitions will be introduced in this paragraph.
A set of DSNRs {D1,D2 · · ·Dm} covers the range of DSNRs
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FIGURE 4. The ABLCR of different code length N when DSNR is one specified value. (a) DSNR = 0. (b) DSNR = 1. (c) DSNR = 2.
(s) DSNR = 3.

FIGURE 5. The curves of the set of maximum ABLCR s at different DSNRs.

of interest and Di ∈ {D1,D2 · · ·Dm}. The range of selected
encoding length is Ni ∈ {N1,N2 · · ·Np} and Nj = 2nj . For
polar codes of each encoding length Nj the selection range of
effective information bits is KNj ∈ {1, 2, · · ·Nj}.
The algorithm steps and principles in Fig.3 are presented

as follows:
1) Through the method of section III, the sets of ABLCR

can be obtained from

3(Di,Nj) =
{
C(Di,Nj)

(
kNj
)
: kNj = 1, 2, . . . ,Nj

}
with fixed parameters (Di,Nj). It can be seen from
Fig.4(a)-(d) that3(Di,NJ ) is an approximate discrete quadratic

1 Function Calculate_ABLCR (Nj,Di) is
input: Nj code length, Di DSNR in dB
output: max[3Di,Nj ] the maximum value of

ABLCR
2 nj = log

Nj
2 ;

3 kNj is the information bit length;
4 for kNj = 1 to Nj do
5 Initialize LLRs mean values

E[L(0)o ] = 4(Nj/knj ) ∗ Di;
6 for r = 1 to nj do
7 U = 2r ;
8 for t = 0 to u

2 − 1 do
9 T = E[L(t)r−1];

10 E[L(t)r ] = φ−1(1− (1− φ(T )))2;
11 E[L(t+u/2)r ] = 2T ;
12 end
13 end
14 Get the ABLCR C(Di,Nj)(kNj ) by the error

probability of kNj information bits;
15 end
16 Get the sets of ABLCR

3(Di,Nj) = {C(Di,Nj)(kNj ) : kNj = 1, 2, . . . ,Nj};
17 return max[3(Di,Nj)];
18 end
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FIGURE 6. ABLCR comparison of the proposed method and Monte Carlo’s method when N=512 and N=1024 by
different DSNRs in (a),(b)and(c). (a) DSNR=1. (b) DSNR=2. (c) DSNR=3. (d) the ABLCR maximum of different DSNRs and
different code length by the proposed method and Monte Carlo’s method.

curve function and its maximum value is max[3(Di,NJ )] =
C(Di,Nj)(k

max
Nj ) When N is Nj and DSNR is Di, kmax

Nj is is
the number of information bits corresponding to the maxi-
mum value of ABLCR. Consequently, a polar code, which
is under the maximum of ABLCR, can be constructed by
puncturing or shortening techniques mentioned in [31]–[34].
In this way, a single maximum point can be used to represent
the function curve and achieve the dimensionality reduction
expression of ABLCR. This method is effective to divide the
three-parameter selection into two steps: the first step is to
select DSNR and N , and the second step is to select valid
information bit K .

2) When DSNR is Di, the sets of maximal ABLCR can be
acquired from

ϒDi =
{
max[3(Di,N1)],max[3(Di,N2)], . . .max[3(Di,Np)]

}
by calculating all the maximum value with different Nj. Then
draw all the sets of ϒDi , � = {ϒD1 , ϒD2 , · · ·ϒDm} as illus-
trated in Fig.5. The calculation ABLCR algorithm is shown in
Function Calculate_ABLCR (Nj,Di). In this way, the relation
chart between the ABLCR and (N, K, DSNR) can be achieved.
This chart can be used as a tool to select three parameters.

3) The desired error probability for BLER is converted into
ABLCR by formula(16).

4) According to the desired ABLCR, the appropriate Di
and as illustrated in Fig. can be chosen from Fig.5. Generally,
the small Di and minimum code length NJ is picked out to
reduce the complexity of the polar code as much as possible.

5) According to the selected Di and Nj the discrete
quadratic curve function can be determined from Fig.4(a)-(d).
Thus kmax

Nj can be confirmed.
The proposed algorithm finally obtains the relation chart

between the ABLCR and all design parameters within the
search range. Meanwhile, the optimal design parameters can
be obtained in this range according to the desired ABLCR.
Moreover, the result obtained by the proposed algorithm is a
standard look-up table and exempt from recalculating, hence
the algorithm has great practical value. The complexity of the
proposed algorithm is O(m∗N∗p log(Np)), where m is the total
number of DSNRs of interest, and Np is the maximum code
length.

V. SIMULATIONS AND DISCUSSION
In this section, firstly, the simulation results of the ABLCR
from the code length 26 to 211 and DSNR0dB to 3dB are
illustrated in Fig.4. Also, it can be seen that the ABLCR with
K is an approximate quadratic curve and has the maximum
value. The reason for this phenomenon is due to the waste of
channel capacity when the number of information bits is very
small. Although the reliability is high, the transmission rate is
lower As a result, the ABLCR is at a low level. As the number
of information bits increases and the transmission rate raises,
the ABLCR will improve continuously. After the ABLCR
reaches the maximum value, it starts to decline, because the
reliability of the later information bits decreases while the
number of them increases. Thus, the curves of the set of
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maximum ABLCRs are shown in Fig.4. Then, C(Di,Nj)(k
max
Nj )

under different DSNRs ranging from 0dB to 3dB is shown
in Fig.5. The similar results as [35] describes, i.e., the smaller
the DSNR the better the overall performance, can be discov-
ered. When selecting DSNR parameters, the method in [35]
can also be the reference to verify the bit error rate (BER)
performance of the constructed polar codes in other SNRs.

