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Abstract: This paper proposes and implements a lightweight, “real-time” localization system
(SORLA) with artificial landmarks (reflectors), which only uses LiDAR data for the laser odometer
compensation in the case of high-speed or sharp-turning. Theoretically, due to the feature-matching
mechanism of the LiDAR, locations of multiple reflectors and the reflector layout are not limited
by geometrical relation. A series of algorithms is implemented to find and track the features of the
environment, such as the reflector localization method, the motion compensation technique, and
the reflector matching optimization algorithm. The reflector extraction algorithm is used to identify
the reflector candidates and estimates the precise center locations of the reflectors from 2D LiDAR
data. The motion compensation algorithm predicts the potential velocity, location, and angle of the
robot without odometer errors. Finally, the matching optimization algorithm searches the reflector
combinations for the best matching score, which ensures that the correct reflector combination could
be found during the high-speed movement and fast turning. All those mechanisms guarantee the
algorithm’s precision and robustness in the high speed and noisy background. Our experimental
results show that the SORLA algorithm has an average localization error of 6.45 mm at a speed of
0.4 m/s, and 9.87 mm at 4.2 m/s, and still works well with the angular velocity of 1.4 rad/s at a sharp
turn. The recovery mechanism in the algorithm could handle the failure cases of reflector occlusion,
and the long-term stability test of 72 h firmly proves the algorithm’s robustness. This work shows
that the strategy used in the SORLA algorithm is feasible for industry-level navigation with high
precision and a promising alternative solution for SLAM.

Keywords: LiDAR navigation; reflector localization; motion compensation; reflector matching;
high-speed movement

1. Introduction

Autonomous mobile robots (AMRs) can significantly release manpower from heavy
fetching tasks and boost efficiency and avoid human error from repeatable operations [1].
In particular, with the development of LiDAR-based navigation techniques, mobile robots
could be located in “real time” in complex environments, and accurate localization is
highly desired to ensure the performance and safety of autonomous mobile robots [2,3].
Navigation technology is one of the fundamentals in the field of automation and robotics.
Lots of research activities and industry applications are conducted with Laser SLAM,
inertial navigation, magnetic tapes, and Visual-SLAM techniques. Not like the typical
SLAM approach, the laser-based reflector localization technique is the classic solution
and has the advantages of high-precision localization, high-speed processing, and decent
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robustness with no accumulated errors. For example, automated guided vehicles (AGVs)
and industrial forklift robots in the warehouse are the cases with the highest demand for
the automation. The stringent requirements of localization make LiDAR-based reflector
localization the best candidate so far.

Localization of mobile robots refers to the process in which mobile robots estimate
their positions and pose angles through sensors’ perception techniques [4,5]. Recent
progress in autonomous vehicles and LiDAR devices has dramatically reduced the cost
of LiDAR hardware and pushed the LiDAR-based SLAM to become the most promising
approach for self-driving vehicles and robots with great flexibility [6–9]. Laser-based
SLAM can provide centimeter-level precision and does not need any extra modification
of the environment [10]. However, the ability of mapping is still limited to the low-speed
applications in a small and “feature-rich” environment. For unmanned vehicles or robots,
the warehouse environment lacks the so-called “features”, and most scenes are quite
similar from robot’s perception, which is one of the main obstacles causing navigation
failure [11,12]. Many studies have been conducted about the sensor fusion technique, and
Visual-SLAM is an alternative approach for 3D SLAM with low-cost camera [13], but it
is gated by the computing capability. Another approach is the LiDAR-based localization
technique assisted with artificial landmarks, which refers to the cylindrical reflectors
in this study. Different from laser SLAM, which can realize localization and mapping
simultaneously, the LiDAR-based reflector localization algorithm (RLA) requires the pre-
installation of reflectors to provide enough “features” to help the localization process. Since
RLA uses the static map as the localization reference, it has the characteristics of high
localization accuracy, high stability, and high resistance to noise. Because the information
of artificial landmarks can be clearly identified and processed referring to the existing
map [14], there will be no cumulative error in the algorithm, which is a large advantage for
long-term operation and highly desired for the industry applications.

Even artificial landmarks have been used in laser navigation for decades. There is still
much research work ongoing about investigating novel functions and features for efficient
matching and remarkably reducing the computation workload. The localization technique
based on the trilateration method utilizes the adaptive unscented Kalman filter method to
improve the accuracy of localization [15]. The tracking and localization algorithm are pro-
posed to improve positional accuracy with the optimal triangular positioning method [16].
Farouk Ghallabi presented a localization algorithm by matching road perceptions from a
3D LIDAR sensor with HD map elements. This method estimates the position of the vehicle
by matching the observed HRL with the HD map attributes [17]. Davide Ronzoni provided
the algorithm for AGV self-localization based on landmark identification to solve the global
localization problem for an industrial AGV moving in a known environment [18].

