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Recently, convolutional neural networks (CNNs) have been widely used for saliency detection. Most of
existing saliency detection methods produce saliency maps from the complementary multi-level convo-
lutional features. However, it is still a challenging task to accurately integrate multi-level features for sal-
iency detection. In this paper, we explore the intrinsic relationships between multi-level features and
introduce the Stackelberg game theory as a new strategy to fuse multi-level features for saliency detec-
tion. Based on the theory, we propose a leader-follower feature fusing network (LF3Net) to obtain saliency
maps. We first apply a multi-scale context-aware leader-follower attention module (MCLAM) to select
multi-scale spatial and semantic information. Then, we propose a leader-follower feature fusing module
(LF3M) to integrate the multi-level features. Extensive experiments on five datasets show that the pro-
posed method outperforms the state-of-the-art approaches under different evaluation metrics. In addi-
tion, our network can run fast at the real-time speed of 75 FPS.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

The task of saliency detection is to locate the most visually
attractive objects in an image, which is inspired by the mechanism
of the human attention. Recently, as a helpful pre-processing
method, it attracts lots of interests and has been effectively applied
in many vision tasks, such as image segmentation [1], content-
aware image editing [2], and object tracking [3].

Recently, convolutional neural networks (CNNs) have been
widely used in various computer vision tasks because of its power-
ful capability in visual feature representation [4]. Similarly, benefit
from the powerful multi-level features, most CNNs-based saliency
detection methods have achieved a remarkable progress compared
with traditional methods [5–8]. Furthermore, it has been proved by
[9] that saliency detection is a low-level vision task which is more
dependent on high-level semantic information. In the architecture
of CNNs, with the repeated stride and pooling operations, the
extracted features gradually change from low-level representation
to high-level representation. Generally, the global semantics are
mainly contained in high-level features. Therefore, compared with
low-level features, high-level features have a natural superiority in
the saliency detection task. It is crucial to make full use of the supe-
riority of high-level features in the saliency detection task.

Recently, to take advantage of the prior, more and more
researchers transmit the high-level features to low-level features
and further integrate them with different strategies. As shown in
Fig. 1, in terms of the coupled mode of feature, we roughly synop-
size these methods into three sets: progressive mode, skip-layer
mode, and aggregated direct-connection mode. Most of existing
saliency detection methods adopt the progressive mode [10–14].
They transmit the features between neighboring convolutional lay-
ers and integrate them progressively. However, this mode per-
forms the integrations indirectly among multi-level features,
which may be deficient because of the long-term dependency
problem. Some other existing methods introduce the skip-layer
strategy to transmit the high-level features to low-level features
directly, such as DSS [15], CAGNet [16] and PFPN [17]. Besides this,
some other methods utilize the aggregated direct-connection
mode, which assembles the high-level and low-level features as
two aggregated sets first, such as R3 Net [18] and PFA [19]. The
skip-layer and aggregated direct-connection structures, transmit-
ted the high-level semantics to the low-level features directly,
may be more sufficient to fuse the multi-level features. However,
the high-level and low-level features are significantly different
with each other. If we directly combine them without any discrim-
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Fig. 1. Illustration of different feature coupled modes. (a) Progressive mode. (b) Skip-layer mode. (c) Aggregated direct-connection mode.
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ination, it will inevitably bring the noises to result and decrease the
performance. Thus it is crucial to design the features fusing strat-
egy deliberately.

In this paper, we further explore the intrinsic relationship
between multi-level features and design a novel direct-
connection structure for saliency detection. Furthermore, we intro-
duce the Stackelberg game theory [20] into saliency detection as a
new feature fusing strategy. Stackelberg game theory describes a
dynamic competition process between two participants, which
can be simply considered as a leader-follower model. We will elab-
orate it in the following section. Inspired by Stackelberg game the-
ory, we propose a leader-follower feature fusing network (LF3Net)
to fuse different level features for saliency detection. As shown in
Fig. 2, the high-level and low-level features are considered as
two participants to compete with each other. At first, we design
a multi-scale context-aware leader-follower attention module
(MCLAM) to select multi-scale saliency cues. MCLAM equips with
three sub-modules: the multi-scale context-aware feature extrac-
tion unit (MCFEU) to capture contextual information, the leader
and follower attention units to purify the coarse leader and fol-
lower features, respectively. Then, we propose a leader-follower
feature fusing module (LF3M) to fuse the selective features from
the attention modules. LF3M equips with two features fusing units,
one is the leader feature fusing unit (LF2U), and the other is the fol-
lower feature fusing unit (F3U). In the LF3M, the leader and follower
features are arranged in a principal and subordinate way. We take
the leader saliency map from the last feature fusing module as the
final output. The whole network is trained in an end-to-end man-
ner. Our contributions are summarized as follows:
Fig. 2. The overall framework
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1. We further explore the intrinsic relationships between multi-
level features and introduce the Stackelberg game theory as a
new feature fusing strategy for saliency detection.

