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ABSTRACT In the design of two-degree-of-freedom (2-DOF) fast steering mirror (FSM) system, in order
to improve the control bandwidth of the system, the low-order natural frequency in the working direction
should be reduced as much as possible, and the high-order natural frequency in the non-working direction
should be increased. In this paper, a deep-cut flexure hinge mirror system was studied. Firstly, the motion
direction of the first to third order natural vibration mode of the system was analyzed. Next, the working
stiffness in the third vibration mode direction was deduced to solve the problem that the traditional stiffness
calculation method is not suitable for the third vibration mode direction. Then, the energy method and the
Castigliano’s second theorem were used to analyze the working stiffness of the deep-cut flexure hinge. Next,
the formula for calculating the relationship between the thickness of the mirror and the moment of inertia in
the direction of the vibration mode was derived. Combined with the calculation formula of working stiffness
in the vibration mode direction, the formula of the first to third order natural frequencies was derived, and the
finite element verification and sensitivity analysis of structural parameters were carried out. Finally, by using
NSGA-II, a multi-objective optimization design was carried out on the first to third natural frequencies of the
systemwith hinge structure parameters and reflector thickness as independent variables, and the optimization
results were analyzed by theoretical calculation and finite element simulation verification. The results show
that the first and second-order natural frequencies of fast steering mirror system are reduced by 7.8% and
7.11%, and the third-order natural frequencies are increased by 139.8%. It proves that the optimized structure
is much better than the original structure, and the optimal calculation can effectively increase the control
bandwidth of the system

INDEX TERMS Multi-objective optimization, natural frequency, two-degree-of-freedom fast steering
mirror, moment of inertia, deep-cut flexure hinge.

I. INTRODUCTION
.Fast steering mirror (FSM) is a mirror device that can pre-
cisely control the direction of the beam between the light
source and the receiver. It has the characteristics of low
power consumption, small size, quick response, and high
precision. The FSM system was first used in adaptive optics
systems, and is now widely used in precision capture, aim-
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ing and tracking, beam stabilization, target pointing, and
space laser communication [1]–[9]. For FSM systems, the
control bandwidth characterizes the system’s ability to track
input signals. The higher the value, the faster the system’s
response speed, which directly reflects the system’s accurate
and timely tracking ability. In the current situation, the con-
trol bandwidth of the large-aperture FSM system generally
needs to be improved. Therefore, the FSM system with large-
aperture and high control bandwidth is the key field of future
FSM system research [10]–[17].
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Increasing the control bandwidth of the system needs
to increase the high-order natural frequency of the system
and reduce the low-order natural frequency of the system.
Meanwhile, the natural frequency of the system is related to
the stiffness and load of the system in the direction of the
vibration mode, so we started the research with the working
stiffness of the system, the mirror moment of inertia and the
calculation formula of natural frequency.

Several scholars have conducted analysis and research on
the working stiffness and the calculation formula of the natu-
ral frequency in the FSM system. Jinjiang et al. [18] analyzed
the structure and kinematic stiffness of the FSM support
system composed of two free elliptical arc flexure hinges,
and conducted experimental verification; Zhiwei et al. [19]
modeled the FSM system, and discussed the relationship
between system mechanical structure and control system;
Yafei et al. [20] analyzed and calculated the relationship
between the stiffness of the fourth-order natural mode of the
FSM system and the single flexure hinge, and the relationship
between the stiffness of the vibration mode and the natural
frequency of the FSM system. The closed-loop bandwidth has
been simulated and experimentally analyzed; Ran et al. [21]
studied the influence of the FSM reaction force on the stabil-
ity of the system, deduced the corresponding reaction force
dynamic equation, and designed a FSM system that can elimi-
nate the influence of the reaction force. The above-mentioned
work mainly focuses on the analysis of the stiffness com-
position and natural frequency of the FSM system, and the
design range of stiffness in all directions is obtained through
the calculation formula of natural frequency. It matters that
little consideration is taken to the influence of the mirror’s
moment of inertia on the natural frequency of the system, and
there is also a lack of quantitative optimization calculations
aimed at increasing the system control bandwidth. Therefore,
it is necessary to quantitatively analyze the influence of the
mirror’s moment of inertia on the natural frequency of the
system, and perform quantitative multi-objective optimiza-
tion calculation on the natural frequency of the FSM system
with the optimization algorithm.

In response to the above problems, this paper analyzes the
natural frequency calculation of the deep-cut flexure hinge
FSM system theoretically, and proposes a multi-objective
optimization function based on reducing the low-order nat-
ural frequency of the system and increasing the high-order
natural frequency of the system. First of all, the finite ele-
ment simulation analysis is conducted on the two-degree-
of-freedom (2-DOF) deep-cut flexure hinge FSM system.
We obtain the vibration mode of the first three-order natural
frequencies, and simplify it in to a spring series-parallel
model; aiming at the problem that traditional stiffness anal-
ysis is not applicable to the movement direction of the third
mode, the relationship between the direction stiffness of the
mode-shape and the stiffness of a single flexure hinge is
analyzed, and a new theory formula of stiffness in the direc-
tion of the third-order mode shape of the FSM is obtained.
Then, we firstly use the energy method and Castigliano’s

