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Abstract: Existing multi-exposure fusion (MEF) algorithms for gray images under low-illumination
cannot preserve details in dark and highlighted regions very well, and the fusion image noise is large.
To address these problems, an MEF method is proposed. First, the latent low-rank representation
(LatLRR) is used on low-dynamic images to generate low-rank parts and saliency parts to reduce
noise after fusion. Then, two components are fused separately in Laplace multi-scale space. Two
different weight maps are constructed according to features of gray images under low illumination.
At the same time, an energy equation is designed to obtain the optimal ratio of different weight
factors. An improved guided filtering based on an adaptive regularization factor is proposed to refine
the weight maps to maintain spatial consistency and avoid artifacts. Finally, a high dynamic image
is obtained by the inverse transform of low-rank part and saliency part. The experimental results
show that the proposed method has advantages both in subjective and objective evaluation over
state-of-the-art multi-exposure fusion methods for gray images under low-illumination imaging.

Keywords: multi-exposure image fusion; low-illumination imaging; adaptive guided filtering; latent
low-rank representation

1. Introduction

Low-illumination imaging can compensate for problems in information collection in
low-illumination environments, thus improving national defense ability. The dynamic
range of ordinary charge-coupled device (CCD) sensors is approximately 103, which is
much smaller than that of a real scene [1,2]. In addition, images taken in low-light condi-
tions are often of low visibility. In fact, the image quality of gray images under low illumi-
nation can be improved by using image enhancement methods [3,4]. However, it is difficult
to recover image details that are lost due to dynamic range limitation. Multi-exposure
image fusion techniques have been introduced to solve the abovementioned issues.

Multi-exposure fusion (MEF) methods are mainly categorized as tone-mapping based
on the inverse camera response function (CRF) in the radiance-domain and transforming
fusion coefficients in the spatial-domain [5]. The first method involves CRF computation
and tonal image mapping, which is time-consuming and difficult to implement [6–8].
Therefore, MEF methods based on pixel-level fusion in the spatial-domain are extensively
used currently [9–11].

Three main types of solutions exist for MEF methods in the spatial-domain. First,
most previous exposure fusion approaches merged multiple exposure source images at the
pixel level based on some defined weight measures [12–14]. Mertens used image contrast,
good exposure and saturation information to calculate the initial weight maps based on
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the Laplacian pyramid. Three adjustment factors were adopted to control the ratio of
weights. This method achieved good fusion effects, however there was a problem of losing
brightness and dark details [15]. Other measures were proposed to maintain details in
the brightest and darkest regions, and most of them focused on how to build weights: an
image reconstruction technique based on the Haar wavelet in the gradient domain [16],
weighted guided image filter [17,18], the adaptive weight function [19], weight maps based
on gradient information [20], adaptive weights based on the relative intensity between
the images and global gradients [21] and structural patch decomposition [22]. Weighted
sparse representation and a guided filter in gradient domain were proposed to retain
image edges more adequately in gray images [23]. The input images are decomposed by
non-subsampled contourlet transform and then different fusion rules are applied for low
and high frequency NSCT coefficients. Finally the fused image is obtained by the inverse
transform [24], and this method obtained good results. On the whole, the pixel-based
image fusion method is simple and easy to implement. The fusion effect is limited in
extracting details due to its fixed initial weights, and the weights obtained based on a single
pixel are susceptible to noise and easily produce visual artifacts in the fusion image.

Patch-based MEF methods have attracted more attention [25,26]. These methods
divide multi-exposure images into different patches. Kede Ma proposed an effective
structural patch by decomposing an image patch into three conceptually independent
components: signal strength, signal structure, and mean intensity. Then, three components
are fused separately [27,28]. Wang utilized a super-pixel segmentation approach to di-
vide images into non-overlapping image patches composed of pixels with similar visual
properties [29]. An MEF framework based on low-level image features and image patch
structure decomposition was proposed to improve the robustness of ghost removal in a
dynamic scene, and preserved more detailed information [30]. Overall, this method mainly
pays attention to the block segmentation. However, different patches contain pixels with
different color and brightness characteristics. If the same fusion rule is used on these pixels
with different characteristics, then the color or detail information tends to be lost.

Recently, the convolutional neural network (CNN) has also been applied to extract
exposure-invariant features to generate artifact-free fusion images [31,32]. An MEF al-
gorithm for gray images is proposed based on the decomposition CNN and weighted
sparse representation [33]. In general, learning-based approaches have a good effect on
ghost suppression in dynamic scenes. However, it is difficult to obtain real high dynamic
range (HDR) datasets and better utilization of the CNN for MEF requires the solution of
the problems associated with the training dataset, network classification accuracy, and
loss function.

Generally, there are fewer multi-exposure fusion methods only for gray images under
low illumination. Most MEF algorithms are designed for color images under normal
illumination. Although these methods can be used in gray images by preprocessing, but
the saturation factor in the method [15] is zero and is without practical significance for gray
images. Multi-exposure fusion of gray images under low illumination faces two challenges:
images under low illumination have low contrast and relatively large noise resulting in
a lower signal-to-noise ratio of the fusion image; and compared with color images, gray
images have less information available for building fusion weight maps resulting in detail
loss in the dark and highlighted regions.

