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Abstract: This paper addresses the problem of inaccurate emissivity presets for multispectral
temperature measurements of aero-engine turbine blades and proposes a narrow-band spectral
window moving temperature inversion algorithm that does not rely on an assumed emissivity
model. As the emissivity of the measured object changes slowly over the narrow spectral window,
the temperature corresponding to the normalized spectral radiation intensity for each window
in the set temperature range is calculated using the Mahalanobis distance coefficient. The
temperature error is less than 1.33% relative to thermocouple measurements when using this
algorithm to perform temperature inversion on the experimental spectrum curves for different
types of alloy samples. Furthermore, a two-dimensional spectral temperature field measurement
platform was built, and the surface temperature fields of alloy samples were reconstructed using
the narrow-band spectral window moving algorithm. The proposed algorithm is shown to provide
high-precision inversion of the temperature field without presetting the emissivity model, which
gives a new processing concept for the application of infrared spectral temperature measurements.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

With the development of the aviation industry, the engine thrust, specific gravity, and other
performances continuously improve, which increases the operational temperature of turbine
blades [1–3]. The need for accurate temperature measurements of aero-engine turbine blades is
increasingly important due to reductions in their reliable working life and the material strength
caused by long-term operations in extreme high-temperature and high-pressure environments
[4–6]. As the traditional contact pyrometer can no longer adapt to such harsh working
environments, the fast response, high upper-limit, and wide dynamic range of radiation temperature
measurement technologies in the field of turbine blades have received widespread attention
[7–14]. Improving the accuracy of radiation temperature measurements is important for the
stable and safe operations of aero-engines.

There has been increased research on methods related to multispectral radiation temperature
measurements. In 2011, Fu et al. [15] developed a fast optical fiber multi-wavelength pyrometer
for 200–1700 nm wavelengths to include ultraviolet, visible, and near-infrared spectra. The
optimal bandwidth and temperature discrimination method for different wavelength combinations
were theoretically analyzed to improve measurement accuracies in the system. The performance
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of the optical fiber multi-wavelength pyrometer was evaluated through measurements of high-
temperature blackbody and molten iron. In 2014, Jordi et al. [16] used a multi-spectral pyrometer
to identify the burst signals during the engine temperature measurement, and proposed a method
to separate and eliminate the burst signals. In 2019, Liu et al. [17] introduced a method to
estimate the combustion flame temperature and emissivity distribution from the multispectral
radiation intensity, as exemplified using ethylene laminar flame temperatures. In 2016, Ketui et
al. [18] simulates and studies the reflection error introduced in the temperature measurement of a
single wavelength and ratio pyrometer of a rotating cooling gas turbine blade. The errors of two
pyrometers under different target surface emissivity, apparent coefficient and ambient temperature
are calculated. In 2017 Bouvry et al. [19] developed a multispectral radiometric thermometer
to measure nuclear fuel clad zirconium alloys by assuming constant spectral emissivity in the
spectral ranges of 1–1.3 µm and 1.45–1.6 µm. These measurements were in good agreement with
reference thermocouple temperatures. In 2017, Manara et al. [20] built a radiation thermometer
using long-wave infrared to study the surface temperature of aero-engine turbine blades. Studying
the optical characteristics of the thermal barrier coating overcame the limitations of near-infrared
radiation pyrometers when measuring turbine blade surface temperatures. In 2018, Wang et al.
[21] used Fourier transform spectroscopy to measure the emissivity distribution of stainless steel
samples over different spectral ranges and measured the real-time surface temperature of cast
blanks using multi-wavelength thermometry with a bivariate emissivity function. In 2019, Lin et
al. [22] proposed an improved ratio pyrometry method to analyze spectral signals and detect the
emissivity distribution using Newton’s iterative method to correct errors in the ratio pyrometry
method by measuring the spatial distribution of the hydrocarbon flame spectra. They found a
relative error for the measurements of less than 8.34% compared with thermocouple results. In
2020, Zhang et al. [23] developed a multispectral pyrometer based on a CCD array spectrometer;
established a noise model for the pyrometer; evaluated the effects of readout noise, photoelectron
noise, and dark noise on the accuracy of the temperature measurements; and experimentally
measured maximum temperature deviations of 1% and 0.24% as introduced by photoelectron
and dark noises.