In this paper, we propose a “light-weight” reflector localization algorithm (SORLA)
using 2D LiDAR data and the reflective cylinders as landmarks with precision of up to
6.45 mm. To the best of our knowledge, this is one of the most precise results in the field of
industry-level autonomous robots. LiDAR-based localization with artificial landmarks is
a relatively mature methodology for the industrial robotic applications [19,20]. It utilizes
a “well-designed” 2D feature map to help improve localization precision and algorithm
robustness. The feature map is composed with artificial landmarks, which are the highly
reflective geometrical objects in 2D. The approach proposed in this work uses LiDAR-
based data only to locate the robot without IMU’s association [21–24], which also isolates
the impact of sensor noise [25]. With the help of the reflector matching mechanism, the
estimated odometer information is used to track and predict the location under high
speed [26]. The details will be discussed in detail in Section 2.4.
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2. Materials and Methods
2.1. System Description
2.1.1. The Building of the Coordinate System

For the generality of setup, LiDAR is installed at the center of the robot, which
means that the position of LiDAR can be used to represent the position of the robot in
a two-dimensional configuration. In this research, two coordinate systems are estab-
lished respectively: the global coordinate system OXY and the robot coordinate system
ORXRYR centered on the mobile robot, where the center of the robot coordinate system is
OR (Figure 1).

The LiDAR device will obtain a full frame of scanning data set from each rotation
as
{
(dj, θj),σj

∣∣j = 1, 2, . . . , n
}

, where dj is the linear distance between the j-th data point
from the LiDAR center, θj is the azimuth angle of the j-th data point in the polar coordinate
system centered on LiDAR, and σj is the reflection intensity value of the j-th data point.
The x and y coordinate of the j-th data point in the robot coordinate system is:{

Rxj = dj cos(θj)
Ryj = dj sin(θj)

(1)

Suppose that the robot’s pose in the global coordinate system is (xg, yg, θg), where xg and
yg is the position of the robot coordinate system with center OR in the global coordinate system,
and θg is the rotation angle of the robot coordinate system in the global coordinate system.
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2.1.2. LiDAR-Based Localization System

A series of cylindrical reflectors with high reflectivity are installed in the actual
warehouse environment. LiDAR is installed on the top of the mobile robot to collect the
scanning data of the surrounding environment, avoiding any occlusion. The navigation
system consists of the “SORLA” program (Figure 2), a Pepper-Fuchs R2000 Laser Scanner,
and a CAN bus device. The CAN bus device is used to receive the control messages and
send out localization data messages in the specific format.

When the robot is moving at a high speed, the SLAM algorithm is prone to odometry
errors. One solution is to correct the errors by using extra sensors such as IMU, However,
this will require extra hardware with the calibration process and will increase integration
cost. The advantage of the navigation system in this study is that, due to the use of motion
compensation algorithms and reflector sequencing optimization, the system only needs
LiDAR data to suppress the odometry error caused by the acceleration or deceleration.

Here, we define two modes: initialization mode and navigation mode. The location
of the reflectors used in the initialization mode and the navigation mode are stored in
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the “initialization reflector map” and the “navigation reflector map”, respectively. The
advantage is that the reflector layout of the navigation mode does not rely on the geometric
relationship to determine the location, as the initialization mode does. The current pose
can be estimated from the “last-step” localization result and the motion compensation
algorithm. Firstly, the initial position and orientation can be acquired in the initialization
mode, then navigation mode can be performed subsequently to track the location changes
in real-time; finally, the position of the mobile robot in the global coordinate system is
calculated by the SVD algorithm [27,28].
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Figure 2. “SORLA” program architecture diagram.

The navigation system establishes a 2D real-time navigation map (Figure 3) composed
of the reflectors by processing the scan data of the laser scanner on the surrounding envi-
ronment. In order to obtain the location and orientation information independently, the
geometrical relation of the reflectors in the initialization mode has to be easily distinguish-
able. The area in the red rectangle is the initialization area. The red dot represents the
“real-time” position of the mobile robot, each green dot represents the “ideal position” of
the reflectors from the reflector map, and the black dots around them are the real time data
from the laser scanner. We call the reflector used for initialization mode the “initialization
reflector” and the reflector used for navigation mode the “navigation reflector”.
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2.2. Extraction Algorithm of the Reflector Center Position

The extraction of the center point of the reflector is an important prerequisite of the
reflector matching. Our analysis indicates that the accuracy of the reflector center point
has a significant impact on the final localization accuracy of the system. The extraction
algorithm is composed of three steps: (i) the extraction of the raw reflector data, (ii) the
clustering of the reflector data, and (iii) the estimation of the reflector center. For the
convenience of the following description, we call the reflector data in the initialization
reflector map and navigation reflector map the “referential reflector data” and the reflector
data in the actual site extracted by the reflector center extraction algorithm the “detected
reflector data”.
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2.2.1. The Extraction of the Raw Reflector Data

Because of the high reflectivity of the reflectors, the returned light intensity from
the reflectors is much stronger than other objects and the background. Therefore, the
raw reflector data can be simply picked up from the laser scanning data by selecting
a proper light intensity threshold. Suppose the LiDAR frame contains n data points:{

Mj = (dj, θj),σj
∣∣j = 1, 2, 3, . . . , n

}
. In order to quickly and accurately distinguish the

reflector data from the background, only the data of which the distance is greater than or
equal to dmin are extracted; by filtering the reflection intensity, m raw reflector data points
are selected {Mk = (dk, θk),σk|k = 1, 2, 3, . . . , m|1 ≤ k ≤ m}. When the data points in Mj
meet the following conditions, they are considered the raw reflector data points:

dk ≥ dmin
σk ≥ σmin
σk = max

{
σp−1,σp−1,σp−1

∣∣p = 2, 3, 4, . . . n− 1
} (2)

Here, σmin is the threshold of the targeted reflection intensity, and dmin is the minimum
distance to distinguish a reflector.