Given these problems, a novel approach based on latent low-rank representation
(LatLRR) and adaptive weights is proposed. Moreover, an improved guided filter is used
to refine the weight maps to reduce artifacts. The proposed algorithm makes the following
contributions:

(1) Before constructing multi-scale Laplace fusion space, LatLRR is utilized to decompose
low dynamic range (LDR) images, which is more effective in reducing noise. The
global and local structures are treated separately in the multi-scale space.
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(2) According to characteristics of gray images under low-light imaging, adaptive weight
factors are constructed for the decomposed global and local structures to avoid detail
loss in low dark areas and highlighted areas.

(3) An energy function is formulated to obtain the optimal ratio of contrast and exposure
scale factors to obtain better robustness.

(4) An improved guided filtering algorithm based on an adaptive regularization factor is
proposed to refine the weight maps to maintain spatial consistency and avoid artifacts.

The remainder of this paper is organized as follows: relevant technical background
is briefly reviewed in Section 2. In Section 3, the proposed multi-exposure image fu-
sion method is introduced in detail. The experimental results and analysis are shown in
Section 4. The conclusions are presented in Section 5.

2. Related Work
2.1. Latent Low-Rank Representation

The latent low-rank representation decomposes the image into a global structure
(low-rank representation), a local structure (salient features) and sparse noise [34], and it is
robust against noise. The LatLRR decomposition can be defined as follows:

min
Z,L,E
‖Z‖∗ + ‖L‖∗ + λ‖E‖1 (1)

s.t., X = XZ + LX + E (2)

where, λ is the equilibrium factor, ‖.‖∗ denotes the nuclear norm and ‖.‖1 is the l1−norm. X
is an image with the size of M×N. Z is the low-rank coefficient, L is the saliency coefficient
and E is the sparse noise. Then the low-rank representation part XZ(XL), saliency part LX
(XS) and sparse noise part E can be derived. The noise is removed and only the low-rank
and saliency parts are performed in fusion processing.

2.2. Guided Filter

The guided filter is an edge-preserving smoothing filter proposed by He et al. [18] and
is defined as a linear model using a guidance image X:

Zi = akXi + bk, ∀i ∈ ωk (3)

where Zi and Xi are the i− th pixel value of the output and guidance image, respectively.
ak and bk are linear coefficients in a local window ωk with a size of (2r + 1) × (2r + 1)
centered on pixel k. The coefficients ak and bk can directly be estimated using:

ak =

1
|ω| ∑

i∈ωk

YiXi − µkYk

δ2
k + ε

(4)

bk = Yk − akµk (5)

where Y is the original image, µk and δk represent the mean and variance of guidance
image X in local window ω, respectively. A fixed regularization factor ε was applied
to different local regions in [18], and the difference in image texture between different
regions is not taken into consideration. This leads to over-smooth or under-smooth effects.
In reality, a smaller ε is required for regions with rich edge information to sharpen and
highlight the edges. By contrast, a larger ε is required for flat regions to produce a stronger
smoothing effect.

3. Proposed Multi-Exposure Fusion Method

In this section, an adaptive MEF method based on digital time delay integration
(TDI) images with multiple integral series is presented to promote the application of
multi-exposure fusion technology in the field of remote sensing under low-light imaging.
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Figure 1 shows the framework of the proposed method. First, K images with different
integral series are selected and used as multi-exposure images. Second, the image is
divided into a low-rank representation part and saliency part using the LatLRR method.
Third, for decomposed images, different fusion weight maps are designed according to the
characteristics of low-illumination imaging. Additionally, an energy function is formulated
to adjust the proportion of contrast and exposure factors. Then, the improved guided
filtering based on an adaptive regularization factor is proposed to smooth weight maps to
maintain spatial consistency and avoid artifacts. Finally, decomposition and reconstruction
of the low rank part and the saliency part are implemented in Laplace multi-scale space to
obtain the high dynamic image. In the following subsections, we provide more details of
the multi-exposure image fusion process.

Figure 1. Framework of the proposed method.

3.1. Generation of Multi-Exposure Images

For practical engineering applications, it is difficult to obtain multi-exposure images
without adding additional sensors. Digital TDI brings a new opportunity for high dynamic
fusion [35]. The fundamental principle is to improve the sensitivity of the system by
multiple exposures to the same target by delay integration. For the global exposure
mode, the target is exposed in each frame cycle to obtain one image at a time. N images
corresponding to the same ground scene are digitally superimposed to realize N series
TDI imaging in the digital domain. Different integral series images can be obtained in the
process of digital TDI imaging, and images with a low integral series are equivalent to the
low-exposure images, and images with a high integral series are equivalent to the high-
exposure images. At the same time, according to the orbit altitude, satellite flight speed and
exposure time of the remote imaging sensor, it can be seen that the considerable motion
between multi-integral images is far less than one pixel. Therefore, the multi-exposure
images produced in this way can be regarded as images of static scenes, which is convenient
to the MEF method. We analyze the performance of images with different TDI series. The
relations between information entropy and mean gradient and the TDI series are examined
as shown in Figure 2. It can be seen that both increase first and then decrease. Thus we
can calculate the summation (marked as S) of the information entropy and mean gradient
for each integral series. After that, the average value of S can be calculated. The relative
minimum and maximum integral series can be found for which the value of S just exceed
the average value. At the same time, the image with the largest value of S is involved in
fusion. In this way, three images with different series can be selected to participate in the
fusion to ensure the quality of the high-dynamic image. However, in practical application,
if the memory on-board is sufficient, then more than three images with different TDI series
can be chosen to improve the image quality. Without loss of generality, this paper describes
images with K integral series selected as low-dynamic images.
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Figure 2. The correlation between information entropy and mean gradient with TDI series.