2. Based on the Stackelberg game theory, we design a leader-
follower feature fusing network equipped with two modules
to select and fuse different level features for saliency detection.

3. Extensive experiments on five public datasets show that the
proposed method outperforms the state-of-the-art approaches
under different evaluation metrics. Furthermore, when process-
ing the five test datasets on an NVIDIA TITAN Xp GPU, the
model based on ResNet-50 can run with the real-time speed
of 75 FPS.

2. Related works

Most of existing salient object detection networks are devoted
to aggregate the multi-level features from CNNs to improve the
performance [8,7]. Many effective feature fusing strategies have
been designed, such as short connection [15], gate mechanism
[11], attention model [21,22,19,23,24], residual learning [18],
edge-aware model [12,25], and so on [13,26]. For example, Liu
et al. [10] design an encoder-decoder structure to convert a coarse
global prediction to refined saliency map hierarchically and pro-
gressively. Zhang et al. [11] construct a bi-directional gate struc-
ture between adjacent convolutional layers to bilaterally filter
multi-level cluttered features. Wu et al. [9] abandon low-level fea-
tures and only decode saliency cues from high-level features via a
cascaded partial decoder framework. Wei et al. [27] capture the
of our proposed network.
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saliency cues in a top-down pathway and then feed them back
progressively.

Attention mechanism is widely used in saliency detection task
for its great ability to select features. For example, Zhang et al.
[21] propose a novel attention guided network to selectively inte-
grate multi-level features in a progressive manner. Chen et al. [22]
utilize reverse attention to guide side-output residual learning in a
top-down manner. Zhang et al. [23] propose an augmenting feed-
forward neural networks with the pyramid pooling and channel
attention module to aggregate global contexts. Attention mecha-
nism has also been applied in various related tasks, such as sal-
iency detection in video [24], optical images [28], and RGB-D
images [29]. For example, Li et al. [24] introduce a series of novel
motion guided attention modules to guide the saliency detection
in videos. Chen et al. [29] design a gated multi-modality attention
module to capture cross-modal long-range dependencies for RGB-
D saliency detection.

Recently, to capture the structural information of salient
objects, more and more researchers construct their networks to
extract the edge information or train their networks with structure
information as auxiliary supervision. For example, Su et al. [25]
rethink saliency detection in terms of the selectivity or invariance
of different features to construct the network. Zhao et al. [12]
extract the regions and edges of salient objects simultaneously,
and further guide the saliency detection with edge information.
Liu et al. [30] introduce the pooling operation to expand the recep-
tive fields of features and join edge information to train the whole
network.

3. The proposed network

In this paper, we propose a novel saliency detection method
equipped with two modules. At first, we design a multi-scale
context-aware leader-follower attention module (MCLAM) to
select multi-level contextual features. Then, a leader-follower fea-
ture fusing module (LF3M) is introduced to integrate the multi-
level features.

3.1. Stackelberg game for saliency detection

Algorithm1: Forward process of Stackelberg game

Input: IA,IB: input of A and B;
Output: ANash, BNash: output of A and B under Nash

equilibrium
1: f 1; f 2; f 3 are the functions of step 1,2,3 respectively.
2: repeat
3: step1 A decides the output based on IA and IB:
Ainit ¼ f 1ðIA; IBÞ;

4: step2 B makes its output according to Ainit and IB:
Bout ¼ f 2ðAinit ; IBÞ;

5: step3 A produces the finial output in terms of Ainit and
Bout: Aout ¼ f 3ðAinit; BoutÞ;

6: untilA and B achieve Nash equilibrium
7: returnANash, BNash

In the Stackelberg competition [20], there are two participants
to compete with each other for its respective maximizing profits.
We generalize the competition process in Fig. 3. As shown in
Fig. 3 (a), one participant (denoted as participant ‘‘A” for conve-
niently elaborating) first gives a preliminary estimated output in
terms of the conditions of itself and the other, which is represented
as step1 in Fig. 3 (a). And then, the other (denoted as participant
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‘‘B”) can get the output from participant ‘‘A” as a reference, shown
as step2 in Fig. 3(a), participant ‘‘B” will adjust its response
accounting for the given output of participant ‘‘A”. The response
function can be known by participant ‘‘A”. Subsequently, to make
a Nash equilibrium in Stackelberg competition, participant ‘‘A” will
perform step3 to decide its output under the given results of par-
ticipant ‘‘B”. Algorithm. 1 summarizes this forward inference pro-
cess. In this competition, participant ‘‘B” is guided or affected by
participant ‘‘A” and first gives its final decision, while participant
‘‘A” is aware of the result of participant ‘‘B”, and later outputs its
result. Contrast to participant ‘‘B”, the participant ‘‘A” has a first-
moving but last-arriving advantage, which makes it be aware of
more accurate information. Just because the superiority of know-
ing full information, participant ‘‘A” can gain the upper hand in this
competition. Therefore, we consider the participant ‘‘A” as a leader
in the competition, while the participant ‘‘B” as a follower.