2.2.2. Clustering of the Reflector Data

Practically, there are always some noise signals in the background of the data filtered
by the reflection intensity. Therefore, it is very necessary to group the raw reflector data into
the reflector clusters, and each cluster represents all data points from one single reflector.
For example, if the distance and angle differences of two points are less than the threshold
values, the two points can be from the identical reflector. In this step, the distance threshold
Dk and the angle threshold ϕk of adjacent data points are set, and the diameter of each
reflector is R0. Assuming that the raw reflector data are divided into q reflector data sets by
the clustering method, the algorithm passes through the following constraints to traverse
and compare the distance and angle of the adjacent raw reflector data points to obtain the
data set belonging to the same reflector:{

|dk − dk−1| ≤ Dk
|θk − θk−1| ≤ ϕk

, (3)

where ϕk =
{

1800R0
πdk

∣∣∣k = 2, 3, 4 . . . m
}

,dk < dk−1, the angle between the adjacent points
and the center line of the LiDAR is ϕ. A vertical point is set on the longer distance dk−1
to introduce L (Figure 4). It is not hard to work out from the simple geometric relation.
β = α/2, L = tanβ · dk · sinα. Therefore, it can be concluded that:

Dk = L = tan(α/2) · dk · sinα. (4)

2.2.3. The Estimation of the Reflector Center

Since the reflector intensity profile from a single reflector cluster shows a nonlinear
distribution, a Gauss fitting technique [29] is used to locate the center peak location, which
also can be used to present the highest possible location of the reflectors. In this section,
the center position of the reflector is estimated by fitting the peak value of the reflection
intensity with the Gaussian function. In Figure 5, the reflected intensity profile at the
closer location decreases more sharply from the center peak, while the reflection intensity
profile at the larger distance shows a flattened trend. By applying adaptive parametric
fitting, the Gaussian curve is able to appropriately present the center of the reflectors.
Therefore, the reflection intensity σ f of the central point in the reflector data set Mr can be
obtained. Suppose there are s data points in the r-th reflector data set, forming a collection
S1 = {0, 1, 2 . . . , s}, u ∈ S1. Then, the reflection intensity of the r-th reflector data set σr can
be obtained by polynomial fitting:

log(σr) = p1u2 + p2u + p3. (5)
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The coefficients of the Gaussian fitting model are further determined:

a = e(p3−
p3

1 p2
2

4 ), b = − p1 p2

2
, c =

√
− 1

p1
. (6)

Divide S1 into 4s elements to get S2,w ∈ S2, then the fitting reflection intensity σg
corresponding to the element in S2 obtained by Gaussian fitting model is as follows:

σg = ae(−(
(w−b)2

c )). (7)

Thus, σ f = max(σg), and the index of the data corresponding to σ f is I f . Let the first
point in the r-th reflector data set be (d1, θ1,σ1), the last point is (dend, θend,σend), an angle
threshold value θλ is set to determine the angle θ f of the center point of the r-th reflector
data point set, where θλ is:

θλ =
(θend − θ1)I f

4s
, (8)

where θ f = θ1 + θλ. The point with the largest reflection intensity in the r-th reflector
data set (dm, θm,σm) is found, the index of the corresponding data point is Im, the interval



Sensors 2021, 21, 4479 7 of 20

threshold ∂ = min((s − Im), (Im − 1)) is set, and d f is the mean value of the distance
between the data points in the interval [(Im − ∂), (Im + ∂)] of the r-th reflector data set:

d f =
d(Im − ∂) + . . . + d(Im + ∂)

2∂
. (9)

From above, the coordinates of the center point of the r-th reflector data point collection
in the robot coordinate system are calculated as (xr, yr), and this coordinate is used to
represent the actual position of the r-th reflector extracted from the raw data of LiDAR
scanning, {

xr = d f cos(θj)
yr = d f sin(θj)

. (10)

2.3. Reflector Matching Algorithm in Initialization Mode

Before navigation starts, it needs to obtain the initial location and angle of the robot
by running the initialization mode, and the number of initialization reflectors is at least
3 to guarantee the initial localization calculation. The initialization reflector map is a set
of reflector position coordinates used to obtain the initial position calculation. The design
principle of the initialization reflector should be as follows. (1) The distance difference
between any two reflectors should be greater than 300 mm, and (2) the angle difference
between every two reflectors should be greater than 6◦. In this step, the navigation system
first finds three or more detected reflectors nearest to the mobile robot to form the candidate
pool for the initial location calculation. The initial location of the mobile robot is obtained
by matching the distance and angle value of the candidate pool with the referential reflector
pool picked up from initialization reflector map by the simple searching mechanism.