3.2. Latent Low-Rank Image Decomposition

To improve the signal-to-noise ratio (SNR) of the fusion image under low illumination,
LatLRR is utilized to decompose the source images. LatLRR is more efficient and robust to
noise and outliers [36]. An example of LatLRR decomposition using Equation (1) is shown
in Figure 3. Figure 3a is the original image. Figure 3b shows the low-rank part of the image,
Figure 3c depicts the saliency features and Figure 3d depicts the noise in the 3D display.

Figure 3. The LatLRR decomposition. (a) original image; (b) the approximate part; (c) the saliency
part; (d) the sparse noise.

The decomposed image sequence is obtained as:
{

Xk
L
, k = 1, 2, . . . , K

}
and{

Xk
S
, k = 1, 2, . . . , K

}
. Xk

L and Xk
s are the low-rank and saliency part of the k-th image,

respectively. In the following process, they are treated separately and synthesized in the
end to remove the effect of noise.

3.3. Weight Map Construction

For the multi-exposure fusion of gray images, weight factors directly affect the fu-
sion effect, and different weights factors are designed for gray images considering the
LatLRR decomposition.
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3.3.1. Low Rank Part

The low-rank part contains global information, energy information, and brightness
and contrast information of the image. First, a contrast factor is constructed according to the
fact that the Laplace operator is isotropic. The image is filtered to obtain the high-frequency
information Dk by Equation (6). A Gaussian low-pass filter is applied to the absolute value
of Dk to obtain the contrast map wc,k.

Dk = Xk
L ⊗ Hlaplacian (6)

wc,k(x, y) = ψ2(|Dk|) (7)

Hlaplacian =

 0 1 0
1 −4 1
0 1 0

 (8)

where, Xk
L is the k-th low-rank image, Hlaplacian is the Laplacian operator and ⊗ represents

the convolution operation. Dk is the high-frequency information of the image, and ψ2 is a
symbol of two-dimensional Gaussian filter, the variance of Gaussian filter kernel is 0.5 and
the filtering radius is 5. |.| represents the absolute value.

Second, the image exposure is considered. The idea of calculating the exposure factor
in [15] is that after normalization of the image, a gray value close to 0.5 is considered to be
moderately exposed and is given a larger weight. When deviating from 0.5, the exposure
is insufficient or overexposed, and a smaller weight value is given. The method used
by [15] misfits the case in which the overall value of an image is too bright or too dark.
Under low-light imaging compared to normal light conditions, the overall luminance value
is lower in both high and low exposure images. When the whole image intensity is too
bright, a darker pixel value should be given a larger weight. By contrast, when it is too
dark, a brighter pixel should be given a larger weight. This paper aims at low-illumination
imaging, and gray values are lower than normal illumination on the whole. For this reason,
the following formulas are designed:

ws,k(x, y) = exp(−
(Xk

L(x, y)− z′mid)
2

2σ2 ) (9)

z′mid =

{
1− zmax+zmin

2 , mean(XK
L ) > 0.8 or mean(XK

L ) < 0.2
zmax+zmin

2 , else
(10)

where, 0.8 and 0.2 are empirical parameters that come from a large number of experimental
statistics. Xk

L(x, y) is the gray value of the k-th low-rank image at (x, y). The gray value
is normalized to [0,1], zmax and zmin represent the maximum and minimum values of Xk

L,
respectively. mean(XK

L ) represents the mean value of the image. σ is the standard deviation
and is an empirical parameter set to 0.5 in this paper [15,28]. From Equation (10) it can be
seen that z′mid is a relatively large value when the overall gray value of the image is low, so
a large gray value will be given a larger weight by Equation (9) and vice versa.

At last, an initial weight map of the low-rank part is constructed by using the contrast
weight and exposure weight together in Equation (11):

wl,k(x, y) = ws,k(x, y)λs ∗ wc,k(x, y)λc (11)

According to different images, the fixed proportional factor λc and λs cannot guarantee
the robustness of the algorithm. Addressing the above issue, an energy function for λc and
λs is proposed:

E(λc, λs) = λs
∫

x∈Ω,k≤K
(ws,k(x)− 0.5)2dx

−λc
∫

x∈Ω,k≤K
(Dk(x)− Dk(x + 1))2dx

(12)
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The constraints of the upper energy equation are as follows:λs + λc = 1 and, λs ≥ 0,
λc ≥ 0. ws,k and Dk are calculated by Equations (5) and (6). k is the serial number of the
image. x denotes the pixel position. K is the total number of image sequences. The closer
the image exposure is to 0.5, the smaller the E value; at the same time, the greater the
contrast of adjacent pixels, the smaller the E value. The process of finding the optimal
solution involves minimizing the linear energy equation. It can be seen that the weight
factors obtained in this way will adapt to different input images to preserve more details.