These studies have made good progress in improving the temperature inversion speed and
measuring the signal-to-noise ratio. However, there is no universal and accurate estimation
method for emissivity models in multispectral data processing algorithms, which limits the wide
application of multispectral high-temperature measurement techniques. There are currently
two kinds of commonly used multispectral data processing algorithms. This first is to assume
the emissivity model for the measured object surface [24–26] and introduce it into the Planck
formula to solve the temperature problem. This eliminates the problem where the temperature
introduced by emissivity cannot be solved. However, the emissivity is usually related to the
surface topography, temperature, wavelength, and measurement angle of the object, and the
calculation results obtained from the emissivity model agree with actual data, which results
in large errors in the multispectral temperature measurement. The second is to transform the
solution of the multi-channel temperature and emissivity into the minimum value problem of the
optimization function through the simulated annealing algorithm and genetic algorithm [27,28].
Similarly, when the emissivity model deviates from that of the measured object, the solution for
each channel temperature will be greatly affected.

In response to the above problems, a method based on the narrow-band spectral window
moving algorithm is proposed. This approach calculates the normalized radiation intensity
curve in each spectral window and compares its similarity with the standard Planck curve. The
temperature distribution of the measured object is then calculated without assuming an emissivity
model. Thus, a good anti-noise ability and temperature inversion efficiency are achieved. At the
same time, a temperature inversion device based on a fiber optic spectrometer was established to
measure the radiation spectral intensity of the object in the 900–2500 nm band. The temperatures
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of alloy samples with different surface morphologies were measured using this method to verify
the accuracy and effectiveness of the multispectral algorithm.

2. Principle of temperature measurements

2.1. Principle of radiation thermometry

The thermal radiation emitted by objects conforms to Planck’s law of radiation with a radiance
expressed as [29]:

Lb(λ, T) =
c1

λ5
1

exp[c2/(λT)] − 1
. (1)

where c1 = 3.7418 × 10−12Wcm2 and c2 = 1.438786K · cm are radiation constants, and T is
the temperature. When an optical fiber spectrometer is used to measure the temperature of the
object, the radiation energy received by each channel in the spectrometer primarily includes the
radiation energy of the measured object. Thus, the output response value of each channel of the
spectrometer when the temperature of the object is T:

V(λi, T) = k(λi)ε(λi, T)Lb(λi, T) + b(λi) . (2)

where i = 1, 2, · · · I is the spectral channel order of the spectrometer, I is the total number of
spectral channels in spectrometer, ε(λi, T) is the surface emissivity, k(λi) is the radiation gain
function of the optical system at the wavelength λi, b(λi) is the radiation bias function of the
optical system, which includes the thermal radiation emitted by the optical system and the detector
itself, which can be obtained via blackbody radiation calibration of the optical system, and k(λi)

is the response value of the spectrometer.
The radiation intensity distribution in the response band of the measured object can be directly

obtained from Eq. (2) as:

Lb(λi, T) =
V(λi, T) − b(λi)

k(λi)ε(λi, T)
. (3)

It is seen from Eq. (3) that the I equations include I + 1 unknowns, unknown ε(λi, T) from
i channels and temperature T . The presence of the emissivity indicates the corresponding
temperature solution T cannot be derived.

2.2. Spectroscopic temperature measurement algorithm for moving narrow-band spec-
tral windows

In order to solve the problem of unsolvable temperature due to emissivity, this paper proposes
a narrow-band spectral window temperature inversion algorithm, which divides the spectral
response band into multiple narrow-band spectral windows, and uses the emissivity of the
measured object in the narrow band The characteristic of slow change, without pre-determining
the emissivity model of the temperature measurement object, the real temperature of the object
can be inverted through the multi-spectral data measured by the spectrometer.