It is assumed that there are N(N ≥ 3) detected reflectors in the optimal matching area; the
coordinate of the r-th detected reflector is Nr = {(dr, θr), |r = 1, 2, . . . , N− 1}, and M(M ≥ 3)
referential reflectors in the initialization reflector map; the coordinates of the i-th referential
reflector are Mi = {(xi, yi)|i = 1, 2, . . . , M− 1}. Then, the distance vector between each two
detected reflectors and each two referential reflectors can be obtained, respectively:

Ndis tan ce = [d1,2, d1,3, . . . d1,N , d2,3, d2,4, . . . , d2,N , . . . dN−1,N ]. (11)

Mdis tan ce = [d1,2, d1,3, . . . d1,M, d2,3, d2,4, . . . , d2,M, . . . dM−1,M]. (12)

According to the geometric principle, N(N − 1)(N − 2)/6 angles will be formed
between any three of the N detected reflectors. Suppose that the linear distance between
the r-th detected reflector and the (r-1)-th detected reflector is a, the one between the
r-th detected reflector and the (r + 1)-th detected reflector is b, and the one between the
(r-1)-th detected reflector and the (r + 1)-th detected reflector is c. The matching angle
reference value θr between the three detected reflectors is represented by the angle value θ
corresponding to the line c; we can obtain the following results:

θr = θ = arccos(
a2 + b2 − c2

2ab
), (13)

the angle vector between each three detected reflector and each three referential reflector
can be acquired, respectively:

Nangle = [θ1, θ2, θ3, . . . θ N(N−1)(N−2)
6

]. (14)

Mangle = [θ1, θ2, θ3, . . . θ M(M−1)(M−2)
6

]. (15)

In order to make use of the above distance vector and angle vector to match the reflec-
tor quickly and accurately, we set the distance matching error threshold as z f and angle
matching error threshold as g f . The absolute value of the difference between each distance
value of the distance vector Ndis tan ce between the detected reflectors and each distance
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value of the distance vector Mdis tan ce between the referential reflectors is calculated, and
the distance difference matrix of reflector Zdis tan ce is obtained:

Zdis tan ce =


Z11 Z12 Z13 · · · Z1N
Z21 Z22 Z23 · · · Z2N
Z31 Z32 Z33 · · · Z3N

...
...

...
. . .

...
ZM1 ZM2 ZM3 · · · ZMN

, (16)

where ZM,N = |dM−1,M − dN−1,N |.
Considering extreme small or large angles in the polygon are vulnerable to measure-

ment error or noise, we only recognize the effective angle data between θ = 5◦ ∼ 175◦.
Similarly, the absolute value of the difference between each angle value of the angle vector
Nangle between the detected reflectors and each angle value of the angle vector Mangle
between the referential reflectors are calculated, and the matrix of the angle difference of
the reflector Gangle is obtained:

Gangle =


G11 G12 G13 · · · G1N
G21 G22 G23 · · · G2N
G31 G32 G33 · · · G3N

...
...

...
. . .

...
GM1 GM2 GM3 · · · GMN

, (17)

where GMN =

∣∣∣∣θ M(M−1)(M−2)
6

− θ N(N−1)(N−2)
6

∣∣∣∣.
Take the minimum value of each column in the distance difference matrix Zdis tan ce

and the angle difference matrix Gdis tan ce, compared with z f and g f respectively. If Zij
in the distance difference matrix Zdis tan ce is within z f , and the distance between the i-th
referential reflector and the j-th detected reflector is matched successfully, then Gij and g f
are further compared. Therefore, the i-th referential reflector and the j-th detected reflector
constitute a pair of matched reflector combinations.

2.4. Navigation Localization Algorithm
2.4.1. Motion Compensation Algorithm

Unlike the initialization mode, the navigation mode uses a guess-and-matching strat-
egy to make the guess on the “most-possible” reflector candidates and performs the
matching calculation to obtain the location. When the robot moves with low speed, the
travelling distance between two adjacent points is small, so the previous location can be
directly used as initial guess location for the next round of calculation. However, with the
high speed or fast turning angle speed, such an assumption will introduce a distance or
angle error and cannot be ignored. This section proposes a motion compensation algorithm,
which effectively eliminates the odometer error caused by high-speed movement.

The navigation system first uses a motion compensation algorithm to predict the real-
time pose of the mobile robot during the movement to form a desired pose sequence. The
estimated location is used to complete the navigation reflector matching in the navigation
mode. Since the pose history of the robot from the previous moment is known, the pose
and velocity estimates of the previous moment are used to predict the pose and speed of
the current moment; each time the calculation is completed, the laser odometer will be
recorded to form the robot’s trajectory and rotation trajectory histogram.

Because the scanning frequency of LiDAR is high, we assume that there is no sig-
nificant change in the robot’s speed and angular velocity in a scanning period, and the
scanning period of LiDAR is t. In order to obtain the key parameters of the robot motion
model, suppose that the pose of the robot at the last moment is (xp, yp, θp), and the time
period from time zero to the previous time is divided into 2N time periods according to the
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scanning period; correspondingly, the velocity trajectory and rotation trajectory of the robot
from time zero to the previous time are also divided into 2N sub-trajectories according
to the scanning period. Here, a digital averaging filter is used to smooth out the speed
changes across adjacent N calculations. Then, the horizontal velocity vx, vertical velocity
vy, and angular velocity θv at the current moment are:

vx = 1
Nt

N
∑

i=1
X1,i

vy = 1
Nt

N
∑

i=1
Y1,i

θv = 1
Nt

N
∑

i=1
θ1,i

, (18)

where X1,i, Y1,i are the horizontal and vertical offsets corresponding to the i-th scan period
(i ≤ N) in the (N~2N)-th sub-motion trajectory; θ1,i is the angular offset corresponding to
the i-th scanning period of the (N~2N)-th sub-rotation trajectory.