The process of solving the Stackelberg equilibrium is the reverse
recursion process [20], which is much similar to the back propaga-
tion. During the reverse solving process, given the result of partic-
ipant ‘‘A” (initial output of ‘‘A” in Fig. 3 (b)), the participant ‘‘B” will
first decide its preliminary prediction. Then the participant ‘‘A” is
aware of the initial prediction of ‘‘B” and make its last decision.
Subsequently, participant ‘‘B” will make its final result in terms
of the result of participant ‘‘A”. In each step, the participant will
adjust its parameters to make its max profits until they achieve
the Nash equilibrium. The process to make a Nash equilibrium is
consistent with the process to make a parameter convergence of
the proposed network. In the reverse solving process, the partici-
pant ‘‘B” will take as the leader, while the participant ‘‘A” takes
as the leader in the forward process. This intrinsical leadership
exchanging mechanism will help two participants learn from each
other sufficiently.

Saliency detection is a low-level vision task which is more
dependent on high-level semantic information [9]. Compared with
low-level features, high-level features have a natural superiority in
the saliency detection task. How to make full use of the superiority
is crucial in the saliency detection task. As above mentioned, Stack-
elberg game is a leader-follower dynamic competition process,
which is perfectly consistent with the intrinsic relationships
between multi-level features in the saliency detection task. There-
fore, in this paper, we introduce this competition theory to fuse the
different level features for saliency detection. We consider high-
level and low-level features as two participants to take part in this
Stackelberg competition, the max profits of both in this competi-
tion are to try their best to reduce the residuals between their pre-
dictions and the ground truths. During the process to make a Nash
equilibrium, high-level and low-level features can learn the bene-
ficial saliency cues from each other and dispel the differences
instructively. Specifically, when high-level features are the leader,
a direct connection will first transmit low-level features to high-
level flow. This connection can not only make high-level features
capture the spatial details directly, but also furthest retain the
accurate spatial details. Then the high-level features will first make
an estimated prediction in terms of low-level features and them-
selves. The high-level estimated prediction, contained both seman-
tics and spatial information, can supply low-level features and
avoid the ambiguities of structural details. Subsequently, the fol-
lower low-level features will produce more accurate saliency pre-
diction with the guidance of above high-level estimated prediction.
Furthermore, the more accurate spatial details reserved in low-
level features will be fed back to the high-level features, which
makes the high-level features be selectively and precisely aware
of the spatial details. Similarly, the process when low-level fea-
tures take as the leader can be learned. This kind of bi-
directional feedback mechanism between multi-level features is
perfectly consistent with the Stackelberg game theory. Different



Fig. 3. The diagram of the Stackelberg game. (a) Forward process. (b) Reverse solving process.
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from the common top-down or down-top feature fusing mecha-
nism [11,31], which considers the contributions of low-level and
high-level features equally, Stackelberg competition can perfectly
match the intrinsic precedence relation between multi-level fea-
tures. Based on this motivation, we propose the leader-follower
feature fusing network (LF3Net).

To reduce the redundant saliency information, we first divide
the multi-level side-output features into two feature sets: high-
level and low-level feature sets. Given the VGGNet version of
FPN [32] as an example, we use the feature maps outputted by con-
v1, conv2, conv3, conv4, conv5 as the five side-output features. We
first up-sample the feature maps from the first three layers to the
size of conv1, and then combine them with a cross-channel con-
catenation and two convolutional layers with the kernel sizes of
3� 3 and 1� 1, respectively. We define the integrated low-level
features IL as:

IL ¼ uðf 1; f 2; f 3Þ ð1Þ
where f 1; f 2; f 3 represent the side outputs of the first three layers,
urepresents the above operations to integrate these features, the
channel dimension of IL is set as 256. Similarly, the integrated
high-level features can be expressed as:

IH ¼ /ðf 4; f 5Þ ð2Þ
where f 4; f 5 represent the side outputs of the last two layers, / rep-
resents the above features integrated operations similar to IL. The
size of IH is same with IL.