The principle of a moving solution using a narrow-band spectral window is shown in Fig. 1.
Over the spectral measurement range, the wavelength points (λ1, λ2, · · · , λI) define the narrow
interval of the spectrum for the window, which traverses the entire spectral response interval.
Take any discrete spectral measurement signal (λm, λm+1, · · · , λm+J−1) to form a narrow-band
spectral window, in which m represents the spectral window order, J represents the spectral
window width, and m ≤ I − J. Since the spectral window width J ≪ I, the spectral emissivity of
the measured object within this narrow-band spectral window can be viewed as slowly varying.
By sequentially moving the spectral window along the spectral response range, the entire spectral
response interval is traversed.
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Fig. 1. Schematic diagram for the principle of the spectral window moving solution.

The spectral window contains J spectral channels, and for any spectral channel j(j = 0, 2, · · · J−
1) in the spectral window, the measured spectrum is:

Ls(λm+j, T0) = ε(λm+j, T0)
c1

λ5
m+j

1
exp[c2/(λm+jT0)] − 1

. (4)

where T0 is the true temperature of the measured object. Within each narrow band, the radiation
signal received by the spectrometer is discretized into j-dimensional vectors that form the
following matrix for the measured radiation intensity:

Ys(λm,T0) = [Ls(λm, T0), Ls(λm+1, T0), ···, Ls(λm+J−1, T0)]. (5)

To eliminate the effect of emissivity within the narrow-band spectral window, the measurement
curve within the spectral window is normalized. The normalized spectral radiation intensity
matrix in the narrow-band spectral window is

Y ′
s (λm,T0) =

Ys(λm,T0)

max[Ys(λm,T0)]
. (6)

The radiant energy of the blackbody at the same temperature under different spectral channels
in each narrow-band window is:

Lb(λm+j, T ′) =
c1

λ5
m+j

1
exp[c2/(λm+jT ′)] − 1

. (7)

where T ′ is the blackbody temperature. Construct a blackbody radiation intensity vector from
Eq. (7)

Yb(λm,T ′) = [Lb(λm, T ′), Lb(λm+1, T ′), ···, Lb(λm+J−1, T ′)]. (8)
Estimate the temperature of the measured object, select and determine the upper and lower

limits of the temperature inversion and the calculation step length. Setting the temperature range
of T ′ from T1 to TN , so the normalized Planck radiation matrix at T1 to TN temperature is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y ′
b(λm, T1)

Y ′
b(λm, T2)

...

Y ′
b(λm, TN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Lb(λm,T1)
max[Yb(λm,T1)]

Lb(λm+1,T1)
max[Yb(λm,T1)]

. . . Lb(λm+J−1,T1)
max[Yb(λm,T1)]

Lb(λm,T2)
max[Yb(λm,T2)]

Ls(λm+1,T2)
max[Yb(λm,T2)]

. . . Ls(λm+J−1,T2)
max[Yb(λm,T2)]

...
...

. . .
...

Lb(λm,TN )
max[Yb(λm,TN )]

Lb(λm+1,TN )
max[Yb(λm,TN )]

. . . Lb(λm+J−1,TN )
max[Yb(λm,TN )]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

Each row of the matrix in Eq. (9) represents the normalized standard Planck radiation intensity
at different wavelengths, while each column represents the standard Planck radiation intensity
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at different temperatures at the same wavelength. Both the value in each row and the radiation
signal of the measured object can be regarded as points in the j-dimensional space. The similarity
between the leaf radiation intensity curve and the standard Planck curve is defined as the distance
between the spaces points between different groups, which are compared at different temperatures
and calculated based on the distance similarity.