3.3.2. Saliency Part

The saliency part contains prominent local features and special brightness distribu-
tions. The structural and texture factor are combined to construct the fusion factor of the
salient part in this paper. The fusion of the saliency part aims at preserving the details of
all input images as much as possible. This paper proposes a texture factor of the saliency
part designed as Equation (13).

The first term
∥∥∥Xk

S − µk
S

∥∥∥ is the norm of the image, and µk
S

is the average value of the

k-th saliency image. When the norm
∥∥∥Xk

S − µk
S

∥∥∥ of the image becomes larger, the image has
more abundant texture and detail information, and should be given a larger weight value
for the corresponding texture. The second term Vgabor(x, y) is the Gabor value of the image
calculated by Equation (14).

ws,k(x, y) =
∥∥∥Xk

S(x, y)− µk
S

∥∥∥a
∗Vgabor(x, y) (13)

Vgabor(x, y) = exp(− x′2 + γ2y′2
2σ2 ) exp(i(2πx′/λ + ϕ)) (14)

where x′ = x cos θ + y sin θ, and y′ = −x sin θ + y cos θ. λ is expressed in pixels when par-
ticipating in the calculation. Moreover, ∗ represents the multiplication of the corresponding
position of the matrix. In general, it is less than one-fifth the size of the input image and
greater than or equal to 2. θ represents the direction of the Gabor filter, and ranges from
0◦ to 360◦. ϕ is the phase offset that ranges from −180◦ to 180◦. γ is used to adjust the
elliptic aspect ratio after the Gabor transform. When γ equals 1, the shape is approximately
circular. σ is the standard deviation of the Gaussian function in the Gabor function. a is a
gain parameter and is set to 3. We selected the following parameters through extensive
experimentation about statistical texture features: λ = 2, θ = 45

◦
, γ = 0.5, ϕ = 0

◦
, and

σ = 0.5. The design strategy of parameters selection ensures that the half-peak magnitude
supports of the filter responses in the frequency spectrum touch each other in most of the
experimental images [37].

3.4. Weight Maps Refinement

The construction of initial weight factors of the low-rank and saliency parts written
as wk

L
and wk

S
and they have been completed through the above steps. Then, an improved

guided filtering is used to suppress artifacts and avoid the block effect due to the lack of
spatial consistency in the fusion process.

From Equation (4) we can see that a fixed regularization factor ε was applied to
different local regions in original guided filtering, and the difference in image texture
between different regions is not taken into consideration. The adaptive weight factor based
on the image gradient is proposed to adjust ε and an improved guided filtering is proposed
to refine weight maps. For wk

L
and wk

S
, the calculation process of their regularization factors

is not discussed separately, and only the guide image is different. Weight coefficients wl,k
and ws,k of the k-th image were filtered, and guide images of them are the low-rank part Xk

L
and the saliency part Xk

S of the k-th image obtained by LatLRR decomposition in Section 3.2.
In the process of calculating the regularization factor, the low-rank part Xk

L and the saliency
part Xk

S are uniformly represented as X. In this paper,w′ = G(X, w, r, ε) is used to represent
the guided filtering operation. w is the original weight coefficient, and the w′ is the filtered
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weight coefficient. For pixel i of X, the adaptive weight factor is Ti, and the regularization
factor ε is replaced by Tiε to improve the robustness of the improved adaptive guided filter.
First, the gradient of a guided image X is calculated by Equation (15):

F =

√∣∣∣∇gX
x

∣∣∣2+∣∣∣∇gX
y

∣∣∣2 (15)

where ∇gX
x = X ⊗ hx, ∇gX

y = X ⊗ hy, and F is the gradient image. ⊗ represents the
convolution operation. Values of hx and hy are as follows:

hx =

 −1 −2 −1
0 0 0
1 2 1

hy =

 −1 0 1
−2 0 2
−1 0 1

 (16)

The weight factor of pixel i in the gradient image F is calculated using the follow-
ing equation:

Ti =

(
δ2

θ1(i) + α1

µ2
θ1(i) + β1

)
/

(
δ2

θ2(i) + α1

µ2
θ2(i) + β1

)
(17)

where δ2
θ1(i) and δ2

θ2(i) are the variances of region A1 and A2, respectively; and µ2
θ1(i) and

µ2
θ2(i) are the average values of regions A1 and A2, respectively. A1 and A2 are centered

on i, the size of A1 is 3 × 3, and A2 is the shaded area as shown in Figure 4. α1 and β1 are
small numbers to avoid the instability caused by approaching 0, and their values are set to
10−9. ε is set to 0.04, the regularization factor Tε is obtained in this way. Generally, Ti of an
edge position is larger than that of a flat area, and the smoothing force of the guided filter
is smaller, and vice versa.

Figure 4. Schematic drawing of gradient calculation.

Finally, the guided filter is improved by replacing the original regularization term ε
with Tε to prevent insufficient or excessive smoothing in some regions. The refined weight
maps of the low-rank and saliency parts by the improved filtering G′ are shown below:

w′l,k = G′(Xk
L, wl,k, r, Tε) (18)

w′s,k = G′(Xk
S, ws,k, r, Tε) (19)
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where, weight coefficients wl,k and ws,k of the k-th image were filtered, and guide images
are the low-rank part Xk

L and the saliency part Xk
S of the k-th image obtained by LatLRR

decomposition in the Section 3.3. w′l,k and w′s,k are weight factors after improved guided
filtering. And r is the size of a local window. Finally, the weights of K images need to
be normalized to ŵ′l,k and ŵ′s,k, and an example of weight maps refinement is given in
Figure 5.