The x acceleration ax, y acceleration ay and angular acceleration aθ corresponding to
the current moment are: 

ax = 1
Nt ((

N
∑

i=1
X1,i)− (

N
∑

i=1
X2,i))

ay = 1
Nt ((

N
∑

i=1
Y1,i)− (

N
∑

i=1
Y2,i))

aθ = 1
Nt ((

N
∑

i=1
θ1,i)− (

N
∑

i=1
θ2,i))

. (19)

where X2,i, Y2,i are the x and y offsets corresponding to the i-th scan period (i ≤ N) in the
(0~N)-th sub-motion trajectory; θ2,i is the angular offset corresponding to the i-th scanning
period of the (0~N)-th sub-rotation trajectory.

Then, the pose of the robot at the current moment estimated by the motion compensa-
tion algorithm is (xe, ye, θe): 

xe = xp +
1
N

N
∑

i=1
X1,i

ye = yp +
1
N

N
∑

i=1
Y1,i

θe = θp +
1
N

N
∑

i=1
θ1,i

. (20)

Due to the fact that the reflector is prone to matching failure when the robot is
accelerating or decelerating, the navigation system can perform compensation calculations
on the position of the detected reflectors according to the motion compensation algorithm.

Suppose that the LiDAR scans k detected reflectors during movement, and these
reflectors form a collection of detection reflectors re fk. Among them, the coordinate of the
j-th detected reflector in the robot coordinate system is Kj =

{
(xj, yj),σr

∣∣j = 1, 2, 3, . . . , k
}

;
then, the position (xjj, yjj) after optimizing the position of the j-th detected reflector at the
current moment by using the motion compensation algorithm is:{

xjj = xj − vx · t(k− j/k)
yjj = yj − vy · t(k− j/k)

. (21)

2.4.2. Reflector Matching Algorithm in Navigation Mode

Because the current pose can be estimated according to the motion compensation algo-
rithm, the position of the navigation reflectors can be set arbitrarily in practical application,
which can greatly reduce the complexity of setting the position of the reflector in the actual
warehouse environment. The matching process of sequential comparison of distance and
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angle errors is cumbersome and inefficient, so the matching weight value w combining
distance and angle error is proposed in this part.

In the localization process, if the distance range of the detected reflectors is too large,
the distance error factor in the matching weight w will be dominant; if the range is too
small, the angle error factor will play a leading role accordingly. Therefore, (dnear, d f ar) is
used to screen the appropriate reflector range to balance the error factor in the matching
weight. Therefore, the navigation system screens out the n detected reflectors that are
within the range of (dnear, d f ar) from the robot based on the scanning results of the LiDAR
to form a set of detected reflectors re fn and calculate the distance matrix Dn and angle
matrix An between the robot and each detected reflector at this time.

In order to improve the calculation speed of the localization algorithm, it is also
necessary to sort Dn so that the navigation system can start to match the detected reflectors
close to the robot. Since the motion compensation algorithm in the previous section
can estimate the current position of the robot, the navigation system can filter out the m
referential reflectors in the reflector map within the range of (dnear, d f ar) from the estimated
position to form the referential reflectors re fm.The distance matrix Dm and the angle matrix
Am between the current position of the robot and each referential reflector are further
calculated, and Dm is sorted in the same way.

Dn =


dn1
dn2
dn3

...
dnn

, An =


θn1
θn2
θn3

...
θnn

, Dm =


dm1
dm2
dm3

...
dmm

, Am =


θm1
θm2
θm3

...
θmm

. (22)

The matching weight value w of the navigation reflector is calculated and compared
with the weight threshold wσ to filter out the matching reflector combination.

w = σdσa, (23)

σd =


dn1 − dm1 dn2 − dm1 dn3 − dm1 · · · dnn − dm1
dn1 − dm2 dn2 − dm2 dn3 − dm2 · · · dnn − dm2
dn1 − dm3 dn2 − dm3 dn3 − dm3 · · · dnn − dm3

...
...

...
. . .

...
dn1 − dmm dn2 − dmm dn3 − dmm · · · dnn − dmm

, (24)

σa =


θn1 − θm1 θn2 − θm1 θn3 − θm1 · · · θnn − θm1
θn1 − θm2 θn2 − θm2 θn3 − θm2 · · · θnn − θm2
θn1 − θm3 θn2 − θm3 θn3 − θm3 · · · θnn − θm3

...
...

...
. . .

...
θn1 − θmm θn2 − θmm θn3 − θmm · · · θnn − θmm

 (25)

Taking the minimum value wj,i of the i-th column in w, if wj,i is within the matching
weight threshold wσ, it means that the i-th reflector in the detected reflector set re fn and
the j-th reflector in the referential reflector set re fm are successfully matched.

2.5. The Calculation of Mobile Robot’s Position

To solve the localization issue with the artificial landmark approach, most algorithms
use the trilateral localization method to calculate the position of the robot in the global
coordinate system [30,31]. However, this approach has some drawbacks. When there is a
measurement error present in reflector data, the three circles do not intersect at one point
anymore, and the method will fail with a large error.

The particle filter is the technique to estimate the localization from a finite set of
weighted random samples to approximate the posterior probability density of any particle
state [32]. However, it heavily depends on the initial state, the number of particles used in
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calculation, and may have the convergence issue. For the navigation problem, except the
position and angle, velocity, acceleration, and angular velocity could all be solved at the
same time but require significant computing power. Quite different from particle filtering,
the SVD algorithm only calculates the rotation vector and translation vector between the
robot coordinate system and the global coordinate system with few computing resources.
Therefore, SVD algorithm is used in this strategy to calculate the position of the robot in
the global coordinate system.