Figure 2 shows a flow chart to invert the temperature based on the spectral intensity curve.
The specific solution process is as follows. In the temperature range of T1 to TN , the similarity
distance between the two curves is defined as Eq. (10), and the similarity degree of the two curves
is described. The minimized original spectrometer is used to measure the radiation curve vector
and the standard Planck curve vector for the distance. The distance vector is calculated as:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dm(T1)

dm(T2)

...

dm(TN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

| |Ys
′(λm, T0), Yb

′(λm, T1)| |

| |Ys
′(λm, T0), Yb

′(λm, T2)| |

...

| |Ys
′(λm, T0), Yb

′(λm, TN)| |

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10)

The Eq. (10) contains N elements, and each element represents the distance between the
measured spectral intensity curve in the narrow-band spectral window and the Planck blackbody
radiation curve at different temperatures. For any nth element, n = 1, 2, · · ·N, the Mahalanobis
distance is used to measure the difference between the measured spectral radiation intensity
Y ′

s (λm, T0) and the standard Planck radiation intensity Y ′
b(λm, Tn) , which effectively calculates

Fig. 2. Temperature inversion flow chart.
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the similarity between two samples as

dm(Tn) =

√︄
[Y ′b(λm, Tn) − D(Y ′b(λm, Tn))] · [Y ′s(λm, T0) − D(Y ′s(λm, T0))]

Cov[Y ′b(λm, Tn), Y ′s(λm, T0)]
. (11)

within

Cov[Y ′
b(λm, Tn), Y ′

s (λm, T0)] =

m+J−1∑︂
m

Lb(λm, Tn)Ls(λm, T0) −

m+J−1∑︁
m

Lb(λm, Tn)
m+J−1∑︁

m
Ls(λm, T0)

J
.

(12)

D[Y ′
b(λm, Tn)] =

1
J

m+J−1∑︂
m

Lb(λm, Tn). (13)

D[Y ′
s (λm, T0)] =

1
J

m+J−1∑︂
m

Ls(λm, T0). (14)

The greater the correlation distance dm(Tn) between the curves, the weaker the correlation
between the spectral radiation intensity curves as measured by the spectrometer and the standard
Planck radiation intensity curves. Conversely, a smaller distance coefficient gives a stronger
correlation. When the distance between Y ′

s (λm, T0) and Y ′
b(λm, Tn) is minimized in the mth

spectral window, the temperature corresponding to d(m) = dm(Tn) is the corresponding measured
temperature in the current spectral window, as shown in Fig. 3. The corresponding temperature is

T(m) = T |d(m)=min[dm(T1), dm(T2), · · · , dm(TN )]. (15)

The average of the calculated temperatures in all narrow-band spectral windows are taken to
obtain the final inversion temperature as:

T =
1

I − J

I−J∑︂
m=1

T(m) =
1

I − J

I−J∑︂
m=1

T |d(m)=min[dm(T1), dm(T2), · · · , dm(TN )]. (16)

Fig. 3. Schematic diagram to calculate the similarity coefficient of two discrete curves in
the narrow-band spectral window.
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3. Simulation verification

The proposed algorithm is simulated to verify the temperature inversion accuracy of the narrow-
band spectral window moving algorithm for different types of emissivity targets. Table 1 shows
the four commonly used emissivity models, and Fig. 4 shows the spectral radiant intensity
distribution curves at different temperatures as calculated from the emissivity models in Table 1.
The emissivity model parameters of the measured target are shown in Table 2. It can be seen
from Fig. 4, the same emissivity model under the measured object spectral radiation intensity
curve trend, while the same temperature different emissivity model calculation of the spectral
radiation intensity curve is more different. This paper takes aero-engine turbine blades as the
research object for simulations and experiments to evaluate the temperature inversion accuracy
of the spectral window temperature inversion algorithm.

Fig. 4. Spectral radiation intensity distribution of the measured object under different
emissivity models: Models (a) A, (b) B, (c) C, and (d) D.