ŵ′l,k = [
K

∑
k=1

w′l,k]
−1

∗ w′l,k (20)

ŵ′s,k = [
K

∑
k=1

w′s,k]

−1

∗ w′s,k (21)

Figure 5. An example of weight maps refinement. (a) the low-rank weight map; (b) the saliency
weight map; (c) the refined low-rank weight map; (d) the refined saliency weight map.

3.5. Multi-Scale Fusion

First, the image sequence
{

Xk
L, k = 1, 2, . . . , K

}
of the low-rank part and{

Xk
S, k = 1, 2, . . . , K

}
of the saliency part are fused in Laplacian multi-scale space to obtain

the low-rank and saliency parts of multi-exposure fusion, respectively. And the recon-
structed low-rank and saliency parts are recorded as FL and FS. The construction and
refinement of weight maps have been discussed in the above sections. The weight map of
a Gaussian pyramid is generated based on ŵ′l,k and ŵ′s,k. This process is similar to that of
the method in [15]. Second, the HDR image F is obtained by the following formula:

F = Fs + FL (22)

The details of our MEF method is as follows:
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Algorithm: MEF Method Proposed by This Paper.

Input: K images of different digital TDI levels;
Output: High-dynamic fusion image F;

1. Low-rank decomposition of images by Equations (1) and (2) to obtain low-rank images{
Xk

L, k = 1, 2, . . . , K
}

and saliency images
{

Xk
S, k = 1, 2, . . . , K

}
;

2. Weight map construction of low-rank images by Equations (6)–(11); adaptive weight factors
(λc and λs) are calculated based on the energy equation by Equation (12).

3. Weight map construction of saliency images by Equations (13) and (14);

4. Weight maps refinement and normalization by Equations (15)–(21);

5. For
{

Xk
L, k = 1, 2, . . . , K

}
and

{
Xk

S, k = 1, 2, . . . , K
}

, the reconstruction and fusion in
Laplacian multi-scale space are implemented to obtain the fusion images FL and FS.

6. The HDR image is obtained by Equation (22).

4. Experimental Results and Analysis

We select 20 sets of static scene images with different TDI series under low illumination
to verify the performance of the proposed method. The test sets include representative
indoor and outdoor images. Four state-of-the-art algorithms in [15,16,28,29] are chosen to
cover a diverse types of MEF methods in terms of methodology and behavior. The method
in [16] developed a virtual image based on the gradients of input images. The method
in [15] is the classic multi-exposure fusion in multi-scale space, and the construction
in multi-scale space used by this paper is based on the method in [15]. The methods
in [28,29] are based on patch decomposition, and an image is divided into three conceptually
independent components: signal strength, signal structure, and mean intensity. Upon
fusing these three components separately, a desired patch is reconstructed and the fusion
image can be obtained. And this process is similar to that in our paper. The image
is decomposed by LatLRR and then the image is fused by inverse transformation in
this paper. Therefore, these four representative methods are chosen for the comparison.
Due to space constraints, only the fusion images of reference [15,16,29] are provided
here. However, all evaluation indicators of the four methods are calculated and given
in the paper. The existing data sets are mostly color images and are taken under normal
illumination, while this paper is aimed at gray image fusion under low illumination. The
images under the low illumination used by this paper are obtained by a low-illumination
camera Gense400BSI in digital TDI imaging mode. The size of the images used by this
paper is mostly 1000 × 1000. Experimental data are available and can be download at
“https://pan.baidu.com/s/1NTccS607zFEtWJ4VKdn4cQ” and the password is “ntyy”.

The proposed method consists of two types of parameters including the LatLRR
decomposition and a guided filter. λ in LatLRR is set to 0.8. The maximum number of
iterations is 50. If images contain excessive noise, the parameter can be appropriately
increased. Guided filtering based on the proposed adaptive factor involves only one
parameter r with the size of 3 × 3. Other parameters involved are described in the paper.
All experiments are implemented in MATLAB 2016a on a computer with an Intel Core i7,
3.40-GHz CPU, 16 GB of RAM, and the Microsoft Windows 7 operating system.

4.1. Subjective Analysis

The experimental results of different methods for the target plate image are shown
in Figure 6. The overall appearance of all methods is good, and the dynamic range of the

https://pan.baidu.com/s/1NTccS607zFEtWJ4VKdn4cQ


Remote Sens. 2021, 13, 204 11 of 21

image is enhanced from (b)~(e). However we can see that details of the green border are
different from Figure 6j–m. Other methods lost details in the bright area, and the target
information was lost. The proposed method better preserves the details, and the overall
appearance of the fusion image is more appealing. From images (f)~(i), it can be seen
that the image noise is high and the uniform wall is distorted by the method in [15,16].
The saturation factor in [15] is no longer suitable for gray images. Compared to the two
methods, the patch decomposition approach made some progress in keeping details of
the highlighted areas. The uniform whiteboard area is selected to calculate the SNR of the
fusion images. The SNRs of the methods in [15,16,29] and our method are 32.4023, 32.6441,
31.1991 and 34.2309, respectively. It can be seen that under low- illumination imaging, the
obvious advantage of this paper is denoising by using low-rank decomposition.