second theorem to derive the working stiffness of the deep
cut flexure hinge, and simplify it with nonlinear fitting. The
simplification solves the problem that the traditional deep
cut flexure hinge calculation formula is lengthy. Secondly,
we derive the calculation formulas for the moment of inertia
of the mirror to the three different rotating shafts under the
three different modes of the FSM system, and define the
quantitative calculation relationship between the moment of
inertia of the mirror and the thickness of the mirror. Thirdly,
after that, this paper substitutes the above-derived stiffness
calculation formula and the mirror moment of inertia calcu-
lation formula into the system’s first to third order natural fre-
quency formulas for calculation, and performs finite element
simulation verification to prove the accuracy of the first to
third order natural frequency calculation formulas. In addi-
tion, the Sobol method is used to analyze the sensitivity of
the related structural parameters of flexure hinges, mirror
thickness and third-order natural frequencies of the system.
Finally, we propose a multi-objective optimization function,
which uses the NSGA-II algorithm to optimize it and assigns
different weights to the third-order natural frequencies of
the system. This method can reduce the low-order natural
frequency of the system and increase the high-order natural
frequency of the system. The optimization results were mod-
eled and verified by finite element simulation. It proves that
the optimization calculation effectively reduces the low-order
natural frequency of the system and increases the high-order
natural frequency of the system. The design results are good,
and the theoretical calculation and simulation results are in
good agreement. The multi-objective optimization function
based on the third-order natural frequency of the system and
the derived related theoretical calculation formulas proposed
in this paper are of significance for further improving the
control bandwidth of the FSM system and optimizing the
structure design of the FSM.

II. THEORETICAL FORMULA DERIVATION OF FLEXIBLE
SUPPORT SYSTEM FOR FSM
A. EXPERIMENTAL DATASETS DERIVATION OF THE
ROTATIONALSTIFFNESS OF FLEXIBLE SUPPORT SYSTEM
FOR FSM
The three-dimensional structure models of the fast control
mirror and flexible support system discussed in this paper are
shown in Fig. 1.

In Fig. 1(a) and Fig. 1(c), the flexible support structure and
the isolation plate are connected by bolts; the isolation plate
and the reflector are connected by glue. In Fig. 1(b), the coor-
dinate system is o-xyz (o is the rotation center of the flexible
support system, and the working direction is rotation around
the x and y axes). The structure is composed of 4 flexible
hinges with exactly the same structure: the combination of
hinges 1 and 3 can realize the deflection of the structure on
the x-axis; the combination of hinges 2 and 4 can realize the
deflection of the structure on the y-axis. Themodel of a single
deep-cut flexure hinge is shown in Figure 2.
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FIGURE 1. (a) The overall structure of the FSM (b) Flexible support system
structure (c) Component connection method.

The coordinate system in Figure 2 is O’-x’y’z’, which is
suitable for single deep cut flexure hinge. In the figure, h is the

FIGURE 2. (a) Floor plan of deep-cut flexure hinge; (b) Schematic diagram
of deep-cut flexure hinge.

height of the flexure hinge, w is the width of the flexure hinge,
and t is the minimum cutting thickness of the flexure hinge.
The major axis and minor axis of elliptical incision are a and
b respectively. We use ANSYS workbench 19.2 to perform
modal analysis on the FSM system and the boundary condi-
tion is that the bottom of FSM system is fixed. In order to
ensure the reliability of the finite element simulation results,
we have conducted multiple tests and determined that the
mesh size is half of the minimum cutting thickness t. In the
following, all our finite element simulation analyses will use
this mesh size.

The results of modal analysis of FSM system are shown in
Figure 3.

As shown in Fig. 3(a), Fig. 3(b) and Fig. (c), the first three
modes of vibration of the FSM system are deflection around
the x, y axis and twist around the z axis. As show in Fig. 3(d),
when the system deflects around the x-axis, the parallel
hinges 1 and 3 bend around radial direction the x’ axis, and the
parallel hinges 2 and 4 deflect around the radial direction of
y’, and then they are combined in series to form the deflection
of the system around the x-axis. Similarly, when the system
deflects around the y-axis, the parallel hinges 2 and 4 bend
around the y’ axis, the parallel hinges 1 and 3 bend around
the radial direction of x’, and then the two are combined
in series to form the deflection of the system around the
y-axis. As show in Fig. 3(e), when the system rotates around
the z-axis, the moment is decomposed into four tangential
forces distributed on the top of the four parallel hinges. The
four tangential forces deflect the four hinges. The parallel
deflection of the four hinges is the twist of the system around
the z axis.

Therefore, the 2-DOF flexible support system can be sim-
plified to a spring series-parallel model, and the stiffness cal-
culation in the mode shape direction can be performed [18].
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FIGURE 3. (a) First-order vibration mode; (b) Second-order vibration
mode; (c) Third-order vibration mode; (d) Simplified schematic diagram
of system deflection around x and y axis; (e) Simplified diagram of the
system twisting around the z axis.

FIGURE 4. (a) Simplified diagram of first-order vibration mode stiffness
(b) Simplified diagram of second-order vibration mode stiffness (c)
Simplified diagram of third-order vibration mode stiffness.