Table 1. Target emissivity model

Target Spectral Emissivity

Model A ε(λ) =
n∑︁

i=0
aiλ

i

Model B ε(λ) = a0 + a1 sin(a2 + a3λ)]

Model C ε(λ) = exp[−(a0 + a1λ)
2]

Model D ε(λ) = exp(a0 + a1λ)

The principle of the narrow-band spectral window width selection depends on the emissivity
trend of the measured object. When the emissivity of the object in the measurement band
changes quickly, the spectral window width selection should correspondingly decrease. When
the emissivity over the entire measurement band changes more slowly, the spectral window width
can be wider. This paper performs radiation measurements on turbine blades. According to the
emissivity distribution trends given in [30–32], the turbine blades have relatively gentle variations
throughout the spectral measurement interval when the target material set temperature is 1200 K
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Table 2. Emissivity model parameters

Parameters Model A Model B Model C Model D

a0 0.05687 0.5 −1 −3.5

a1 −0.000212 0.1 −0.0002 0.0009

a2 0 0.01 / /

a3 0.04046×10−9 0.2 / /

and within the response band of the spectrometer of 900–2500 nm, which has a resolution of 3
nm. Therefore, the width of the spectral window is chosen as 12 nm to ensure there are sufficient
calculation points within the spectral window. The spectral distribution of the radiation received
by the multispectral temperature measurement system is calculated using Eq. (2). To verify the
noise immunity of the algorithm, 20 and 30 dB of random noise is added to Eq. (2). Figure 5(a)
shows the simulated radiation intensity spectrum line and the set emissivity model A from Table 1
after adding 30 dB of noise. Figure 5(b) shows the radiation spectrum intensity curve of the
calculated temperature range along with the final inversion temperature. The method using the
emissivity model and the narrow-band spectral window was used to calculate the temperature of
the measured target under different emissivity models.

Fig. 5. (a) Spectral radiation intensity and emissivity distribution curves of the measured
objects at 1200 K and (b) inversion temperature of the radiation spectrum intensity distribution
curve.

The results of the temperature inversion are shown in Figs. 6(a) and 6(b), which compare
the target temperature inversions using four different emissivity models (A–D in Table 1). The
emissivity model algorithm solves for the target temperature by fitting its spectra to the emissivity
model. When the emissivity model of the target is inconsistent with the temperature calculations,
large errors occur in the temperature measurements. The narrow-band spectral window moving
algorithm is used to calculate the four different spectral curve measurements. The inversion
temperature is close to the modeled temperature of 1200 K with an error below 2%. This indicates
that the proposed method can calculate the temperature more accurately and has good anti-noise
abilities.
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Fig. 6. Temperature simulation results with random added noise of (a) 20 and (b) 30 dB.

4. Experimental verification

4.1. Experimental platform construction

The experimental apparatus used in this paper is shown in Figs. 7 and 8. The experimental samples
were the commonly used GH3030 high-temperature alloy (Ni 75%, Cr 19%, Ti 0.35%), which
has good oxidation and heat resistances along with fatigue and cold stamping characteristics. The
measured sample had a swallow tail structure with a length of 180 mm, a width of 40 mm at both
ends, and a width of 10 mm at the narrowest point in the middle, which is where the resistance
was the largest and the temperature was the highest. During the experiments, a thermocouple
was welded to the surface of the alloy sample to measure the set temperature. A current heating
device was used to heat the alloy sample to a set temperature, and the thermal radiation from the
alloy sample was received by an optical probe after being focused by a lens and passed through
an optical fiber into the spectrometer (NIRQUEST 2.5–512) with a spectral resolution is 3nm.
The optical probe was moved using a two-dimensional electronically controlled displacement
stage to collect the intensity of the radiation spectrum at different coordinates of the alloy sample.
The displacement was controlled using a Zolix PA200 motorized displacement stage with a step
resolution of 20 µm. At the same time, a cold gas purge structure was added to the probe to
ensure the distance between the probe and the turbine blade to be measured was sufficiently close.
Thus, the influence of the gas radiation absorption between the turbine blade and the optical path
of the measurement probe on the temperature measurements can be ignored.

