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Abstract
In this work, we study the property of many-body localization(MBL) in the Haldane-
Shastry(HS) chain which is driven by an additional time-dependent perturbation period-
ically. The Haldane-Shastry (HS) model is the integrable one-dimensional quantum spin
chain with long-range interactions, it is the generalized Heisenberg XXX model which only
contain nearest two body interaction. By using HS model, we consider the global two-body
interaction and expand the field of MBL. In this paper, we establish a Floquet operator by
adding a time-periodic field formed as trigonometric function to a closed and disordered HS
model in this periodic driven system. We use the exact matrix diagonalization to probe the
property of MBL with different disorders and system sizes. When we drive the HS model
in MBL phase, it shows that there is a significant change in the diagrams with when driv-
ing strength T reach to Tc which is the critical driving strength. We get that at large T (T >

Tc), MBL phase will be broken and a transition from localized phase to delocalized phase
will happen, conversely, at small T (T < Tc), MBL phase will be retained. The stronger
disorder taken in system, the more stable the localized phase is and the higher Tc is needed
to drive the transition. However, there is no MBL phase transition when we drive the HS
model in ergodic phase with periodic driving. In contrast to the Heisenberg XXX model
with the same situation which we have studied recently, the phase transition from delocal-
ized phase to localized phase occurs. We also explore the non-disorder system of HS model
with the same driving to explore the properties of MBL, it shows that under periodic driv-
ing, the non-disordered HS system has the quantum phase transition rather than MBL phase
transition. This illustrates the important role of disorder on MBL.
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1 Introduction

Mang-body localization(MBL) is the extensive form of Anderson localization [1] consid-
ering the interaction between particles, which has been the subject of intense investigation
in quantum information field. Many features of MBL phase have been widely explored,
e.g. entanglement entropy, which has exponential growth in MBL system [2, 3], and aver-
aged energy gap ratio 〈r〉, by whose value one can confirm the phase of system, when
〈r〉 approximately equal to 0.386 system follows poisson statistics of quasienergy levels
and be localized [2]. Disorder h is an important index to distinguish the MBL phase and
ergodic phase [2, 4], when h is less than the critical disorder hc, the system with weak
disorder is in the ergodic phase and could be heated up to thermalization. On the con-
trary, the system is in MBL phase, in which quantum and energy transport is suppressed
and eigenstate-thermalization hypothesis loses efficiency. Similar to the random field which
bring disorder to MBL system can effect quantum phase, we argue that time-periodic field
which drive MBL system also can lead to a transition to ergodic behavior. Periodically
driven systems have been extensively researched over last decades both in classical and
quantum levels [5–12], and whose application in inducing phase transitions [13–17] has
been widely concerned. From the aspect of experiment,there are nuclear magnetic res-
onance (NMR)experiments [18], AC-driven electron glass [19] and relativistic-electrons
accelerated by lasers [20], etc, which provides strong objective basis for effectiveness of
periodically driven. On the other hand, progress has also been made in theory. The proposal
of kicked rotor is a representative case, which can induce dynamical Anderson localization
and the transition between chaotic and regular behaviors [21, 22]. Most of the early stud-
ies are focus on nointeracting systems. With the development of experiments in ultracold
atomic, trapped ions and molecular, the interactions between particles of isolated systems
have been gradually applied to the driven researchs [23]. Periodically driven MBL system
have been the subject of growing interest, more relevant research need to be explored to
enrich the theory. In this paper, we explore MBL by considering the long range interac-
tions in one dimensional periodically driven system. The study of periodically driven system
provides new ideas to probe thermalization and can be a flexible experimental knob to inves-
tigate MBL transition. In fact, the essence of periodically driven is that the system Hamilton
changes periodically as the form of Ĥ (t) = Ĥ (t + T ), caused by the coupling with the
external field. If we calculate the integration of the evolution operator over one period, we
will get the important unitary operator, the Floquet operator [24]

F̂ = T exp
∫ T

0
(−iĤ(t))dt (1)