(1) The first vibration mode: rotating around the x axis
The rotational stiffness around the x-axis is composed of

the stiffness of hinges 1, 3 in parallel and the stiffness of
hinges 2, 4 in parallel; the two are connected in series [18].
The simplified model is shown in Fig. 4(a). The calculation
formula is as follows:

1
Kx
=

1
K1,θz′ ,Mz′

+ K3,θz′ ,Mz′

+
1

K2,θy′ ,My′
+ K4,θy′ ,My′

(1)

The calculation result is:

Kx =
(K1,θz′ ,Mz′

+ K3,θz′ ,Mz′
)(K2,θy′ ,My′

+ K4,θy′ ,My′
)

(K1,θz′ ,Mz′
+ K3,θz′ ,Mz′

+ K2,θy′ ,My′
+ K4,θy′ ,My′

)
(2)

(2) The second vibration mode: rotating around the
y axis

The rotational stiffness around the y-axis is composed of
the stiffness of hinges 2, 4 in parallel and the stiffness of
hinges 1, 3 in parallel; the two are connected in series [18].
The simplified model is shown in Fig. 4(b). The calculation
formula is as follows:

1
Ky
=

1
K2,θz′ ,Mz′

+ K4,θz′ ,Mz′

+
1

K1,θy′ ,My′
+ K3,θy′ ,My′

(3)

The calculation result is:

Ky =
(K2,θz′ ,Mz′

+ K4,θz′ ,Mz′
)(K1,θy′ ,My′

+ K3,θy′ ,My′
)

(K2,θz′ ,Mz′
+ K4,θz′ ,Mz′

+ K1,θy′ ,My′
+ K3,θy′ ,My′

)
(4)
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FIGURE 5. Simplified model of third-order vibration mode stiffness.

(3) The Third-Order Mode: Twisting around the z axis
The commonly used formula for calculating the third-order

vibration mode of a2-dof fsm system is

Kθz = 4LKθz′ ,Fy′ (5)

When the flexible support system faces the torque Mz
around the z-axis, the shear force Mz distributed on the four
hinges is F =Mz/L, where L is the distance from the deflec-
tion center of the flexible hinge to the deflection center of
the flexible support system (the system deflection radius).
However, it can be inferred from the third-order motion form
of the FSM system that Kθz,Fy can only express the deflection
angle of the flexible hinge around the y-axis under tangential
force, and it is not on the same plane as the deflection of
the FSM system around the z-axis. The simplified model is
shown in Fig. 5.

In Fig. 5, point O is the deflection center of the flexible
hinge, b is the short semi-axis length of the flexible hinge,
L is the length L from the flexible hinge to the rotation center
of the support system, P is the rotation center of the support
system, and F is the tangential force of the flexible hinge.
The Kθz,Fy in the traditional formula can only represent the
deflection angle θ when subjected to tangential force, and the
torsion angle generated by the third-order mode of the system
is δ. So 4LKθz,Fy in the traditional formula cannot represent
the torsional stiffness of the system.

According to the geometric relationship in Fig. 5, we can
get:

b tan θ = L tan δ (6)

Because it is a small deformation, there are:

tan θ ≈ θ

tan δ ≈ δ (7)

Therefore:

Kθz′ ,Fy′ =
F
θ
=

F

(Lb · δ)
=

b
L
·
F
δ
=

b
L
· Kδz,Fy′ (8)

Among them, Kδz,Fy′ represents the deflection angle of
a single flexible hinge around the deflection center of the

support system under the action of a unit tangential force F .
Therefore, the torsional stiffness around the z-axis is com-
posed of the stiffness Kδz,Fy′ of the four hinges in parallel.
The simplified model is shown in Fig. 3(c), so the calculation
formula is:

Kθz =
Mz

δz

=
FL
δz

= L(K1,δz,Fy′ + K2,δz ,Fy′+K3,δz,Fy′ + K4,δz,Fy′ )

(9)

The calculation result is:

Kθz = 4LKδz,F ′y = 4
L2

b
Kθz′ ,Fy′ (10)

B. DETIVATION OF THE THEORETICAL FORMULA FOR
BENDING STIFFNESS OF DEEP-CUT ELLIPTICAL FLEXURE
HINGE
Wedefine the force and bendingmoment on the flexible hinge
asF = [Fx ′ Fy′Fz′Mx ′My′ Mz′

]T , and the corresponding
hinge deformation as D =

[
δx ′δy′δz′θx ′θy′ θz′

]T . According
to the theory of material mechanics, the relationship between
them is [18]:

D = CF (11)

where C is the flexibility matrix of the flexible hinge. And
the formula is

C =



δx ′

Fx ′
0 0 0 0 0

0
δy′

Fy′
0 0 0

δy′

Mz′

0 0
δz′

Fz′
0

δz′

My′
0

0 0 0
θx ′

Mx ′
0 0

0 0
θy′

Fz′
0

θy′

My′
0

0
θz′

Fy′
0 0 0

θz′

Mz′



(12)

According to the literature [22], the bending strain energy
formula in the working direction of the flexible hinge is:

U =
1
2
(
∫
t

F2
x ′

EA(x ′)
dx ′ +

∫
t

M2
z′1

EI (x ′)
dx ′) (13)