Fig. 7. Structure diagram of the experimental device for the temperature measurements of
alloy samples.
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Fig. 8. Experimental diagram of the alloy sheet temperature measurements.

4.2. Spectral radiation calibration

The traditional multispectral calibration method assumes that the detector has a linear response to
incident radiative light. The radiation and gain of the spectral system can be solved by measuring
the radiation of high and low temperature blackbody. The use of this method has the following
assumptions. First, assume that the detector responds linearly in a small range; second, assume
that the emissivity of the black body is 1; third, the set black body temperature is consistent with
the actual temperature, and the surface temperature is uniform. However, in actual measurements,
the radiation gain and bias function of the multispectral temperature measurement system are
not linear. To improve the calibration accuracy of the measurement instrumentation, this paper
proposes a multi-point calibration method that simultaneously measures P(P>2) blackbody
temperature points. This method then corrects the radiation of the temperature-measuring
spectrometer to minimize the sum of squared errors between the spectral response and the
theoretically calculated response. Namely:

S =
P∑︂

p=1
[V(λ, Tp) − k(λ) · Ls(λ, Tp) − b(λ)]2 = min . (17)

where p = 1, 2, · · ·P is the serial number for measuring the temperature of the black body furnace,
V(λ, Tp) is the response amplitude of the spectrometer, Ls(λ, Tp) is the radiation intensity of the
measured object under the measurement conditions.

The gain and bias of the optical system for the spectral temperature measuring instrument can
be solved using the least squares fitting method as:

k(λ) =
P

P∑︁
p=1

Ls(λ, Tp)V(λ, Tp) −
P∑︁

p=1
Ls(λ, Tp)

P∑︁
p=1

V(λ, Tp)

P
P∑︁

p=1
[Ls(λ, Tp)]

2 − [
P∑︁

p=1
Ls(λ, Tp)]

2 . (18)

b(λ) =
1
P
[

P∑︂
p=1

V(λ, Tp) − k(λ)
P∑︂

p=1
Ls(λ, Tp)]. (19)
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The blackbody radiation corrections are performed for the temperature measurement optical
system. Ten standard blackbody temperature points were measured in the temperature range
of 873–1273 K. The gain and offset curves of the radiation temperature measurement system
were calculated using Eqs. (18) and (19). The calculation results are illustrated in Fig. 9, which
shows the radiation gain of the detector is small on both sides of the response band. The spectral
radiation curve of the blackbody furnace in Fig. 10(a) was corrected using the radiation gain and
offset curve. The measurement curve results of the optical system after corrections are shown in
Fig. 10(b).

Fig. 9. Spectral gain and bias distribution curves from the radiation temperature measurement
system.

Fig. 10. (a) Measured spectrum radiation curve of a blackbody furnace from 873–1273 K
and (b) measured radiation intensity curve at different temperatures after multi-point radiation
corrections.

4.3. Temperature measurement of alloy samples

4.3.1. Temperature measurement of alloy samples under different roughness

Three samples with different surface morphologies were prepared after a polishing treatment
of the GH3030 alloy samples to verify the temperature inversion accuracy for the narrow-band
spectral window moving algorithm for samples of different surface emissivities. Figure 11
shows a schematic diagram to measure the surface roughness distribution of alloy samples using
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laser confocal microscopy at a 20x magnification. The surface morphology is modified after
polishing, and the sample surface undulations gradually decrease with an increased polishing
mesh. Figure 12 shows the roughness profile curves of the three alloy samples measured using
laser confocal scanning. The average arithmetic deviations Ra of the surface profiles of samples
1 to 3 are 1.319, 1.035, and 0.869 µm, respectively.

Fig. 11. Laser confocal microscopy measurements of the surface roughness distribution for
samples (a) 1, (b) 2, and (c) 3.

Fig. 12. Average arithmetic deviation of the surface profile distribution curve and profile of
samples 1 to 3.