As mentioned in Section 1, the high-level features possess a nat-
ural superiority in the saliency detection task. Based on the empir-
ical prior, we naturally take the high-level features IH as the leader
in our leader-follower structure. Furthermore, we will provide
Fig. 4. Illustration of our attention module. (a) The overall structure of the multi-scale c
from low-level to high-level features in backbone as the first transformation in the co
(MCFEU). ‘‘3� 3� 128;1‘‘ represents the 3� 3 convolutional kernel with the 128 chann
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more experimental evidences to prove this prior in the section of
experiment.
3.2. Multi-scale context-aware leader-follower attention module

It is common to know that the high-level and low-level features
extracted from FCN are complementary to each other. However,
due to the large randomness in scale, shape, and position of the
salient objects, it may bring some redundant and harmful informa-
tion to saliency detection if we directly integrate the different level
features indiscriminately. In addition, the context is also quite
important for saliency detection.

In terms of these, we design a multi-scale context-aware leader-
follower attention module (MCLAM) equipped with three units, the
multi-scale context-aware feature extraction unit (MCFEU), the
leader attention unit (LAU), and the follower attention unit
(FAU). As above mentioned, we first integrate the side output fea-
tures from different layers as integrated low-level and high-level
features, respectively. The integrated high-level features IH are
taken as the leader features Lf , while low-level features IL are con-
sidered as the follower features Ff . At first, we concatenate the lea-
der features and follower features as the inputs of MCFEU. As
shown in Fig. 4 (b), we first add a 3� 3 convolutional layer to learn
more local information and then split the input features into four
sub-branches with a group of 1� 1 convolutional operations. A
3� 3 dilated convolutional layer is embedded in each branch to
capture more local context. The dilation rates of the four dilated
sub-branches are set to 1;2;4;6f g, respectively. Furthermore, to
learn the context progressively and reduce the griding effect pro-
duced by dilated convolutional operations, we introduce the short
connections into the structure and transmit the output of one sub-
ontext-aware leader-follower attention module (MCLAM). We consider the change
mpetition. (b) The structure of multi-scale context-aware feature extraction unit
els and dilation 1.



Fig. 5. Details of attention modules. (a) Spatial attention module. ‘‘3� 3� 64;4”
represents the 3� 3 convolutional kernel with 64 channels and dilation 4. (b)
Channel-wise attention module. FC is the fully connected layers.
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branch to next sub-branch. We add the delivered input to the orig-
inal input together as a new mixed input for next sub-branch.
Inspired by ASPP [33], we adopt an image pooling branch with a
global average pooling operation and a 1� 1 convolutional layer
to capture the image-level saliency cues. Finally, we concatenate
all the outputs of the five sub-branches and employ a combination
of 3� 3 and 1� 1 convolutional layer to integrate them together.

Subsequently, the outputs of MCFEU are passed to the follower
attention unit (FAU) to select follower features and generate a fol-
lower attention mask (FAM). Similar to [19], in terms of the differ-
ent characteristics of multi-level features, it is necessary to design
the different attention modules for different level features. Gener-
ally, the channel-wise attention unit is utilized to select the high-
level semantics, while the spatial attention unit is used to focus on
the spatial details. The structures of FAU and LAU only depend on
the choice of leader features. When high-level features are taken as
the leader, the leader attention unit (LAU) will naturally represent
the channel-wise attention unit, while FAU represents the spatial
attention unit and FAM is a spatial-attention mask. Relatively,
the situation when low-level features as leader can be similarly
inferred. In this paper, high-level features are taken as the leader,
therefore, LAU is the channel-wise attention unit, while FAU is
Fig. 6. The structure of the n-th feature fusing module and its constituent unit. (a) The
structure of F3U is as same as LF2U, but F3U first produces a primary follower saliency m
Fs
n�1, respectively. We consider the leader-guided follower saliency map (LGFSM) as the
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the spatial attention unit. The structures of the spatial attention
and channel-wise attention units are as same as [34,35], which
are shown in Fig. 5 (a) and (b) respectively. We element-wise mul-
tiply FAM and the follower channel features together to get the
multi-scale context-aware follower features. And then, with a
residual learning strategy, the final selective follower features
can be defined as:

Fs
f ¼ Ff � FAM þ Ff ð3Þ
Subsequently, we transmit the FAM to the leader attention unit

(LAU) and integrate it with the leader channels features as the
inputs of LAU:

Linput ¼ Lf � FAM þ Lf ð4Þ
Similarly, the final selective leader features after LAU can be for-

mulated as:

Lsf ¼ wðLinputÞ � Lf þ Lf ð5Þ
w represents the convolutional operations in the leader atten-

tion unit. Finally, we predict two initial saliency maps from Fs
f

and Lsf with two 1� 1 convolutional layers, and name them as Fs
0

(low-level saliency map L0) and Ls0 (high-level saliency map H0),
respectively. We transmit both the saliency maps and selective fea-
tures to the subsequent feature fusing module.