Here T exp is a time-ordered exponential. In the eigenstate of Ĥ(t), |ϕn〉 , can be written as

F̂ =
D∑
n=1

e−iθn |ϕn〉 〈ϕn| (2)

where D is the dimension of the system, and θn is the quasienergy of Ĥ(t) in |ϕn〉. One can
introduce Floquet Hamilton HF which effectively determines the properties of driven sys-
tem, as F̂ = e−iHFT , consequently, the eigenstate of F̂ is also as |ϕn〉. It has been confirmed
in ref. [12] that period can be used as an important factor determining whether the drive
of kicked rotor can cause a transition from MBL to delocalized phase. We have reason to
speculate that in new driven there will still be a critical period Tc corresponding the phase
transition point, just like hc. One of the most commonly used forms of driven in recent years
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is periodic replacement of two different hamiltonians, here we adopt the new type of driven
by adding a time-dependent trigonometric functions as external control field to many-body
system to structure a periodic time-dependent Hamiltonian [25, 26]. It can be expressed as:

Ĥ(t) = H0 + V̂ cos(ωt + ϕ) (3)

H0 is the hamiltonian of HS model in MBL system which consider the global two-body
interaction, we will introduce the model in detail in Section 2, here H satisfies the relation,
Ĥ(t) = Ĥ(t+T), T = 2π/ω. In ref. [14], the utilization of this type of driving in delocalized
many-body system of hard-core bosons model has been confirmed that high frequency can
induce the transition to MBL phase. We can predict that MBL phase will transit to ergodic
phase if the frequency of driving is sufficiently low or the period of driving is sufficiently
strong. The purpose of this paper is to explore the properties of MBL in the HS chain which
is driven periodically. Through the numerical simulation of several efficiency physics, we
can argue when driving strength is less than Tc, the state will retain the local memory of the
initial state. In contrast, strong driving will break the localized phase and heat the system to
thermalization. This result has been confirmed in different scale sizes and we can see that
they have same tendency although slightly difference caused by scale are reflected in the
images. In Section 3, we will detailed presentative relevant calculation results. Section 4 is
devoted to discuss the conclusions we get and what to further.

2 Model

We study the HS model in ergodic phase and MBL phase driven periodically in this paper.
Currently, the research of the nearest neighbor interacting of spin-1/2 chain has been very
common [12, 16], and a wider range of interactions such as long-range interaction needs to
be taken into account in order to complete the theory of driving many-body system. As the
generalization of one-dimensional XXX Heisenberg model, HS model can give full play to
its characteristic of considering the global interactions among many-body system to meet
above needs [24, 27]. Due to the close relationship between mathematics and physics, more
attention is focused on HS model. There are lots of hot theories are related to it, e.g. Yangian
quantum groups, quantum halls effect and Yang-Mills theory. Therefore it is important to
characterize the dynamics in this model particularly under standing the specifics of many-
body localization there. Here we consider the global two-body interactions. The form of
Hamilton in that system is

H2 =
∑
ij

′
(

ZiZj

Zij − Zji

) (
Pij − I

)
,Zij = Zi − Zj,Zj = exp

(
i2π

N
j

)
(4)

∑ ′ represents the summation of all cases of i �= j , and Pij is an operator exchanging the
state on site i and j, namely the spin operators. For spin 1/2 chain, that is, the SU(2)

Pij = S+
i S

−
j + S−

i S
+
j + 2Szi S

z
j + 1

2
= 1

2
+ 2

−→
Si · −→

Sj (5)

In terms of spin operators, it can be rewritten as

H2 =
∑
ij

′ 1

4 sin2 θij

(
−1

2
I + 2

−→
Si · −→

Sj

)
(6)
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N is the total particle number, θij = (i−j)π
N Then we can investigate the MBL transition in

H2 with disordered external fields, namely the disordered HS spin-1/2 chain with global
two-body interaction, form as

H′ = H2 +
∑
i

hiS
z
i (7)