With: {
Mz′1 = Mz′ + Fy′x

′

A(x ′) = wt(x ′)

where E is the Young modulus of the flexure hinge material,
I (x ′) is the moment of inertia of the flexure hinge section to
the central axis, Fx ′ is the tensile force on the free end of
the hinge along the x’-axis, and Mz′ is the sum of the torque
caused by the tangential force along the y’-axis on the free
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end of the hinge and the torque around the z-axis. We analyze
the torque around the z’ axis caused by the rotational moment
Mz′1. According to the Castigliano’s second theorem, the
calculation formula for the rotation angle of the flexible hinge
is [18]:

θz′1 =
∂U
∂Mz′1

(14)

According to Fig. 5(b)

I (x ′) =
wt(x ′)3

12
t(x ′) = 2a+ t − cosϕ (15)

Substituting (15) into (13), the strain energy of the flexible
hinge can be obtained as:

U =
6M2

z′

wE

∫ π
2

−
π
2

1
t(x ′)3

dx ′ (16)

Substituting (16) into (14), the turning angle can be
obtained as:

θz′1 =
∂U
∂Mz′1

=
12Mz′

wE

∫ π
2

−
π
2

1
t(x ′)3

dx ′ (17)

Substituting (17) into (12), the flexibility in the working
direction of the flexible hinge can be calculated as:

Cθz′ ,Mz′
=

θz′

Mz′

=
12b
wE

∫ π
2

−
π
2

cosϕ
(2a+ t − 2a · cosϕ)3

dϕ (18)

Suppose p = a
t , then:

Cθz′ ,Mz′
=

12b
Ewt3

∫ π
2

−
π
2

cosϕ
(2p+ 1− 2p · cosϕ)3

dϕ (19)

Let Y =
∫ π

2
−
π
2

cosϕ
(2p+1−2p·cosϕ)3

dϕ, we fund the Y integration
result is so complicated, that we can hardly apply it to the opti-
mization design of engineering. So, the method of nonlinear
curve fitting is adopted to simplify Y. The goodness of curve
fitting is judged by residual sum of squares due to error (SSE),
coefficient of determination (R-Square), adjusted coefficient
of determination (Adjusted R-Square), rootmean square error
(RMSE) and residual distribution graphs. The closer the
residual sum of squares and the root mean square error are
to 0, the closer the determination coefficient and the adjusted
determination coefficient are to 1, the better the curve fit [18].

A power function fitting is used for the Y function.
As shown in the figure, from the residual distribution diagram
and various determination coefficients, it can be seen that the
power function fitting results are better and meet the error
requirements.

The fitting result is:

Y = 1.079p−0.4753 (20)

FIGURE 6. (a) Non-linear fitting curve diagram; (b) Non-linear fitting
determination coefficient.

Then the flexibility in the working direction of the deep-cut
flexible hinge is:

Cθz′ ,Mz′
=

12b× 1.079p−0.4753

Ewt3
(21)

Combining the calculation of the flexibility matrix of the
elliptical arc flexure hinge in the literature [18], and using
the elastic deformation theory and nonlinear fitting simplifi-
cation, the flexibility calculation formulas in other secondary
directions can be calculated, and the results are as follows:

Cθy′ ,My′
=

12b
Ew3t

[2.268(
a
t
)−0.1878 − 0.6993] (22)

Cθz′ ,Fy′ =
12b2

Ewt3
[1.079(

a
t
)−0.4753] (23)

C. DERIVATION OF THE THEORETICAL CALCULATION
FORMULA FOR THE MOMENT OF INERTIA OF THE FSM
SYSTEM
The moment of inertia of the FSM system about its deflection
axis discussed in this paper is mainly composed of two parts,
including an irregular support structure part and a regular
mirror structure part. Moreover, the moment of inertia of the
three vibration mode is quite different. So, it is necessary to
discuss them separately.

(1) Calculation of the moment of inertia of the FSM system
twisted around the x and y axes

Torsion around the x-axis is the first-order vibration mode
direction of the system, and torsion around the y-axis is the
second-order vibration mode direction of the system. The
rotation centers of the four flexure hinges are in the same
plane, so the distances from the x and y axes to the bottom
of the reflector are equal. The schematic diagram is shown
in Figure 7, where h is the thickness of the mirror, and z is
the distance from the bottom of the mirror to the x-axis and
y-axis.

Because the mirror part and the supporting structure part
are twisted around the same axis, the moment of inertia Jx
and Jy of the system around the x and y axes are:{

Jx = Jxd + Jh
Jy = Jyd + Jh

(24)
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FIGURE 7. (a) Moment of inertia about the x axis (b) Moment of inertia
about the y axis.

where Jxd is the moment of inertia of the flexible supporting
part, and Jxh is the moment of inertia of a regular cylinder
around a fixed axis. Based on this, the numerical relationship
between Jxh and the mirror thickness h can be obtained.
According to the formula of the moment of inertia of the
cylinder and the parallel axis theorem, Jxh is:

Among them, Jxd and Jyd are the moments of inertia of the
flexible supporting part, which are obtained by measurement.
Jh is the moment of inertia of a regular cylinder around a
fixed axis, so the numerical relationship between Jh and the
mirror thickness h can be obtained. According to the formula
of the moment of inertia of the cylinder and the parallel axis
theorem, Jh can be obtained as:

Jh =
1
12
m(3r2 + h2)+ m · (

h
2
+ z)2

= πr2hρ(
r2

4
+
h2

3
+ z2 + z · h) (25)

where r is the radius of the reflector and ρ is the density of
the reflector.