During the matching process, the position matrix A of n detected reflectors and the
position matrix B of n referential reflectors can be acquired; then, the rotation vector R and
translation vector t of the position coordinate matrix can be calculated.

Where
B = RA + t. (26)

In order to calculate the rotation vector R and translation vector t, it is necessary
to calculate the mean coordinates of two reflector position sets A and B; then, the mean
coordinates of detected reflector position matrix A and referential reflector position matrix
B are as follows: 

µA = (xmA , ymA) =
1
n

n
∑

i=1
(xAi , yAi )

µB = (xmB , ymB) =
1
n

n
∑

i=1
(xBi , yBi )

, (27)

µA and µB are equivalent to the central coordinates of the position matrix A and B.
In order to calculate the rotation vector R, it is required to eliminate the influence of the
translation vector t; therefore, the above reflector position matrix should be re-centered to
generate the new reflector position matrix An and Bn, and the covariance matrix H between
the point sets should be calculated:

Ani = [Ai − µA]
Bni = [Bi − µB]

H =
n
∑

i=1
Ani Bni

T =
n
∑

i=1
(Ai − µA)(Bi − µB)

T
. (28)

In the SVD algorithm, U, S, and V of matrix H can be obtained, and the optimized
rotation vector R between A and B can be calculated:

[U, S, V] = SVD(H), (29)

R = VUT . (30)

Ultimately, the translation vector t can be obtained by R:

t = −RµA + µB. (31)

The obtained rotation vector R and translation vector t are shown in Figure 6. The
position coordinate of the robot in the robot coordinate system is (xl , yl), and the inverse
operation is performed to obtain the position coordinate (xg, yg) in the corresponding
global coordinate system:

[xg, yg] = (R−1([xl , yl ]− t))
T

, (32)

The orientation θg of the robot in the global coordinate system is as follows:

θg = −arctan(
R(2, 1)
R(1, 1)

) · 180◦

π
. (33)
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Figure 6. Rotation vector R and translation vector t.

3. Experimental Results

The scanning frequency of the Pepper-fuchs R2000 is set to 20 Hz. The R2000 has a
field of view (FOV) of 360 degrees with the angular resolution of 0.25 degrees; detection
range could reach 30 m with a nominal resolution of 1 mm and a maximum measured
noise of 20 mm [33]. The SORLA navigation software runs on the embedded computer
with i5-6200u CPU (2.3 GHz) and 4 GB mem. During the runtime, the average CPU usage
is about 12%, and the average physical mem usage is 25%.

To fully test the robustness of reflector matching, failure test cases are designed and
the errors such as reflector displacement are created. The algorithm is also examined for
some extreme cases in which some reflectors are blocked. It can be verified by the following
experiments that the localization accuracy of the navigation system in this work reaches a
high level for the practical industrial applications, and the system still performs well when
the robot is moving at high speed or the reflectors have small displacement.

3.1. Localization Accuracy in Initialization Mode

In a practical warehouse, a forklift or AGV always starts the navigation from the initial
zone. The initialization mode is designed to calibrate the initial position shifts caused by
misalignment from warehouse operation and make the system more robust to operate.
In this experiment, three cases with different numbers of initialization reflectors were set
to verify the effect of the number of initialization reflectors on localization accuracy in
the initialization mode and localization accuracy in each case; the number is set to 3, 4,
and 5 respectively. The global coordinates of reflectors are (−1744, −652), (1854, −1838),
(784, 676), (−636, 757), and (−3850, −1335), with the unit of mm. The experimental
environment is shown in Figure 7.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 22 
 

 

range could reach 30 m with a nominal resolution of 1 mm and a maximum measured 
noise of 20 mm [33]. The SORLA navigation software runs on the embedded computer 
with i5-6200u CPU (2.3 GHz) and 4 GB mem. During the runtime, the average CPU usage 
is about 12%, and the average physical mem usage is 25%. 

To fully test the robustness of reflector matching, failure test cases are designed and 
the errors such as reflector displacement are created. The algorithm is also examined for 
some extreme cases in which some reflectors are blocked. It can be verified by the fol-
lowing experiments that the localization accuracy of the navigation system in this work 
reaches a high level for the practical industrial applications, and the system still performs 
well when the robot is moving at high speed or the reflectors have small displacement. 

3.1. Localization Accuracy in Initialization Mode 
In a practical warehouse, a forklift or AGV always starts the navigation from the in-

itial zone. The initialization mode is designed to calibrate the initial position shifts caused 
by misalignment from warehouse operation and make the system more robust to oper-
ate. In this experiment, three cases with different numbers of initialization reflectors were 
set to verify the effect of the number of initialization reflectors on localization accuracy in 
the initialization mode and localization accuracy in each case; the number is set to 3, 4, 
and 5 respectively. The global coordinates of reflectors are (−1744, −652), (1854, −1838), 
(784, 676), (−636, 757), and (−3850, −1335), with the unit of mm. The experimental envi-
ronment is shown in Figure 7. 

 
Figure 7. The experimental layout environment of 5x initialization reflectors. 