Figure 6. The comparison of different methods. (a) Source image sequence. (b) The fusion image of [16]. (c) The fusion
image of [29]. (d) The fusion image of [15]. (e) The fusion image of our method. (f) Local image of method [16]. (g) Local
image of method [29]. (h) Local image of method [15]. (i) Local image of our method. (j) Local image of method [16].
(k) Local image of method [29]. (l) Local image of method [15]. (m) Local image of our method.
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Figure 7 shows the fusion images of “Outdoor Roads”. The proposed method pre-
serves the information of most of the highlighted areas, and the whole image has better
clarity and contrast as shown in Figure 7e. Mertens and the gradient method have better
effect than patch decomposition in maintaining load information as shown Figure 7f–i.
However, overall, the indication label on the road is visible, and the results by Mertens
and the proposed method have more natural appearance with respect to the human visual
system. Comparatively, the details and texture of the door are clear by the proposed
method in Figure 7i, and the tree texture and numbers in the road are clear as shown in
Figure 7m,q. The proposed method effectively preserves details in the brightest and darkest
regions. Guided filtering based on an adaptive factor is used to avoid over-smoothing or
under-smoothing, effectively reducing the block effect.

Figure 7. Comparison of different methods for the outdoor roads. (a) Source image sequence. (b) The fusion image of [16].
(c) The fusion image of [29]. (d) The fusion image of [15]. (e) The fusion image by our method. (f) The local image of by [16].
(g) The local image of [29]. (h) The local image of [15]. (i) The local image by our method. (j) The local image by [16]. (k) The
local image by [29]. (l) The local image by [15]. (m) The local image by our method. (n) The local image by [16]. (o) The
local image by [29]. (p) The local image by [15]. (q) The local image by our method.
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Figure 8 shows the roads and buildings after multi-exposure fusion. The overall
contrast of all fusion images is lower. The images are taken at night, and the texture of
the ground is clear as shown in Figure 8i. The proposed method and the method in [16]
achieved better results for the wall, and the gray distribution of the wall is uniform without
super-saturation as shown in Figure 8j,m.

Figure 8. Comparison of different methods on the buildings. (a) Source image sequence. (b) The fusion image of [16].
(c) The fusion image of [29]. (d) The fusion image of [15]. (e) The fusion image of our method. (f) The local image by [16].
(g) The local image by [29]. (h) The local image by [15]. (i) The local image by our method. (j) The local image by [16].
(k) The local image by [29]. (l) The local image by [15]. (m) The local image by our method. The original low dynamic
images are shown in Figure 9. Figure 10 shows the MEF fusion of computer screen images taken in the door. Overall, all
four methods have restored some desk information and obtained computer screen information, as shown in Figure 10e–h.
Moreover, local images are shown in Figure 10a–d. As shown from the local images, we can see that for the icon at the top
left corner and the picture at the lower right corner of the computer in the highlighted area, the proposed method maintains
better details and contour information, and the grayscale distribution of our method is natural at the same time. However,
other images bring gray distortion to different degree.
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Figure 9. Source images of Figures 10 and 11. (a) Source images of Figure 10. (b) Source images of
Figure 10. (c) Source images of Figure 11. (d) Source images of Figure 11.

Figure 10. Comparison of different methods of indoor images. (a) The local image of [16]. (b) The
local image of [29]. (c) The local image of [15]. (d) The local image of our method. (e) The fusion
image of [16]. (f) The fusion image of [29]. (g) The fusion image of [15]. (h) The fusion image of our
method.

Figure 11 shows outdoor images with noise. The image with a low TDI series (short
exposure) has higher noise under low-light imaging as shown in Figure 9c. The fusion
image by this paper has fewer halos around lights and has a relatively clear texture of
trees near the lights as show in Figure 11d. The image noise is reduced by our method in
uniform sky area as shown in Figure 11h.

Figure 11. Comparison of different methods of outdoor images. (a) The fusion image of [16]. (b) The
fusion image of [29]. (c) The fusion image of [15]. (d) The fusion image of our method. (e) The
local image of [16]. (f) The local image of [29]. (g) The local image of [15]. (h) The local image of
our method.
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4.2. Objective Analysis

To quantitatively evaluate the performance of the proposed method, three objective
indicators including mutual information (MI), edge retentiveness (Q AB/F) and average
gradient (AG) are chosen [38]. The MI value can be used to measure how much information
from the original image is retained in the fusion image [29,32]. The AG value can sensitively
reflect the details of the image, and can be used to evaluate the image blur [31,33]. Q AB/F

measures how well the amount of edge information is kept in the fusion images [31]. For
all three indicators, the larger the value is, the better the image quality. MI is defined as
the sum of mutual information between each source image and the fusion image. The
MI value reflects the total quantity of information in the fused image which is obtained
from the input source images. For more than two images involved in multi-exposure
fusion, Q AB/F is defined as the average of the value calculated by any two images and the
fusion image [31]. Four state-of-the-art MEF algorithms in [15,16,28,29] are adopted to fuse
20 groups of gray images with different TDI series under low illumination.