(2) Calculation of the moment of inertia of the FSM system
twisted around the z axis

Around the z axis is the third-order vibration mode direc-
tion of the system, as shown in Fig. 8:

FIGURE 8. Moment of inertia about the z axis.

In the same way, the moment of inertia around the z-axis is
composed of two parts: the moment of inertia of the irregular
support part and the moment of inertia of the cylindrical
mirror around the fixed axis, so:

Jz = Jzd + Jzh (26)

Among them, the calculation formula of Jzh is

Jzh =
1
2
mr2

=
1
2
πr4hρ (27)

D. DERIVATION OF THEORETICAL CALCULATION
FORMULA FOR NATURAL FREQUENCY OF FLEXIBLE
SUPPORT SYSTEM
According to the results of the modal analysis, the first two
natural frequency modes of the FSM system are the torsional
vibrationmotions around the x and y axes. It can be simplified
to a single degree of freedom torsional vibration model.
According to the literature [18], [20] the relationship between
the stiffness of the model in the torsional vibration direction
and the natural frequency in this direction can be expressed
as:

fn1,2 =
1
2π

√
Kθn
Jn

(28)

where Kθn is the torsional stiffness in the direction of motion,
and Jn is the moment of inertia in the direction of motion.

The third-order vibration mode of the FSM system is tor-
sion around the z-axis. Because it is a small deformation
motion, it can be simplified to a single degree of freedom
torsional vibration. The newly derived third-order vibration
mode of stiffness calculation formula in the direction into
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TABLE 1. Comparison of theoretical calculation and finite element simulation of working stiffness of deep-cut flexure hinge.

the calculation, the third-order natural frequency calculation
formula is:

fn3 =
1
2π

√
Kθz
Jz

(29)

whereKθz is the torsional stiffness of the system around the z-
axis, and Jz is the torsional stiffness of themoving part around
the z-axis.

III. THE FINITE ELEMENT VERIFICATION OF THE
THEORETICAL CALCULATION FORMULA FOR THE
WORKING STIFFNESS OF THE FLEXIBLE HINGE AND THE
THIRD-ORDER NATURAL FREQUENCY THEORETICAL
CALCULATION FORMULA
A. THE FINITE ELEMENT SIMULATION VERIFICATION OF
THE THEORETICAL CALCULATION FORMULA OF THE
WORKING STIFFNESS OF THE DEEP-CUT FLEXURE HINGE
The deep cut flexure hinge is modeled in Unigraphics NX
and imported into Ansys for finite element simulation verifi-
cation, as shown in Fig. 9

FIGURE 9. Finite element simulation of deep-cut flexure hinge.

The results show that the error between the theoretical
formula calculation result and the finite element simulation

result does not exceed 9%, which proves the accuracy of the
theoretical deduction result. The results are shown in Tab. 1

B. FINITE ELEMENT VERIFICATION OF THE THIRD-ORDER
NATURAL FREQUENCY CALCULATION FORMULA OF THE
FSM SYSTEM
The FSM system is modeled in Unigraphics NX and
imported into Ansys for finite element simulation verifica-
tion, as shown in Fig. 10.

The finite element simulation results are shown in Tab. 2.
According to the finite element simulation results, the error
between the theoretical formula and the finite element simu-
lation results is not more than 9%, which proves the derived
stiffness calculation formula, the mirror moment of inertia
calculation formula and the first to third order natural fre-
quency calculation formula are accurate.

C. SENSITIVITY ANALYSIS OF STRUCTURAL PARAMETERS
OF THE FSM
The parameter sensitivity analysis of optimization problems
is to clarify the relationship between the design variables and
the objective function.It is of great significance for the deter-
mination of the initial variables and the improvement of the
optimization effect. In this paper, the Sobol algorithm is used
to analyze the sensitivity of the four structural parameters a,
b, t, and h of the FSM system to the first three-order natural
frequencies.

Sobol is a global sensitivity analysis method based on
variance. It quantitatively evaluates the influence of each
input parameter and the interaction between parameters on
the output variable by decomposing the variance of the output
variable. In this study, Sobol’s global SA was performed
using the Matlab R2019 (The Math Works Inc.: Natick, MA,
USA). Within the given parameter variation range, the influ-
ence degree of each structural parameter on the 1st ∼ 3rd
order natural frequency is analyzed.

If y = f (X1,X2, · · · ,Xm) represents the model struc-
ture, X1,X2, · · · ,Xm represent the model parameters, and
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TABLE 2. Comparison of theoretical calculation and finite element simulation of first to third-order natural frequency of FSM system.

FIGURE 10. vibration mode simulation diagram.

m represents the number of model parameters, the variance
decomposition formula can be expressed as:

V (y) =
m∑
i=1

Vi +
m∑

i<j<m

Vij +
m∑

i<j<k<m

Vijk · · · + V1,2,··· ,m

(30)

where: V (y) is the total variance of the model output y; Vi is
the variance produced by the parameter Xi; Vij is the variance
produced by the interaction of parameters Xi and Xj; Vijk is
the variance produced by the interaction of parameters Xi, Xj
and Xk ; V1,2,...,m is the variance produced by the combined
action of m parameters [23].