Localization data are obtained at nine different locations. The position error and 
orientation angle error obtained in the three cases are shown in Figure 8. It can be seen 
that the localization accuracy of the initial point is not necessarily related to the number 
of initialization reflectors, and it is not true that the more the number of reflectors, the 
higher the localization accuracy of the initial point. The experimental results show that 
the maximum X-direction localization error of the initial position is 18.4 mm, the maxi-
mum Y-direction localization error is 8.1 mm, and the maximum angle error is 1.29 deg, 
which meets the localization accuracy requirements of industrial application environ-
ment; the localization error statistics in X and Y directions are shown in Tables 1 and 2, 
and the angle error statistics are shown in Table 3. 

The optimal triangular positioning method based on angle measurement also uses 
five reflectors to perform static positioning at nine different positions [16]. Tables 4–6 are 
the comparisons of the positioning method in initialization mode and the optimal trian-
gular positioning method in the X-direction positioning error, the Y-direction positioning 
error, and the orientation error, respectively. The localization method in this study shows 
more accurate results of the X -direction and angle. It is worth mentioning that even with 
such high resolution, the maximum noise of 20 mm will be converted to the same amount 
of variation to LiDAR data and contaminate the localization precision. By applying the 

Figure 7. The experimental layout environment of 5x initialization reflectors.



Sensors 2021, 21, 4479 13 of 20

Localization data are obtained at nine different locations. The position error and
orientation angle error obtained in the three cases are shown in Figure 8. It can be seen
that the localization accuracy of the initial point is not necessarily related to the number
of initialization reflectors, and it is not true that the more the number of reflectors, the
higher the localization accuracy of the initial point. The experimental results show that the
maximum X-direction localization error of the initial position is 18.4 mm, the maximum
Y-direction localization error is 8.1 mm, and the maximum angle error is 1.29 deg, which
meets the localization accuracy requirements of industrial application environment; the
localization error statistics in X- and Y- directions are shown in Tables 1 and 2, and the
angle error statistics are shown in Table 3.
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Table 1. X position error.

The Number of Reflector Mean (mm) Maximum (mm) Std. Deviation (mm)

3 9.05 18.4 5.67
4 7.64 15.7 4.69
5 7.89 13.4 3.96

Table 2. Y position error.

The Number of Reflector Mean (mm) Maximum (mm) Std. Deviation (mm)

3 3.52 5.3 2.21
4 4.12 8.1 2.44
5 3.36 6.0 2.13
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Table 3. Orientation error.

The Number of Reflector Mean (deg) Maximum (deg) Std. Deviation (deg)

3 0.64 1.07 0.32
4 0.48 1.07 0.32
5 0.62 1.29 0.37

The optimal triangular positioning method based on angle measurement also uses five
reflectors to perform static positioning at nine different positions [16]. Tables 4–6 are the
comparisons of the positioning method in initialization mode and the optimal triangular
positioning method in the X-direction positioning error, the Y-direction positioning error,
and the orientation error, respectively. The localization method in this study shows more
accurate results of the X -direction and angle. It is worth mentioning that even with such
high resolution, the maximum noise of 20 mm will be converted to the same amount
of variation to LiDAR data and contaminate the localization precision. By applying the
proposed strategy, the localization precision can be improved to 6 mm very stably, which is
one of the best localization results of AGV both for academy and industry.

Table 4. The comparison in X position error.

Method Mean (mm) Maximum (mm)

Optimal triangulation positioning algorithm
based on angle measurement 13.34 17.58

Positioning algorithm in initialization mode 7.89 13.4

Table 5. The comparison in Y position error.

Method Mean (mm) Maximum (mm)

Optimal triangulation positioning algorithm
based on angle measurement 2.2 6.0

Positioning algorithm in initialization mode 3.36 6.0

Table 6. The comparison in orientation error.

Method Mean (deg) Maximum (deg)

Optimal triangulation positioning algorithm
based on angle measurement 0.89 1.81

Positioning algorithm in initialization mode 0.62 1.29

3.2. The Influence of Motion Speed on Navigation Accuracy

In this part, we demonstrate the performance of the algorithm proposed in Section 2.4.1.
This experiment is designed to verify the localization accuracy of the system in high-speed
movement. First, four initialization reflectors and eight navigation reflectors are set up
along a corridor, as shown in Figure 9. The localization error results are shown in Figure 10;
the robot moves along the straight line at the speed of 0.7, 1.4, 2.8, and 4.2 m/s, respectively.
The location estimation error and the reflector matching error become large in the case of
high-speed movement, so results indicate that the average error and maximum error of
localization increase with the movement speed. The location error caused by faster speed is
well compensated with the help of motion compensation. Therefore, the navigation system
is quite durable for the robot under high-speed movement, and the localization accuracy
remains at a high level.
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3.3. The Influence of Motion Compensation Algorithm on High-Speed Turning

Since the navigation system has a motion compensation algorithm to accurately
estimate the position of the robot at the next moment, it can achieve the accurate location
under high-speed movement and also supports accurate localization for the case of fast
turning. Figure 11 shows the accumulated robot’s path and the converted navigation
map for each movement. The locations of reflectors are all marked with the identification
numbers. When the motion compensation mode is enabled, the trajectory of the robot
movement is shown in Figure 11a with a speed of 2.6 m/s, and the robot makes a sharp
turn with the angular velocity of 1.4 rad/s. There is no navigation failure happened caused
by angular mismatch during the navigation. When the motion compensation mode is
disabled, the robot moves along the path with the same speed, and the navigation system
has a large localization error around the corner, which results in the navigation failure,
as shown in Figure 11b. Therefore, the experimental result has verified that the motion
compensation algorithm can handle the large angle velocity properly, which is critical for
forklift operation in the warehouse.