The performance of the four algorithms is shown in Tables 1–3, and the largest
indicator value is shown in bold. It is clear that the proposed method performs better than
the other methods. They are almost the best values in all results. For the indicator MI and
Q AB/F, the proposed method shows the best performance in 16 sets of image sequences.
Moreover, for the rest of the image sequences, our method ranks in the top two overall. For
the indicator AG, the proposed method shows the best performance in 14 sets of image
sequences. Even if not the maximum, the indicators are relatively large. The proposed
method preserves more detailed information than the other fusion methods and produces
fewer artifacts and less noise.

Table 1. Objective evaluation results of MI.

Method [16] [29] [15] [28] Ours

1 0.497 0.452 0.413 0.421 0.486
2 3.337 4.655 4.855 4.517 5.746
3 2.882 2.949 3.109 2.852 4.083
4 2.814 3.248 3.167 3.441 3.559
5 4.615 6.361 6.226 6.357 6.676
6 4.769 4.669 4.301 4.398 5.702
7 3.329 2.860 3.036 2.813 4.326
8 3.742 4.020 4.316 4.156 5.210
9 3.073 4.458 4.636 4.252 4.537

10 3.505 4.693 4.494 4.701 5.467
11 3.138 4.144 4.067 4.215 4.926
12 3.176 3.814 3.974 3.723 5.405
13 3.434 5.520 3.431 5.410 5.693
14 3.343 4.122 3.762 4.015 5.310
15 3.259 3.953 3.533 3.818 5.436
16 3.295 5.014 4.369 4.764 4.718
17 3.164 3.864 4.056 3.561 4.756
18 3.266 3.884 3.493 3.135 5.189
19 2.758 4.159 3.926 4.138 4.146
20 3.352 3.347 3.190 3.047 5.249
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Table 2. Objective evaluation results of Q AB/F.

Method [16] [29] [15] [28] Ours

1 0.031 0.036 0.032 0.037 0.035
2 0.338 0.378 0.369 0.386 0.480
3 0.573 0.389 0.596 0.381 0.615
4 0.615 0.572 0.634 0.556 0.686
5 0.517 0.524 0.462 0.513 0.563
6 0.620 0.587 0.571 0.609 0.581
7 0.685 0.642 0.627 0.638 0.696
8 0.670 0.673 0.602 0.659 0.742
9 0.660 0.718 0.678 0.703 0.773

10 0.670 0.648 0.608 0.693 0.749
11 0.664 0.631 0.628 0.629 0.669
12 0.650 0.672 0.678 0.669 0.673
13 0.701 0.656 0.528 0.687 0.767
14 0.671 0.684 0.567 0.682 0.687
15 0.622 0.655 0.542 0.601 0.613
16 0.685 0.711 0.639 0.704 0.739
17 0.654 0.684 0.616 0.697 0.712
18 0.749 0.739 0.624 0.776 0.792
19 0.586 0.592 0.596 0.599 0.615
20 0.751 0.749 0.658 0.757 0.769

Table 3. Objective evaluation results of AG.

Method [16] [29] [15] [28] Ours

1 3.147 5.343 3.206 5.412 5.707
2 2.861 4.416 3.149 4.321 4.459
3 3.468 4.294 3.258 4.194 4.284
4 1.127 1.196 0.920 1.194 1.215
5 2.120 2.257 1.671 2.221 2.300
6 2.967 2.590 2.645 2.378 2.922
7 2.946 2.538 2.489 2.954 2.967
8 2.018 2.208 1.668 2.215 2.378
9 3.560 3.340 2.818 3.295 3.611

10 2.634 2.631 2.137 2.629 2.670
11 3.604 3.587 3.692 3.642 3.595
12 2.074 2.104 1.674 2.008 2.160
13 2.190 2.379 1.702 2.646 2.692
14 1.622 1.801 1.293 1.815 1.587
15 2.089 2.132 1.771 2.094 2.066
16 3.737 3.894 3.064 3.891 3.923
17 3.538 3.582 2.953 3.685 3.692
18 4.404 4.913 3.481 4.313 4.770
19 4.019 3.752 3.019 3.877 4.172
20 2.532 3.047 3.031 2.945 3.052

4.3. Self-Comparison

To further verify advantages of some new ideas proposed by our method, we com-
pared the fusion effect of the following three conditions marked as Con1, Con2 and Con3:

• Con1: using the fixed proportion factor (λc = 1 and λs = 1) and not using the adaptive
weight factor by Equation (12);

• Con2: using the original guided filtering and not using the improved guided filtering
by Equations (15)–(19);

• Con3: using the weight map construction only by contrast factor and not using
Equations (6)–(14).
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In each case, we guarantee one single variable. This means there is only one strategy
participating in the comparison changes, and the rest remains the same. The results of
the above comparison are shown in Table 4, and it represent the average value of 20 sets
of data.

Table 4. The objective evaluation for self-comparison.

Indicators MI Q AB/F AG

Con1 4.716 0.631 3.187
Con2 4.742 0.486 2.975
Con3 4.512 0.474 2.804

The proposed method 4.831 0.648 3.211

In Table 4, a comparison between each row and the last row reflects the improvement
on the overall performance under the corresponding conditions. It can be seen from the
first row that the energy equation proposed in this paper obtains the adaptive proportional
factor (λc and λs), which mainly affects the information entropy, and can ensure that the
HDR image retains as much detail as possible. The second row shows that AG and Q
AB/F greatly decrease when the improved guide filter is not used. The improved guided
filtering avoids the over-smooth and under-smooth and is helpful in keeping the edge
information. We can see from the third row that the weight map designed by our method
for gray images under low-illumination imaging can maintain the detail in the process of
high-dynamic fusion and has a great influence on all indicators.

