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The variance-based method of global sensitivity analysis (GSA) has been widely applied in spacecraft 
thermal design, which is typically calculated using Monte Carlo estimations. However, such estimations 
require a large number of samples to ensure sufficient accuracy, which makes GSA expensive to perform 
when modeling is difficult. Moreover, multimodal or highly skewed output distributions may result in 
the use of variance as an uncertain agent that generates contradictory results. Therefore, an intelligent 
density-based GSA framework based on machine learning and multi-fidelity metamodels called IDGSA-
3M is proposed. An intelligent batch processing system based on a real-time data interaction between 
MATLAB and NX/TMG was designed that uses many cheap low-fidelity sample points to reduce the 
cost of model evaluation while using a small number of expensive high-fidelity sample points to 
maintain high accuracy, thus achieving trade-offs between high accuracy and low computational cost. 
A radial basis function (RBF) neural network based on an improved mind evolutionary algorithm was 
applied to approximate the multi-fidelity metamodel of a spacecraft thermophysical model calculated 
using a batch processing system, which had a computational speed that was 1000+ times faster than 
that of the traditional thermophysical model and a high computational accuracy of 99%+. The output 
distributions of the RBF were then characterized by its cumulative distribution functions to obtain 
density-based sensitivity indices. Both the theoretical and experimental results of GSA for the thermal 
design parameters of the extreme ultraviolet radiation detector on the space-based Lyman-Alpha Solar 
Telescope, developed in China, demonstrated that the convergence rate of IDGSA-3M can be improved up 
to 10-fold for a fixed convergence level in comparison with two other GSA methods, thereby verifying its 
superiority.

© 2021 Elsevier Masson SAS. All rights reserved.
1. Introduction

Global sensitivity analysis (GSA) is a set of mathematical meth-
ods based on statistics designed to gain insight into the relative 
contributions of different sources of uncertainty in model outputs 
[1–6]. GSA is increasingly and widely used in various engineering 
applications, particularly spacecraft thermal design optimization, 
which has expensive thermophysical models and many hyperpa-
rameters. GSA is almost indispensable for improving the efficiency 
of optimization and reducing the mean squared error (MSE) [7–9].

Spacecraft thermal design optimization requires a large amount 
of space thermal analysis to achieve appropriate thermal con-
trol effects. They are time-consuming finite element analysis (FEA) 
processes based on solving partial differential equations [10–13]. 
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Many metamodeling approaches exist, which are known as approx-
imation models or surrogate models that supersede the original 
model, which are used to improve computational efficiency, includ-
ing the Kriging model [14–17], RBF [18], artificial neural network 
(ANN) [19,20], support vector regression (SVR) [21], and response 
surface methodology [22], which have been widely used in the 
field of optimization for spacecraft thermal design. However, these 
approaches require many high-fidelity (HF) samples to ensure that 
the metamodel has sufficient precision, and they take a great deal 
of time.

Multi-fidelity (MF) metamodeling approaches have attracted 
significant attention recently for data regression because they can 
trade-off between high accuracy and low computational expense 
by integrating the information from HF and low-fidelity (LF) mod-
els [23]. For example, the co-Kriging metamodel is a promising tool 
for building such an MF metamodel when the simulation mod-
els can be run at different levels of accuracy [24,25]. Gratiet et al. 
[24] obtained the hyperparameters of the co-Kriging metamodel by 
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minimizing the likelihood function according to the Markov prop-
erty. However, sample points with different fidelities should be 
nested to allow a simple estimation of the model parameters for 
the co-Kriging metamodel [24]. Han and Görtz [26] proposed the 
hierarchical kriging approach, in which the LF model was taken 
as a model trend of the HF model. Scaling-function-based MF 
metamodel approaches, including multiplicative scaling approaches 
[27,28], additive scaling approaches [13,14,26], and hybrid scaling 
approaches [29,30], are also commonly used in engineering design 
optimization. In this paper, a neural network surrogate modeling 
approach based on MF metamodeling is proposed, which aims to 
improve the speed of the original model evaluation while ensuring 
the high prediction accuracy of the metamodel, which will benefit 
GSA.