The last step is to drive the external field periodically with added item we mentioned at
Section 1, with the form

H(t) = H ′ + V0 cosωt
∑

i

Sz
i (8)

The floquet operator is written as

F̂ = T exp
∫ T

0
(−iĤ(t))dt (9)

3 Numerical Simulations

In order to study the critical point of the phase transition in this periodically driven system,
we first choose representative physical quantity, fidelity [28], which is widely used in the
characterization of phase transition. Following the definition of the ground-state fidelity
in ref. [29], we can generalize the fidelity of the n-th excited state, defined as the overlap
between |ψn(λ)〉 and |ψn(λ + δ)〉

Fn(λ, δ) = |〈ψn(λ)| ψn(λ + δ)〉| (10)

where δ is only a 10−3 order of magnitude small value for λ. Usually the value of the fidelity
is approaching to 1, but near the critical point of the phase transition, a significant variation
in trends will appear for the fidelity because the difference between the two state of same
energy level on both sides of the critical point is the maximum. Comparing with ref. [29]
which research based on ground-state fidelity, current studies show that the characterization
of phase transition by the fidelity of excited state is more obvious [30]. We choose the
fidelity for exited state in the middle one third of the spectrum which represent a higher
temperature to observe such a more persuasive phase transition in high energy level.

In Fig. 1a, b and c, we plot the averaged excited-state fidelity E[F] as a function of the
driven strength T, respectively, we drive the disordered HS systems with different disorder

Fig. 1 a Average fidelity E[F] as a function of the driven strength T when we take h=0.5. Data are for system
sizes N = 6; 8; 10; 12, and averaging is performed over 1000 disorder realizations. b Average fidelity E[F]
as a function of the driven strength T when we take h=3.5. c Average fidelity E[F] as a function of the driven
strength T when we take h=10. The values of N are indicated in the legend
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strengths to observe the effect of periodic driving on phase transition. In Fig. 1a, we drive
the system with a small disorder strength as h=0.5, which is in ergodic phase. It can be seen
that as the driven strength increases, the trend of plot does not change obviously even in
different system sizes. The pronounced data change shown in Fig. 1a indicates that phase
transition does not happen in this periodic driven system and the system is still in a ergodic
phase. However, in Fig. 1b, in the localized phase (small T) E[F] decays substantially until
T approaches to the critical point Tc, then in the ergodic phase (large T) E[F] stay at the
minimum value and the trend of plot does not change. When the disorder strength h= 3.5
which is close to the critical value of the localized phase, the trend of averaged excited-
state fidelity changes obviously on the both side of critical driven strength Tc which takes
1.2 for N=6, 1.9 for N=8, 2.2 for N=10, 2.5 for N=12. So one can get the critical driving
strength Tc ∈ [1.2, 2.5], which indicates that the localized HS system has a transition from
localized phase to ergodic phase. It can be seen from the comparison that the size of the
system will affect the critical point of phase transition. The larger the system is, the larger
the critical driven strength needed for phase transition, because the more particles in the
system, the more complex interaction between the global two particles and the more difficult
it is to change from localized phase to ergodic phase. In Fig. 1c, we once again increase the
disorder strength to let h=10, it can be seen that the trend of the plot presented in Fig. 1b
are further strengthened, here the phase transition is more obvious and the critical driven
strength obtain Tc ∈ [1.5, 3]. And this is consistent with the conclusion mentioned In ref.
[14] which argue that the system in large driven frequency is in the localization phase and
the system in small frequency is in the ergodic phase. In picture 1(c), we once again increase
the disorder strength to let the h take as 10. It can be seen that the trend of the plot presented
in Fig. 1b are further strengthened, in which the phase transition is more obvious and we
get the critical driven strength Tc ∈ [1.5, 3]. It is worth noting that is consistent with the
conclusion mentioned In ref. [14] which give that the system retains the localization phase
when the driving frequency is large and the system breaks to the ergodic phase when the
driving frequency is small.