To show the visual effect of the proposed ideas on the performance of our method
more clearly, one comparative experiment is added. The fusion effect under three different
situations is compared as shown in Figure 12. Figure 12a shows that the fixed factor (λc = 1
and λs = 1) cannot adjust the proportion of weight maps in the fusion process adaptively,
leading to losses in detail. It can be seen from Figure 12b that in the absence of adaptive
guided filtering, the block effect is relatively large, and the ability of edge protection is
not sufficient. It is not difficult to find this from Figure 12c without using weight maps
proposed in the paper, the image representation ability is reduced, and details of the fusion
image in the highlighted and darkened areas are obviously lost.

Figure 12. The result of self -comparison. (a) The result of condtion1. (b) The result of condtion2. (c) The result of condtion3.
(d) Our method. (e) The local image of condtion1. (f) The local image of condtion2. (g) The local image of condtion3. (h) The
local image of our method.
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4.4. Time Complexity Comparison

First, the complexity and efficiency of different algorithms are evaluated by the run-
ning time as shown in Table 5. These methods are representative of their fields. The more
images involved in the fusion, the longer the processing time. Here, we consider two
images involved in the calculation. The size of the images used by this paper is mostly
1000 × 1000. The average time is taken as the contrast result. Different iteration numbers
of LatLRR used by our method are adopted. For an image with the size of 1000 × 1000,
the super-pixel segmentation approach method used by reference [29] specifies the num-
ber of super-pixels as 200, and the fixed-sized patches are rectangles of 50 × 50 used by
reference [28].

Table 5. Running time of different methods (seconds).

Methods [16] [29] [15] [28] [23] [33] Proposed
(30′)

Proposed
(20′)

Proposed
(10′)

Running
time 3.4 18.3 2.5 16.5 10.2 18.1 28.6 15.9 6.1

The methods in [15,16] are relatively efficient in running time. The weight calculation
of both methods is relatively simple. An intermediate image is constructed in the gradient
domain by method [16], which takes more time than that in [15]. The execution efficiencies
of method [28] and the proposed method applying 20 iterations are not much different. Our
method is time-consuming in the stage of low rank decomposition. The patch and structure
decomposition technique is used in method [28,29], and it is time-consuming to compare
and calculate parameters between blocks. Compared with the methods in [28,29] and our
method, the method in [23] is more efficient. In addition, the time-consuming nature of this
method depends mainly on the number of pyramid layers. The method in [33] divided the
multi-exposure image into image detail layer and a contour layer by image decomposition.
Moreover, for the image detail layer, a CNN network is used to achieve detail-layer fusion.
This is relatively time-consuming. The CNN and sparse representation algorithm require
too much time due to their own operating schemes.

Second, the running time for applying 10, 20 and 30 iterations of our method is
counted as shown in Table 6. With an increase in the number of iterations, the running
time of our method increases significantly. The main time-consuming item in this paper is
the low-rank decomposition. The effect of the iteration number on the fusion performance
is also analyzed, as shown in Table 6. The result in Table 6 is the average value of 20 sets
of data. It is clear that with the increase of iteration numbers, the performance improves
gradually, but the difference between 20 iterations and 30 iterations is not obvious. The
number of iterations can be selected according to the practice requirement. At the same
time, without increasing the amount of computation, the method of selecting the optimal
iteration number used by our paper is given here. LatLRR is utilized to decompose the
source image into global and local structure. We calculate the information entropy of the
global structure image produced by different iterations. When the number of iterations
increases, the information entropy changes slightly, and the iteration can be stopped, or the
maximum number of iterations is reached. When ensuring that the indicator can meet the
actual requirement, a relatively small number of iterations can be chosen.

Table 6. Objective evaluation of indicators for the proposed method of different iterations.

Iteration Numbers 10 20 30

MI 4.413 4.831 4.912
Q AB/F 0.573 0.648 0.657

AG 3.187 3.211 3.234
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In summary, our method is not the fastest, and the running time increases as the
iteration time increases, but this method is still efficient and compromises between the
running time and quality.

5. Conclusions and Future Work

In this paper, a multi-exposure fusion of gray images under low illumination based
on low-rank decomposition was presented. The latent low-rank representation was used
on low-dynamic images to generate low-rank parts and saliency parts to reduce noise
after fusion. The idea of this paper was to decompose image sequences separately in
multi-scale space. Thus, two different weight maps were constructed according to features
of gray images. To remove the artifacts, an improved guided filtering method based on
an adaptive regularization factor was proposed to refine the weight maps. At the same
time, the adaptive ratio of weight factors was calculated based on an energy equation
to enhance the robustness of the method. Then, the decomposed low-rank images and
saliency images were fused in Laplacian space using Gaussian pyramid weight factors
to obtain a fused low-rank image and a fused saliency image. Finally, the high-dynamic
image was reconstructed by adding the low-rank image and the saliency image.

Although the proposed method can produce high-quality in high dynamic images
under low-illumination imaging, it is not suitable for real-time application. Remote sensing
images have a large amount of data; therefore, the algorithm should be optimized to
improve the efficiency for practical engineering applications.
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