We used the energy comparison method to measure the emissivity of the alloy samples at
different temperatures and verified that their emissivities had different distributions at various
roughnesses. According to the definition of spectral emissivity, the emissivity is expressed as the
ratio of the radiation emissivity of the object under test at the same temperature to that of the
blackbody at the same temperature. The infrared radiation intensity of the sample under test and
the blackbody furnace under the same heating temperature and environmental conditions are
measured separately, and the emissivity distribution of the object under test is calculated by the
ratio of the two. The emissivity distribution curves of Samples 1 to 3 at 973 and 1073 K (shown
in Fig. 13) show a gradually increasing emissivity as the roughness Ra of the samples increases
at the same temperature. For the same alloy roughness, the emissivity increases gradually with
temperature. Similar to the conclusions from Refs. [33,34], samples with different emissivities
were obtained by varying the roughness of the alloy sample surface.



Research Article Vol. 29, No. 3 / 1 February 2021 / Optics Express 4417

Fig. 13. Curves of emissivity versus wavelength for samples 1 to 3 at (a) 973 and (b)
1073 K.

A current heating device is used to increase the sample temperature. The temperature
distributions of the alloy samples under different surface roughnesses were measured. The
inversion accuracy of the narrow-band spectral window movement algorithm is verified through
comparisons with a reference thermocouple. Six experimental temperature points were measured
from 890–1200 K for samples 1 to 3. The radiation spectroscopy measurements for the alloy
samples were collected using the multi-point temperature correction method. The narrow-band
spectral window moving algorithm and the emissivity model algorithm were used together to
calculate the temperature and the associated errors of the alloy sample spectral temperature
measurements, as shown in Fig. 14. The relative error of the narrow-band spectral window
moving temperature inversion algorithm is less than 1.17%, and the inversion results show that
the algorithm has a good computational accuracy without pre-setting the emissivity model.

Fig. 14. Temperature inversion error distribution of alloy samples with different surface
morphologies using the narrow-band spectral window moving algorithm (NBSW) and
emissivity model algorithm at different heating temperatures for samples (a) 1, (b) 2, and (c)
3.

4.3.2. Temperature measurement of different types of alloy samples

To verify the accuracy of the temperature inversion determination for different alloys, three
samples (DD6, DZ125, and K77) that are commonly used in the manufacture of turbine rotors
and guide vanes for aero-engines were considered for the temperature measurement experiments.
After surface treating the three different types of alloy samples to similar roughnesses using
sandpaper, the samples were heated to six temperatures between 1023 and 1273 K to measure the
spectral radiation intensities of the different alloy types. The relative errors for the temperature
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inversions of the three samples using the narrow-band spectral window shift algorithm were less
than 1.33%, as shown in Table 3.

Table 3. Temperature inversion results for the DD6, DZ125, and K77 samples

Temperature/K 1023 1073 1123 1173 1223 1273

DD6/K 1033.1 1078.4 1134.6 1188.6 1233.4 1273.5

relative error/% 0.987 0.503 1.033 1.33 0.85 0.039

DZ125/K 1034.3 1085.2 1135.0 1184.9 1225.0 1279.8

relative error/% 1.105 1.137 1.069 1.014 0.164 0.534

K77/K 1031 1084.1 1136.2 1189.8 1232.4 1278.7

relative error/% 0.782 1.034 1.175 1.432 0.769 0.448

The analysis of the experimental spectral data shows that the inversion errors for models B and
C are lower than those for models A and D when the inversions are performed for different sample
temperatures. As the heating temperature gradually increased from 890–1200K, the measured
spectral signal-to-noise ratio increased, and the relative error of the temperature inversion for
the four emissivity model algorithms decreased, where the lowest relative error was 5%. The
narrow-band spectral window moving algorithm had an inversion error of less than 1.33% for
the surface temperatures for alloys of different types, roughnesses, and heating temperatures.
Therefore, the proposed algorithm is not limited by the emissivity of the measured object in
practical measurements, which is of high practical value.