Compared the critical disorder strength Tc of 1(b) with 1(c), it can be seen that for a MBL
system with larger disorder strength, correspondingly, a larger driven strength is needed to
promote the phase transition. In order to confirm the relationship between disorder strength
h and critical driving strength, we plot the averaged excited-state fidelity E[F] under the
same system size as a function of the driven strength in different disorder strength as shown
in Fig. 2. we can obtain the approximate critical driven strength Tc for different system size
h. For h = 3.5, Tc → 2.2, h = 5, Tc → 2.4, h = 10, Tc → 2.7. It can be seen that with the
increase of disorder strength, the localized property of the system becomes more stable and
a larger required critical driving strength is needed.

In Fig. 1a, the periodic driving does not bring phase transition from ergodic phase to
the localized phase, which is different from the periodically driven Heisenberg XXX model
with the same situation. It just because that here the HS model has global two-body inter-
action. To further study the property of MBL phase, under the same periodic driving, we
also investigate the corresponding non-disordered system when h =0.5. Here h is constant,
not disordered. In Fig. 3, one can see the E[F] versus T shows sudden drop at the critical
point and then immediately rise to 1. It indicates that the non-disordered system has the
quantum phase transition rather than a MBL transition. This illustrates that disorder plays
an important role on MBL transition.

For the purpose of further studying the properties of ergodic phase under periodic driv-
ing, we study the phase transition properties of Heisenberg XXX model for the same
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Fig. 2 Average fidelity E[F] as a function of the driven strength T when we take N=10. Data are for disorder
strength h = 3.5; 5; 10, and averaging is performed over 100 disorder realizations

driving which only contain nearest neighbor two-body interaction. In Fig. 4, the trend of
plot changes obviously on the both side of critical driven strength. It shows that the MBL
transition does happen in Heisenberg XXX model, which is different from the HS model.
This finding suggests that the interaction does affect the properties of the MBL under peri-
odically driven. The more complex the interaction between particles, the more stable the
delocalized properties of the system, the more difficult it is to drive MBL transition.
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Fig. 3 Average fidelity E[F] as a function of the driven strength T when we take the same strength as Fig. 1a
of non-disordered system. Data are for system sizes N = 6, and averaging is performed over 1000 disorder
realizations. E[F] versus h show three sudden drops at the critical points and then immediately rise to 1
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Fig. 4 Average fidelity E[F] as a function of the driven strength T when we take h=0.5 in Heisenberg model.
Data are for system sizes N = 6; 8; 10; 12, and number of averages is 104 for N=6, 1000 for N=8, 100 for
N=10 and N=12

4 Summary

In this paper, we use exact matrix diagonalization to explore the property of MBL in the
Haldane-Shastry(HS) with periodic driving.We test the fidelity between two excited states
by a small parameter perturbation δT , and use it to explore the phase transition. Numerical
simulations performed show that periodic disturbance can induce the transition of the disor-
dered HS systems with long-range interactions from MBL phase to ergodic phases. We get
that if the driving strength, which is the period of periodic disturbance, is larger than crit-
ical driving strength Tc, the phase transition from MBL phase to ergodic phase will occur
in this HS system, and the amplitude and critical point of the phase transition are related to
the size of the system. In addition, the disorder strength also affects the critical point and
amplitude of the phase transition by affecting the localization of the system. It is worth not-
ing that when we drive the disordered HS model in the ergodic phase periodically, there is
no phase transition under periodic disturbance which is opposite to the Heisenberg XXX
model. While for the situation of the non-disordered system which takes the same strength
of h as the ergodic phase, the system has the quantum phase transition rather than a MBL
transition under periodic disturbance. It illustrates that disorder plays an important role on
MBL transition. By comparing the results of Heisenberg XXX model with nearest neigh-
bor interaction in the same situation, it shows that the interaction has an important effect on
property of MBL. We hope that this work would future the exploration of the property of
MBL with periodical driving, and expand the related research in our future work.
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