Moreover, the following rules were concluded for the
ABLCR of each construction method with one code length:

(1) There is a range between the maximum and the mini-
mum values for ABLCR.

(2) There is a maximum value for the average block correct
rate. If the code lengths are the same, the largerDSNRs corre-
sponds to the higher maximum ABLCR values as illustrated
in Fig.5.

(3) When the code length is longer, the range is wider,
and the maximum ABLCR value is higher as shown
in Fig.4(a)-(d). Therefore, short codes can replace long codes
within a certain range. The theory is proved in [12] that
as the code length increases, polar code will continue to
achieve the capacity of binary input channels, and the reli-
ability of the selected information bit is higher.

Furthermore, the Monte Carlo method is an algorithm
that simulates a typical communication system model
in Fig.1 It uses the Gaussian approximation algorithm to
encode and the SC algorithm to decode in the Gaus-
sian white noise channel. The Monte Carlo method was
utilized to verify the correctness of the proposed algo-
rithm. Fig.6(a)-(c) shows the ABLCR performance compar-
ison between the proposed method and the Monte Carlo
method. It can be clearly seen from Fig.6(a), especially
from Fig.6(b)-(c), that the performance calculated by the
proposedmethod is basically consistent with theMonte Carlo
method.

Also, the set of maximum ABLCRs at different DSNRs
in Fig.5 is fundamentally concordant with Fig.4(a)-(d).
Meanwhile, in Fig.6(a), when the effective information bits
K is the same, the ABLCR value is higher, i.e. showing bet-
ter performance. There is no manifested difference between
the Monte Carlo method and the proposed method. Conse-
quently, this will not affect the selection of effective infor-
mation bit K by the proposed method because the effective
information bit K of the maximum ABLCR value by the two
methods is almost identical. In addition, it can be considered
that the parameters selected by the proposed method have
a performance margin. In other words, when different code
lengths and DSNRs are selected, the maximum values of
ABLCRs are essentially identical as illustrated in Fig.6(d),
and the error of the corresponding valid information bit Kmax
is below 4% as listed in Table 2. Thereby, the corresponding
optimal performance and the corresponding effective infor-
mation bit K are also almost similar between the Monte
Carlo and the presented method. Therefore, the appropriate
parameters DSNR, N and K can be chosen to get the optimal
performance by the proposed method for constructing polar

TABLE 2. Error of effective information bit Kmax.

FIGURE 7. Comparison of BER performance of the proposed algorithm
with the 5G-3GPP algorithm.

code. Moreover, this method can guide the way of using
simpler short codes instead of long codes for the polar code
construction.

For example, the maximum value of ABLCR of the polar
code with N = 512 is exactly the same as the polar code with
N = 1024 even under different Ks. Therefore, the shorter
code length of 512 can be used to replace the construction
of the polar code with the length of 1024 within certain
error probability ranges. Furthermore, in practical applica-
tions, apart from finding the optimal construction parameters,
the proposed method is considerably efficient for parameter
adjustment and selection.

In order to further verify the effectiveness of the pro-
posed algorithm in practical applications, it is compared
with the part of the polar code construction in the 5G stan-
dardization process of the 3rd generation partnership project
(3GPP) in [36]. To facilitate comparison, the codeword length
E is equal to N for the 5G standard algorithm for the
downlink direction during the simulation, and the decoding
algorithm uses the standard SC algorithm. The simulation
results are shown in Fig.7 and Fig.8. When N is 256 and K
is equal to 164, the proposed algorithm also achieves almost
0.05∼ 0.2dB gain in BER and 0.1dB gain in BLER for differ-
ent SNRs compared with the 5G-3GPP algorithm When the
coding length N is 512 and K is equal to 144, the proposed
algorithm achieves almost 0.1dB gain from −2 to 0 for SNR,
and the performance of two algorithms is basically the same
later in BER.Actually the proposed algorithm is always better
than the 5G algorithm by almost 0.05dB in BLER So the
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FIGURE 8. Comparison of BLER performance of the proposed algorithm
with the 5G-3GPP algorithm.

overall performance of the proposed algorithm is better than
the 5G-3GPP algorithm

VI. CONCLUSION
In this article, a method which constructs polar code by using
optimal parameters is proposed. The proposed construction
method can satisfy the minimum code length N and the best
DSNR, and the specified error probability. In section V, the
correctness of the algorithm was verified through simulation.
In addition, the proposed algorithm can effectively determine
the relationship between design parameters, performance and
complexity which will benefit rate matching and punctured
polar codes [37]–[40]. Furthermore, this method can also
be extended to other concatenated polar codes to obtain the
structure of the polar code with the optimal performance and
lower complexity.
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