For parameter Xi, the first-order sensitivity index Si can be
used to express the direct contribution rate of parameter Xi to
the total variance of the model simulation results [23]. The
specific formulas can be expressed as:

Si =
Vi
V (y)

(31)

Based on the Latin hypercube sampling method, 10,000
points are selected in the design variable area.And the first-
order sensitivity of the 1st to 3rd order natural frequencies of
the system are analyzed respectively. The results are shown
in Fig. 11.

For the first and second natural frequencies of the FSM
system, the sensitivity index of the long and short semi-axes
a and b of the flexure hinge, the thickness of the mirror h,
and the minimum cutting thickness t of the flexure hinge are
arranged in increasing order. It means that the influence of the
reflector thickness on the natural frequency is greater than the
long and short semi-axes a and b of the flexible hinge.

From the above analysis results, it can be seen that for the
first and second natural frequencies of the FSM system, the
first-order sensitivity index of the minimum cutting thickness
t of the flexure hinge is the largest, followed by the mirror
thickness h, and the long and short semi-axes a, b The impact
is relatively small. For the third-order natural frequency, the
first-order sensitivity index of the minimum cutting thickness
t and the short semi-axis length b is larger. The sensitivity
index of the mirror thickness h is smaller than the former
two, but much larger than the semi-major axis a. From the
above analysis, it can be seen that compared with the design
variables a, b, and t that are often used in the optimization
design of traditional flexure hinges, the thickness h of the
mirror that is rarely considered has a greater impact on the
natural frequency of the system. Therefore, whenwe optimize
the design of the natural frequency of the system, the reflector
thickness h is introduced into the optimization function for
analysis

IV. MULTI-OBJECTIVE OPTIMIZATION DESIGN EXAMPLE
OF FSM
The diameter of the FSM is 100 mm and the thickness of
the isolation plate is 3 mm. The deflection range of the FSM
system is ±3mrad, and the repeated positioning accuracy is
δp ≤ 8urad . The material of flexible support system is TC4,
the material of isolation plate is indium steel, and the material
of reflector is glass-ceramic. The modal analysis of the initial
structure was carried out. The first to third natural frequencies
and initial structural parameters are shown in Tab. 3. The
parameters a, b, t, h are independent variables, which are used
to optimize the objective function.

A. OBJECTIVE FUNCTION
In order to improve the control bandwidth of the system,
the natural frequency of the system structure is required to
be 2 ∼ 4 times higher than the control bandwidth of the
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FIGURE 11. (a) First-order natural frequency sensitivity analysis (b)
Second-order natural frequency sensitivity analysis (c) Sensitivity analysis
of third-order natural frequency.

system. However, such a design will lead to excessive low-
order natural frequency of the system, and the stiffness in
the working direction of the system will be too large, which
will greatly increase the burden of the system driver [18].
Therefore, the following design methods are adopted: on
the one hand, the low-order natural frequency in the work-
ing direction of the system should be reduced as much as

possible, and it can be suppressed by the control system.
On the other hand, the higher-order natural frequency in the
non-working direction of the system is increased as much as
possible to improve the control bandwidth of the system [19].

According to (28) and (29), the specific numerical rela-
tionship between the third-order natural frequency fn1∼3 , the
three-axis rotational stiffnessKθn and the three-axis rotational
inertia Jn of the flexible support system can be obtained.
Because the size change of flexure hinge has little influence
on the inertia of flexible support structure, the inertia of
system support structure is set as a fixed value to facilitate
the optimization calculation. Therefore, the following multi-
objective optimization function is constructed:

Object =


min fn1(x)
min fn2(x)
max fn3(x)

(32)

In multi-objective optimization, the result obtained by the
multi-objective optimization algorithm is generally an opti-
mal solution set, that is, Pareto solution set. Therefore, it is
necessary to confirm the weighted value according to the
importance of each sub objective and multiple parameter
adjustments, so as to finally calculate a group of optimal
solutions [24]. In the optimization calculation of natural fre-
quency, the upper limit of natural frequency in low order
working direction is determined by the second-order natural
frequency, and the lower limit of natural frequency of higher-
order non-working direction is determined by the third-order
natural frequency. According to the design idea of FSM
system to increase the natural frequency in the non-working
direction and reduce the natural frequency in the working
direction, it is important to increase the third-order natural
frequency while reducing the second-order natural frequency.
Therefore, the two sub objectives occupy a more important
position in the optimization function, and a larger weight
value should be given when the weight is allocated. Let the
weighting coefficients of natural frequencies of order 1-3
are respectively. According to the above requirements, the
parameters are adjusted, and the weighted coefficients of
natural frequencies of order 1-3 are obtained as follows:β1 =
0.2, β2 = 0.3, β3 = 0.5.
After determining the weighted coefficient, the relative

sorting method is used to find the optimal solution in the
Pareto solution set. Assuming that the order of the natural
frequencies represented by each solution xn in the Pareto solu-
tion set is R1(xn),R2(xn),R3(xn), then the relative order R(xn)
of the xn in the Pareto solution set is R(xn) = β1R1(xn) +
β2R2(xn) − β3R3(xn). The optimal solution in the Pareto
solution set is the one with the smallest R(xn) [24].