3.3. Leader-follower feature fusing module

We design a leader-follower feature fusing module (LF3M) to
integrate the multi-level selective features for saliency detection.
LF3M contains two units, which are denoted as leader feature fus-
ing unit (LF2U) and follower feature fusing unit (F3U), respectively.
We elaborate the structure of this module with the n-th LF3M as an
example for conveniences.

As shown in Fig. 6, we first concatenate the selective leader fea-
tures Lsf and the previous follower saliency map Fs

n�1 as the inputs
of the leader feature fusing unit (LF2U). We squeeze the channels
with two groups of 1� 1 filters, and then, two corresponding
groups of 3� 3 convolutional filters with different dilation rates
overall structure of LF3M. (b) The structure of leader feature fusing unit (LF2U). The
ap (PFSM), and then, PFSM is multiplied and added with the follower saliency map
output of F3U.
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are applied to extract more local saliency cues. Next, we combine
3� 3 and 1� 1 convolutional layers to integrate these cross-
channel saliency cues and produce a primary leader saliency map
(PLSM). In my view, PLSM can be considered as a residual or gate
for the leader saliency map Lsn�1. Therefore, we generate a residual
saliency map (RSM) and a gated saliency map (GSM) with the
element-wise addition and multiplication, respectively. Finally,
we add RSM and GSM together to acquire the final output leader
saliency map of LF2U. Since the output leader saliency map of
LF2U is produced with the follower saliency map as a reference,
we name it as the follower-referenced leader saliency map
(FRLSM). Then, we concatenate FRLSM and the selective follower
features Fs

f as the inputs of follower feature fusing unit (F3U). For
a convenience, the structure of F3U is as same as LF2U. Similarly,
since the feature-fused follower saliency map in F3U is guided by
leader features, we name the final output of F3U as the leader-
guided follower saliency map (LGFSM). With a residual learning,
the final following saliency map Fs

n in this paper can be defined as:

Fs
n ¼ Fs

n�1 þ LGFSM ð6Þ
In fact, LGFSM can also be considered as a residual which con-

tains both the leader and follower saliency cues. The follower first
gives a final output in competition. Subsequently, to make a Nash
equilibrium for saliency detection, we transmit Fs

n to the leader fea-
tures flow, and the final leader saliency map Lsn in this module can
be expressed as:

Lsn ¼ Fs
n þ FRLSM þ Lsn�1 ð7Þ

In this paper, the high-level features take as the leader, thus the
leader saliency map Lsn is equal to the n-th high-level saliency map
(Hn), while the follower saliency map Fs

n is equal to the n-th low-
level saliency map (Ln). As mentioned in Section 3.1, in Stackelberg
competition, the leader features are aware of full selective saliency
cues and have a superiority in this competition. We integrate
multi-level features in the competition process but place extra
emphasis on leader features to obtain more selective saliency cues.

We stack a serial of LF3Ms in the network to refine the coarse
features progressively. The number of LF3M is set as 2, we will pro-
vide more experimental evidences to evaluate this setting in the
section of ablation study.

3.4. Loss function

Binary cross entropy (BCE) is the most widely used loss function
in salient object detection. However, BCE only calculates the pixel-
level loss and ignores the structure of the salient object, which may
obscure the edges of the salient region and reduce the performance
of model. Moreover, the pixels surrounding the edge are hard to
distinguish and need to assign more weights. In this paper, we
employ a pixel position aware (PPA) loss function to learn the glo-
bal structure of salient objects and assign more weights to hard
pixels, which has been adopted by Wei et al. [27]. PPA loss is con-
sisted of two weighted losses: a weighted binary cross entropy
(wBCE) loss and a weighted IoU (wIoU) loss:

Lsppa ¼ Lswbce þ LswIou ð8Þ
The weighted binary cross entropy (wBCE) loss function is

formed as following:

Lswbce ¼ �

XH

i¼1

XW

j¼1

ð1þ caijÞ
X1

l¼0

1ðgs
ij ¼ lÞ log Prðps

ij ¼ ljWÞ

XH

i¼1

XW

j¼1

caij

ð9Þ
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where c is the hyper-parameter set as 1. ps
ij and gs

ij are the prediction
and ground truth of the pixel ði; jÞ. W represents all the parameters
of the model and Prðps

ij ¼ ljWÞ represents the predicted probability.
aij is the weight to indicate the pixel importance, which is calcu-
lated according to the difference between the center pixel and its
surroundings. It is formed as:

as
ij ¼

X

m;n2Aij

gtsmn

X

m;n2Aij

1
� gtsij

��������

��������
ð10Þ

where As
ij represents the area surrounding the pixel ði; jÞ. If as

ij is
large, pixel at ði; jÞ is very different from its surroundings, which
may represent an important pixel (e.g., edge) and deserves more
attention. Similarly, the weighted Iou (wIoU) loss can be defined as:

LswIou ¼ 1�

XH

i¼1

XW

j¼1

ðgtsij � ps
ijÞ � ð1þ cas

ijÞ

XH

i¼1

XW

j¼1

ðgtsij þ ps
ij � gtsij � ps

ijÞ � ð1þ cas
ijÞ

ð11Þ

Furthermore, we apply multi-level deep supervision as an aux-
iliary loss to facilitate training sufficiently. The total loss of our net-
work can be explained as:

Ltotal ¼
XN

i¼0

ðLiL þ LiFÞ ð12Þ

where N is the number of LF3M, LiL; L
i
F represent the PPA losses of i-

th leader and follower saliency map, respectively.

4. Experiment

4.1. Experiment setup

Datasets. To evaluate the performance of our proposed frame-
work, we conduct experiments on five commonly used benchmark
datasets: ECSSD [36], DUTS [37], DUT-OMRON [38], HKU-IS [39],
PASCAL-S [40]. ECSSD contains 1000 images which are semanti-
cally meaningful and structurally complex with pixel-wise ground
truth. DUTS is a large-scale dataset containing two subsets: DUTS-
TR and DUTS-TE. DUTS-TR contains 10553 images designed for
training and DUTS-TE has 5019 images for testing. DUT-OMRON
has 5168 high quality images. Images of this dataset have one or
more salient objects and relatively complex background. HKU-IS
contains 4447 challenging images and most of them contain mul-
tiple disconnected salient objects. PASCAL-S includes 850 natural
images selected from the PASCAL VOC 2010.

Evaluation Metrics. To compare the performance of different
methods, we adopt three widely-used metrics: precision and recall
(PR) curve, F-measure, and mean absolute error (MAE). The preci-
sion and recall are computed by comparing the binarized saliency
map against the ground truth mask. A pair of the precision and
recall scores can be obtained with the threshold ranging from 0
to 255. Using the sequence of precision-recall pairs, the
precision-recall (PR) curve can be plotted. F-measure is a harmonic
mean of each pair of precision and recall, and defined as:

Fb ¼ ð1þ b2Þ � Precision� Recall
b2 � Precisionþ Recall

ð13Þ

where b2 ¼ 0:3 is used to emphasize the precision. For a fair com-
parison, we adopt maximum F-measure (maxF, larger is better),
average F-measure (avgF, larger is better) as the metrics. We also
use the MAE metric (smaller is better) to measure the average dif-



Table 1
Quantitative results of the network based on the different leader features. LF3Net_H_H represents LF3Net with one MCLAM and one LF3M, and both take high-level features as
leader. LF3Net_L_L represents LF3Net with low-level features as leader in both modules. LF3Net_H_HH denotes LF3Net with one MCLAM and two LF3M. Other settings can be
learned similarly. The best two results are marked in , .

Fig. 7. The visual comparisons of the network with different leader features combinations. (a) Source images. (b) Results of LF3Net_H_H. (c) Results of LF3Net_H_L. (d) Results
of LF3Net_L_H. (e) Results of LF3Net_L_L. (f) Results of LF3Net_H_HH. (g) Results of LF3Net_L_LL. (h) Ground truth.

Table 2
The MAE of the networks equipped with different MCLAM on DUTS and DUT-OMRON
datasets.

DUTS DUT-OMRON

NoMCFEU 0.0692 0.0933
ASPP 0.0681 0.0909

DenseASPP 0.0698 0.0947
Our 0.0668 0.0905
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ference between the saliency prediction and the ground truth. It is
computed as the average pixel-wise absolute difference between
the ground truth and the predicted saliency map:

MAE ¼ 1
H �W

XH

i¼1

XW

j¼1

Pði; jÞ � Gði; jÞk k ð14Þ

where P is the predicted saliency map, and G is the corresponding
ground truth.