4.4. Temperature field distribution of alloy samples

The traditional thermocouple temperature measurement method only provides the temperature at
certain points along the object. Due to the limitations of the welding volume of the thermocouple,
it is difficult to completely reflect the temperature field distribution of the entire object surface.
The two-dimensional spectral temperature field measurement platform system quickly scanned
the entire surface of the tested alloy sample using the probe and obtained the spectral distribution.
The narrow-band spectral window movement algorithm was then used to invert the surface
temperature field distribution. The spectral scanning of the GH3030 alloy sample with this
measurement platform yielded a hyper-spectral pseudo-color data cube that contained both spatial
and spectral information from the sample, as shown in Fig. 15(a). Each coordinate point on the

Fig. 15. (a) Hyper spectral radiance images of the surface of the half-height alloy samples
under different spectral dimensions and (b) distribution of spectral intensity curves at points
A-D near the center point.
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sample surface corresponds to a set of spectral intensity data for different wavelengths, which
allows calculating the temperature distribution on the sample surfaces. Figure 15(b) shows the
spectral radiation distribution curve corresponding to the position of the A-D coordinate points
for the measured GH3030 alloy sample at a central heating temperature of 1173 K. The spectral
intensity increased gradually as the measured point moved away from the center, indicating the
surface temperature of the corresponding point gradually increased.

The spectral data cube of the measured GH3030 alloy sample was calculated using the
narrow-band spectral window temperature inversion algorithm for multiple coordinate points
along the X-axis (X=12.5, 25.0, 37.5, and 50.0 mm) and Y-axis (Y=10.0, 12.5, 15.0, and 17.5
mm). The obtained temperature distribution curves are shown in Figs. 16(a) and 16(b). The
distribution of the measurements along the X- and Y-axes of the alloy sample shows that the

Fig. 16. The temperature distribution curve of the alloy sample under different (a) Y and
(b) X coordinates at a core temperature of 1173 K.

Fig. 17. (a) Original image and reconstructed temperature field distribution map of the
alloy sample at a center temperature of (a) 1173 K, (b) 1073 K, and (c) 973 K.
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closer the coordinates are to the center, the higher the temperature. Figures 17(a)–(c) show a
physical map of the GH3030 alloy sample at temperatures of 973–1173 K and the reconstructed
pseudo-color temperature field distribution after point-by-point scanning. The dovetail structure
of the sample gives it a variable width along the longitudinal direction, where its narrowest part
is in the middle and has the highest resistance. This changes the temperature field distribution on
the surface due to different resistance distributions when heating. As the temperature near the
center of the sample gradually increased, the brightness gradually increased and the reconstructed
temperature field of the sample gradually decreased from the center to the sides.

5. Conclusion

A narrow-band spectral window moving temperature inversion algorithm that does not require an
advanced setting of the emissivity model for the measured object is proposed using the principle of
multispectral radiometric temperature measurements. Measuring the spectral radiation intensity
of the object and fitting its profile using a narrow-band spectral window algorithm allows using the
Mahalanobis distance coefficient to set the spectral inversion temperature at the closest distance
to the narrow-band spectral window in the given temperature range. The simulation results show
that the algorithm has a maximum relative error of 1.17% for temperature inversion at 20–30
dB of SNR. The surface temperatures for different types of nickel-based high-temperature alloy
samples were experimentally measured with a maximum temperature measurement error of
1.33% compared with a reference thermocouple, which verifies the inversion accuracy of the
algorithm. The spectral radiation intensity on the surface of the alloy sample was measured using
the narrow-band spectral window algorithm to obtain the two-dimensional temperature field
distribution for the GH3030 alloy sample. In summary, the narrow-band spectral window inversion
algorithm ensures accurate temperature inversion without needing to preset the emissivity model.
This provides new processing concepts for the practical application of turbine blade spectral
temperature measurements, which can be applied not only in the field of turbine blades but also
in other radiation temperature measurement fields, such as steelmaking.
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