3.4. The Influence of Relative Displacement of the Reflector on Navigation Accuracy

Due to human disoperation and some random errors in the warehouse environment,
the reflector installation location may vary from the original locations in the map. The
navigation system in this algorithm is designed to complete accurate localization when the
displacement is presented in the reflector layout. This experiment is designed to investigate
the algorithm’s capability to handle the reflector displacement. The systematic displace-
ment is created for the navigation reflectors in the navigation map from the experimental
settings; to observe the influence of the relative displacement of the navigation reflectors
on the localization accuracy, the relative displacement of 0, 10, 20, and 30 mm of each
navigation reflector is set, respectively, to allow the robot to move along the same straight
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line at a speed of 0.4 m/s. The layout of reflectors is shown in Figure 9. The localization
error results are shown in Figure 12 and Table 7; it can be seen from the results that with
the increase of the relative displacement between the ideal position and the actual position
of the navigation reflectors, the navigation localization accuracy will decrease slightly. This
shows that the navigation system has a strong resistance to the error of reflector location.
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Table 7. Localization error of the navigation reflectors with relative displacement.

Relative Displacement (mm) Mean (mm) Maximum (mm) Std. Deviation (mm)

0 6.45 22 5.08
10 8.82 26 6.37
20 8.84 26 6.27
30 12.17 35 9.11
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3.5. Validation of Navigation Recover Mechanism

In the actual navigation process of mobile robots, they often encounter situations in
which the navigation fails because of the obstruction of the reflectors. When the navigation
failure happens, the system will switch to the initialization mode and recalculate the current
position of the robot; if the calculation is successful, the system will recover and resume
the navigation mode from a new location.

The navigation system determines the navigation status and outputs the navigation
status value through the CAN Bus Analyzer. According to the root mean square (RMS)
error of reflector matching results, the navigation system decides the navigation status
in four levels: status 1, 2, 3, and 4. Status 1 refers to the RMS error between the ideal
location and the actual location of the reflector being between 1 and 10, status 2 refers to
the RMS being between 10 and 100, status 3 refers to the RMS being between 100 and 500,
and navigation status 4 refers to the navigation failure and the RMS being above 1000.
During the experiment, there is a corridor next to the experimental site where the reflector
is installed. The robot moves back and forth between the corridor and the experimental
site 10 times. When the mobile robot enters the corridor, the laser scanner cannot detect
the reflectors, because the reflectors are blocked by the wall, which eventually causes the
navigation failure. If the robot returns to the experimental site, the system will restart the
navigation mode again. The actual scene of the system scanning is shown in Figure 13,
and the actual size of the rectangular experimental area in Figure 13 is 11.4 × 6 m. The
navigation status data collected by the system are shown in Figure 14. It can be seen that
the robot can successfully restart the navigation mode after each navigation failure.
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3.6. System Stability Test

In addition, the navigation system can work effectively and robustly for a long time.
The CAN Bus Analyzer outputs the navigation status data, and the system can run con-
tinuously for 72 h. During the experiment, the mobile robot randomly moves to a new
location every 2 h. The experimental results show that the navigation status is basically
maintained at 1 and 2, sometimes it jumps to 3, and there no navigation failure happened.
This indicates that the navigation and the memory usage of the system are able to run for a
long time in a relatively stable situation. The navigation status and trajectory curves during
the experiment are shown in Figure 15.
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4. Conclusions

In this work, the localization strategy with cylindrical reflectors and laser-data only
has been introduced in great detail. The SORLA algorithm has shown high precision, strong
robustness, low requirements on the computing hardware, and “real-time” localization
with high-speed moving and fast-turning capability. SORLA is designed to operate in
two successive operational modes. (1) In initialization mode, the reflector layout are
defined by the distinctive geometrical relationship. This mode is required to initialize
the robot location before the navigation task or loses track on the location and needs
to relocate. (2) In navigation mode, the reflector layout could be deployed in the large
area without the limitation of the geometric relationship. This is feasible due to the fact
that the probability of the LiDAR locations of multiple “features” could be solved by
the SVD algorithm. By introducing the reflector extraction, motion compensation, and
reflector matching mechanism, the algorithm only needs LiDAR data to complete the
high-precision localization without the help of any other sensors. Since there may be
errors in the installation of the navigation reflector, we design the positive and negative
experiments, and the results show the algorithm can handle the reflector displacement or
the reflector occlusion relatively well.

According to the experimental results, the localization error of the navigation system
is about 6.45 mm for the speed of 0.4 m/s and 9.87 mm when the speed reaches 4.2 m/s,
and still works well with the angular velocity of 1.4 rad/s at turn, which is suitable for
real-time localization requirements at high speed or fast turning. Although our strategy is
durable for laser navigation with a lightweight computing workload, it is possible that the
“feature extraction” part could be replaced by other techniques, such as the laser contour
profile or visual segmentation solution, and this makes the strategy workflow a more
promising alternative to Laser SLAM or Visual SLAM.
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