Implementation Details. We implement our network based on
PyTorch repository1 and train it on the DUTS-TR dataset. In training
process, the training images are randomly cropped, rotated, and hor-
1 https://pytorch.org
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izontally flipped for data augmentation. We initialize the parameters
of basic feature extractor with the well-pretrained backbone
(VGGNet-19 [41] or ResNet-50 [42]), while other layers are ran-
domly initialized. We use the stochastic gradient descent (SGD) algo-
rithm to train the whole network with the momentum of 0.9, and
weight decay of 0.0005. During the training process, the initial learn-
ing rate is set as 0.001 and adjusted by the ‘‘poly” policy [43]with the
power of 0.9. For the network based on ResNet-50, the training loss
converges after 15 k iterations with the batch size of 24, while 20 k
iterations with the batch size of 8 for the network based on VGGNet-
19. We take the saliency map from the last leader feature fusing
module (H2) as the final prediction.
4.2. Ablation studies

The high-level features possess a superiority in the saliency
detection task, to prove it, we carry out a serial of experiments to
compare the performance of different leader feature combinations.
Then, we conduct the ablation study to evaluate the importance of
the sub-module PPA, MCLAM and LF3M in our network. Finally, we
construct the network based on different number of LF3Ms to find

https://pytorch.org


Fig. 8. The visual performance of ablation studies. (a) Source Images. (b) Results of baseline trained with BCE. (c) Results of baseline trained with PPA. (d) Results of PPA
+ MCLAM. (e) Results of PPA + LF3M. (f) Results of PPA + MCLAM + LF3M. (g) Ground truth.

Table 3
Quantitative results of the network based on the different modules. The best results are marked in .

Table 4
Quantitative results of the network with different number of LF3Ms. The best results are marked in .
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the optimal network structure. We set the ResNet-50 version of
FPN [32] as the baseline model.

Evaluation of different leader features: We perform a series
of experiments to evaluate the contributions of different level fea-
tures in our network. As shown in Table 1, the leader feature of
MCLAM is key for the performance, the results of LF3Net_H_H
and LF3Net_H_L are evidently higher than LF3Net_L_H and LF3-
Net_L_L. With the same leader feature of MCLAM, the choose of
LF3M may improve less for the performance, but the results when
high-level features take as the leader are roughly better than low-
level features. These quantitative results in Table 1 demonstrate
that the combinations with high-level features as leader features
can evidently outperform low-level features. Moreover, with a
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high-level features leader, the network can perfectly suppress the
noise and make a more accurate prediction, which can be intu-
itively seen in Fig. 7. Conclusively, these evidences can strongly
prove the prior that high-level features may possess an implicit
superiority in saliency detection task.

Evaluation of different modules: We first compare the per-
formance of networks equipped with different MCLAMs. We carry
out three ablation studies: MCLAM without MCFEU; MCLAM with
ASPP(replaces MCFEU); MCLAM with DenseASPP [44](replaces
MCFEU). As shown in the Table 2, MCLAM with MCFEU can make
a clear improvement compared with other similar modules ASPP,
DenseASPP. Then, we compare the performance of baseline model
trained with BCE or PPA loss function. Compared with BCE, PPA



Fig. 9. The visual performance of the network with different numbers of LF3M. (a) Source Images. (b) Results of the network with one LF3M. (c) Results of the network with
two LF3Ms. (d) Results of the network with three LF3Ms. (e) Results of the network with four LF3Ms. (f) Ground truth.

Table 5
Quantitative comparisons of different methods. The best two results are marked in , . The subscript of methods represent the publication year.
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loss function can introduce the structure information into the net-
work and achieve a better result. Actually, it has seemed as a prior
that the structure information is instructive for saliency detection
[13,12,27]. Second, the multi-scale context information extracted
by MCLAM can help the network weigh the saliency more accu-
rately, which can be proved by the performance in Fig. 8 and
Table 3. Finally, we evaluate the effect of LF3M with a serial of
32
experiments. The performance can perfectly prove the effect of
our feature fusing strategy. And it is worth to notice that the com-
bination of MCLAM and LF3M can achieve a better result, which
further proves the necessities of both modules.

Evaluation of different number of LF3Ms: We construct the
network equipped with different number of LF3Ms. to find the opti-
mal network structure. The results are summarized in Table 4 and



Fig. 10. The PR curves of different saliency detection methods.

Table 6
Running times and model sizes of some saliency methods.

Model Our-R Our-V DHS NLDF Amulet BMPM PiCANet CPD CANet DFNet GCPANet PFPN

Time(s) 0.013 0.008 0.05 2.21 0.05 0.06 0.097 0.023 0.091 0.043 0.02 0.025
Model size(MB) 156 121 376 400 126 252 189 183 74.5 439.5 256 765
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Fig. 9. As shown in Table 4, the network equipped with two LF3Ms
can generally achieve the best performance, which also means that
the network with two LF3Ms can make a well Nash equilibrium.
When the network reach the Nash equilibrium, the additional
LF3M can not improve the performance clearly, even the additional
LF3M will break the Nash equilibrium and decline the performance,
which can be seen from the performance of the network with four
LF3Ms. Remarkably, when we test the proposed LF3Net on the five
datasets with an NVIDIA TITAN Xp GPU, the LF3Net based on
ResNet-50 and VGGNet-19 can run fast at the real-time speed of
75 and 120 FPS, respectively. Our method is much faster than most
FCN-based saliency detection methods. We will provide more evi-
dences to prove it in the next section.
4.3. Comparison with state-of-the-arts