B. CONSTRAINED CONDITION
When the flexure hinge is bent, the maximum stress of the
hinge appears at the minimum cutting thickness t of the
hinge, which has the effect of stress concentration. Therefore,
according to the pure bending theory in material mechanics,
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TABLE 3. The first to third natural frequencies and initial structural parameters.

the maximum stress of flexure hinge is:

σmax = Kt
6Mmax

t2w
(33)

where Kt is the factor of stress concentration [25] and Mmax
is the external torque applied to the hinge at the maximum
deflection angle. The calculation formula is as follows:

Kt = (1+
at
2b2

)
9
20

Mmax =
Ewt3 · 10−3

4.316bp−0.4753

(34)

Substituting (35) into (34), we can get the following results:

σmax = (1+
at
2b2

)
9
20 ×

6Et · 10−3

4.316b( at )
−0.4753 (35)

The yield strength of TC4 is 4.3 × 108 Pa and the safety
factor is 2.745. Yield strength and safety factor are substituted
into (36):

c1(x)= (1+
at
2b2

)
9
20 ×

6Et · 10−3

4.316b( at )
−0.4753 −

4.3× 102

2.745
≤ 0

(36)

(2) Inequality constraints on kinematic accuracy of flexure
hinges

In the analysis of the kinematic accuracy of flexure hinge,
the displacement of the geometric center of the flexure hinge,
that is, the displacement of the deflection center of the flexure
hinge, is generally taken as the quantitative index to measure
the kinematic accuracy of the flexure hinge [25]. According
to the formula of material mechanics, the displacement of the
center point can be obtained as follows:

yc =
∫∫

M (x ′)
EI (x ′)

dx ′dx ′ (37)

With 
I (x ′) =

wt3(x′)
12

M (x ′) = M

Equation (38) is transformed into polar coordinate form:

12Mb
Ew

∫ ∫
cosϕ

(2a+ t− 2a cosϕ)3
dϕb cosϕdϕ

=
12Mb
Ewt3

∫ 0

−
π
2

∫ ϕ

−
π
2

cosβ
(2p+ 1− 2p cosβ)3

dβb cosϕdϕ

=
6Mb2

Ewt3
·

1
1+ 2p

(38)

Substituting the repeated positioning accuracy A of the
flexure hinge into (38), the constraint expression of the
motion accuracy of the flexure hinge can be obtained as:

c2(x) =
6× 10−3b

4.316 · (1+ 2a
t ) · (

a
t )
−0.4753

− 8× 10−3 ≤ 0

(39)

C. OPTIMIZATION CALCULATION
(1) Optimization model

The optimization model is as follows:

fobj =


minβ1fn1(x)
minβ2fn2(x)
maxβ3fn3(x)

suppose:x1=a,x2=b,x3=t,

x4=h x=(x1,x2,x3,x4)T

s.t.


c(x) ≤ 0
A · x ≤ b
lb < x < ub

(40)

The long axis a, the minor axis b and the minimum cut-
ting thickness t of the flexure hinge are taken as variables.
At the same time, according to the geometric constraints, the
linear inequality constraint matrix A is obtained as follows:
[0 −1 5 0; −1 0 5 0; 10 −5 0 0; −1 1.2 0 0; 1 −2 0 0], b =
[0; 0; 0; 0]. According to the design principle of the mirror,
the radius-thickness ratio of the cylindrical mirror should not
be less than 10:1, but it should not be too high, otherwise the
system load will be too large. The diameter of the mirror stud-
ied in this paper is 100 mm. According to the above design
philosophy, the thickness of the mirror varies from 13 mm
to 23 mm. Therefore, according to the machining accuracy of
flexure hinge and the range ofmirror thickness, we can get the
boundary constraint lb = [0,0,0.8,13], ub = [10; 10; 2; 23].
The nonlinear inequality constraints are strength inequality
constraint c1 and motion accuracy inequality constraint c2.
(2) Genetic algorithm and its evaluation method
NSGA-II is an improved optimization algorithm based on

genetic algorithm proposed by Kalyanmoy Deb in 2002. The
main difference between NSGA-II algorithm and common
genetic algorithm is that it adopts non dominated stratifi-
cation and congestion comparison method. Non dominated
stratification is to stratify the whole population by comparing
the dominance relationships among individuals (If individual
Yi is better than individual Yj in all optimization objectives,
it is calledYi dominatingYj). After each iteration, individuals
are called in order of dominance layer from high to low
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FIGURE 12. NSGA-II optimization flow chart.

in order to generate new species group. If the difference
between the number of individuals in the new species group
and the number of individuals N is less than the number
of individuals in the current dominant layer, the crowding
comparison method is used to select better individuals from
the current individual layer for filling. Before the start of each
iteration, the parent population is combined with the current
population to form a new species group with the size of 2N.
It is instrumental in ensuring that some excellent individuals
will not be discarded during the evolution process [24]. The
NSGA-II algorithm optimization process is shown in Fig. 12

(3) Optimization results and analysis verification
In this paper, Matlab is used for optimization calculation,

and the optimized initial values are a = 10, b = 8, and t
= 1. If the weighted average relative change in the spread
of the Pareto solutions over Stall generations is less than
1∗10−4, and the spread is smaller than the average spread
over the last Stall generations, then the algorithm stops [24].
The final optimization calculation iterations 106 times, the
optimization result are a = 3.9885, b = 3.0145, t = 0.9107,
h= 17.3430. In order to facilitate processing, the above opti-
mization results are approximated, and the final optimization
result parameters obtained are a = 4, b = 3, t = 0.9, h = 17.

Based on the above optimized structural parameters and the
parameters of other key components of the system structure
shown before, the UG modeling of the structure was carried
out. The three views of the optimized structure are shown in
Fig. 13

FIGURE 13. (a) Front view; (b) Right view; (c) Bottom view.

The third-order natural frequency of the optimized
structure was calculated by using the natural frequency
calculation formula derived before, and it was com-
pared with the third-order natural frequency of the initial
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TABLE 4. Comparison of system stiffness between multi-objective optimized structure and initial structure.

structure to preliminarily analyze the effect of optimiza-
tion calculation. The comparison results are shown in
Tab. 4

The above preliminary calculation results show that the
first and second order natural frequencies of the optimized
structure are reduced by 6.61% and 4.96% respectively, and
the third-order natural frequencies are increased by 131.71%.
The low-order natural frequency in the working direction
is reduced, and the higher-order natural frequency in the
non-working direction is further increased, which proves
that the optimized structure meets the design requirements
initially.

In order to further analyze the natural frequency of the opti-
mized structure and get more intuitive results, the optimized
structure is simulated by ANSYS mode, and the results are
shown in Fig. 14. The comparison between the simulation
results of natural frequency and the theoretical calculation
value is shown in Tab. 5. From the analysis results, it can
be seen that the error between the theoretical calculation
results and the finite element simulation results of the third-
order natural frequency is less than 3.4%, which proves the
accuracy of the previous theoretical derivation formula again.
The comparison between the modal simulation results of the
new structure and the initial structure is shown in Tab. 6.
Compared with the original structure, the first and second
order natural frequencies of the FSM are reduced by 7.8%
and 7.11% respectively, which are 55.974hz and 56.778hz
respectively. The third order natural frequency is increased by
139.8% and to 568.24hz comparedwith the original structure.
It can be seen that the optimized calculation can achieve the
design purpose and meet the design requirements of the FSM
system. The third natural frequency, which determines the
control bandwidth of the system, has been greatly optimized,
which proves the effectiveness of the weighting coefficient.
The optimization calculation effectively reduces the low-
order natural frequency of the structure in the working direc-
tion, and lays a good foundation for adding the control system
in the next step, so that the low-order natural frequency of
the system can be effectively suppressed. At the same time,
the optimal calculation effectively improves the third-order
natural frequency of the structure in the non- working direc-
tion, so that the system control bandwidth can be significantly
increased. It is expected that the control bandwidth of the

FIGURE 14. (a) First-order mode (b) Second-order mode (c) Third-order
mode.
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TABLE 5. Comparison of theoretical calculation value and finite element simulation value of structure third-order natural frequency.

TABLE 6. Comparison of the fourth-order natural frequency between the optimized structure and the initial structure.

system can reach more than 300Hz after adding the control
system to suppress the low-order frequency.

V. CONCLUSION
In order to optimize the control bandwidth of the deep-cut
flexure hinge FSM system based on the 2-DOF, the first to
third-order natural frequency of the FSM system was simu-
lated and analyzed by finite element method, and the working
stiffness in three vibration mode directions was deduced and
analyzed theoretically, which solves the problem that the
traditional calculation formula is not suitable for the third
mode vibration direction. Next, using the energy method and
the Castigliano’s second theorem, the calculation formula
of the working stiffness for the deep-notch flexure hinge
was derived, and it was simplified by using the nonlinear
fitting method. The error between the simplified formula and
the finite element simulation result is less than 9%, which
solves the problem that the traditional formula is too complex.
Then, the formula for calculating the relationship between
the thickness of the mirror and the moment of inertia in the
direction of the vibration mode was derived. The first to third-
order natural frequency of the FSM system was calculated
by using the above derived working stiffness formula and
the moment of inertia in the direction of the vibration mode.
It was verified by the finite element simulation. The error
between the calculation results and the simulation results is
less than 9%, which proves the reliability of the formulas
for calculating the working stiffness in first to third-order
vibration mode directions, mirror moment of inertia and the
first to third-order natural frequency of the system. Finally,
the multi-objective optimization design, which is with hinge
structure parameters and reflector thickness as independent
variables, was carried out with the minimum of the first and
second-order natural frequencies and the maximum of the
third-order natural frequencies. The obtained optimal struc-
ture effectively reduces the first and second-order natural
frequencies, and improves the third-order natural frequen-
cies. The finite element verification proves the reliability and
effectiveness of the optimization results. The formula and the
optimization method presented in this paper are of engineer-
ing significance for the improvement of control bandwidth

and the theoretical analysis of natural frequency for 2-DOF
flexure hinge FSM..
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