We compare our proposed LF3Net with 21 previous state-of-
the-art methods, including RFCN [45], DHS [10], Amulet [46], NLDF
[13], DSS [15], BMPM [11], RAS [22], PAGRN [21], C2S [47],
PAGENet [48], JDF [49],MLMSNet [50],GFLN [51], SRM [52], DGRL
[26], PiCANet [53], CapSal [54], CPD [9],ASNet [55], CANet [56],
DFNet [57]. For fair comparison, all the saliency maps are provided
by the authors or achieved by available codes or software.

Quantitative Comparisons. The quantitative results are
shown in Table 5 and Fig. 10. Table 5 illustrates the performance
of different methods in terms of three metrics: maxF, avgF, and
MAE. Our proposed network LF3Net can consistently outperform
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others on most datasets under different metrics, which demon-
strates the effectiveness of our new feature fusing strategy.
Although we do not realize the best performance on DUT-
OMRON [38], our method demonstrates strong competitiveness.
We also plot the PR curves of different methods on five datasets
as a holistic evaluation metric. As shown in Fig. 10, the PR curves
of our method perform better on most datasets than other
methods.

Table 6 summarizes the running times and model sizes of some
state-of-the-art methods. We provide the performance of ResNet-
based and VGGNet-based methods, which are denoted as Our-R
and Our-V respectively. As it can be seen, both methods can pos-
sess a higher efficiency with less parameters among all other com-
pared methods. In a word, our method can strike a well balance
between effect and efficiency, which is highly conducive to the fur-
ther deployment.

Visual Comparisons. We also perform some qualitative com-
parisons in Fig. 11. We pick the images with various salient objects
as examples. These salient objects vary from the number, size, con-
trast, texture, and so on. Compared to others, our method can
achieve the better performance. For example, our network can well
suppress the noise of background and make a holonomic and
homogeneous prediction, which can be proved by the images in
1th to 4th rows. Moreover, our network can perfectly deal with
the scene of small object, such as the images in 5th row. Generally,
it is hard to distinguish the salient object in the low-contrast sce-
nes, such as the images in 6th to 7th rows. However, our model can



Fig. 12. Some failure cases of the proposed method. Conv4_4 and Conv5_4 represent the side-output feature maps of VGGNet19.

Fig. 11. The visual comparisons of different saliency detection methods.
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commendably distinguish these salient objects and make the more
accurate predictions. Finally, our model shows the good capability
of managing the scenes with multiple salient objects (the images of
8th to 10th rows). In a word, these visual results strongly demon-
strate the good robustness and applicability of our method for
these various salient objects.
4.4. Failure cases and further work

Fig. 12 shows some failure cases of the proposed method. As
above mentioned, the high-level features play a major role in the
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saliency detection task. To make full use of the prior, we proposed
the leader-follower features fusing network, thereby the high-level
features are crucial for the performance. However, not all the high-
level features are accurate and beneficial for saliency detection,
which can be seen from the Fig. 12(c) and (d). Some salient areas
are not activated in the high-level features, in some cases, the acti-
vated areas are distributed throughout the whole scenes, including
the background areas. These inaccurately activated high-level fea-
tures can easily lead to the failure cases.

To solve the problem, we need to obtain the more accurate
high-level features with the deeper and wider network. Moreover,
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the proposed model only introduces the Stackelberg game to
decode the features. In fact, the Stackelberg game theory can also
be extended into the feature encoder and make the produced fea-
tures fit better with the saliency detection task. We will explore it
in the further work.

Essentially, the proposed network describes an unequal infor-
mation competition model between different level features, which
is organized in a cooperative as well as confrontational way. The
model can be extended into other visual tasks. Heuristically, the
game relationship may be a new direction to design the network.
5. Conclusions

In this paper, we introduce the Stackelberg game theory as a
new feature fusing strategy, and based on the theory, we propose
a novel leader-follower feature fusing network for saliency detec-
tion. The network equips with two sub-modules: one is the
multi-scale context-aware leader-follower attention module
(MCLAM) to capture the selective multi-scale features, and the
other is the leader-follower feature fusing module (LF3M) to fuse
multi-level features. Extensive experimental results on five data-
sets prove that our method can outperform most of the state-of-
the-art saliency detection approaches with a higher effect and effi-
ciency. Furthermore, Stackelberg game theory can be used in all
computer visual tasks which the high-level features possess the
dominated position. We will further explore its effects and intro-
duce it into other visual tasks.
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