One of the most widely used GSA methods is the variance-
based method, which quantifies the relative effect of input parame-
ters on model outputs by calculating the sensitivity index [31–35]. 
However, variance-based GSA is obtained from Monte Carlo in-
tegrals, which require enormous model sampling and numerous 
evaluations to obtain sufficient accuracy [36–38]. Moreover, mul-
timodal or highly skewed output distributions may result in the 
use of variance as an uncertain agent that may generate contradic-
tory results [39,40]. These limitations have stimulated a number of 
studies on “moment-independent” sensitivity indices, that is, in-
dices that do not use a specific moment of the output distribution 
to characterize uncertainty and therefore are applicable indepen-
dently of the shape of the distribution. These methods are some-
times referred to as “density-based” methods because they inves-
tigate the probability density function (PDF) of the model output 
rather than its variance only. In this case, sensitivity is related to 
the variations in the output PDF that are induced when removing 
uncertainty about one input. Entropy-based sensitivity measures 
[41–43] and the d-sensitivity measure [44,45] follow this line of 
reasoning.

Additionally, to mitigate the above-mentioned problems, several 
scholars have proposed various novel and efficient GSA methods, 
such as the classical variance-based GSA. Qian proposed a novel 
GSA method based on a MF Monte Carlo estimation (referred to 
as MFGSA) [46] and Pianos designed a GSA method (referred to 
as PAWN) that estimates the sensitivity analysis index by analyz-
ing the cumulative distribution function (CDF) [47]. These methods 
are difficult to implement and apply in spacecraft thermal design 
optimization, which still mainly uses manual corrections of the 
thermal design parameters. Stout [48] and Thunnissen [49] pro-
posed Bayesian-based thermal modeling to improve the effect of 
spacecraft thermal design optimization, but the computational ef-
ficiency was poor.

To solve these problems and obtain efficient and accurate 
GSA indices, an intelligent density-based GSA framework based 
on machine learning and MF called IDGSA-3M (IDGSA: intelli-
gent density-based GSA framework; 3M: machine learning and 
MF metamodels) is proposed. This is the first time that density-
based GSA has been applied to spacecraft thermal design opti-
mization. Additionally, IDGSA-3M is different from traditional GSA 
approaches to spacecraft thermal design optimization computed 
using the time-consuming Monte Carlo estimation. It involves an 
intelligent batch processing system based on a real-time data in-
teraction between MATLAB and NX/TMG, and uses LF models to 
reduce the computational cost of GSA while using HF models to 
maintain accuracy. The function of this system is to automatically 
evaluate the model based on sample input combinations within 
their variability space without supervision. The system is at least 
five times faster than traditional manual Monte Carlo estimates. 
The RBF neural network based on an improved mind evolution-
ary algorithm (IMEA) proposed by He et al. and Yanqing [50,51]
is one of the most important effective hybrid strategies based on 
2

ANNs used to approximate nonlinear systems, and can speed up 
model convergence and avoid the disadvantage of falling into local 
optima in traditional RBF neural networks. It is applied to approx-
imate the thermophysical model of spacecraft calculated using the 
batch processing system, and then the output distributions of the 
RBF are characterized by CDFs instead of probability distribution 
functions (PDFs) to obtain density-based GSA. Moreover, the ap-
proximate values of the empirical CDFs obtained from the data 
samples do not require cost calculations or tuning parameters. The 
results provided below demonstrate that the proposed method can 
effectively identify the impact of uncertain inputs on outputs and 
reduce the MSE of the estimator while using fewer model evalua-
tions.

The remainder of this paper is organized as follows: In Sec-
tion 2, the background and motivation are provided. Details of the 
proposed design methodology of IDGSA-3M are presented in Sec-
tion 3. In Section 4, the application of IDGSA-3M to the GSA of the 
thermal design parameters for an ultraviolet radiation detector is 
described and the results are compared with those of two classi-
cal GSA methods. Finally, in Section 5 and 6, the discussion and 
conclusions of this study, respectively, are presented.

2. Background and motivation

2.1. MF metamodel

Many MF metamodel methods based on scale functions [52–
54] exist, among which the additive scale method has been widely 
studied [54]. The methods adopted in this study are expressed as

f̂mf (x) = ρ f̂ l (x) + δ̂ (x) , (1)

where f̂mf (x) denotes the MF-based metamodel, f̂ l (x) denotes the 
LF-based metamodel, ρ denotes the LF scale factor, and δ̂ (x) de-
notes the scaling function. The LF-based metamodel and scaling 
function are constructed using the Kriging model [55].

The metamodel f̂ l (x) is established from the LF sample space 
xl = {xl,1, xl,2, · · · , xl,ml } and the results of the corresponding 
fl = { fl,1, fl,2, · · · , fl,ml }. For the given HF sample space xh =
{xh,1, xh,2, · · · , xh,mh } and the results of the corresponding fh =
{ fh,1, fh,2, · · · , fh,mh }, the error δ

(
xh,i

) = {δ (
xh,1

)
, δ

(
xh,2

)
, · · · ,

δ
(
xh,mh

)} of the HF and LF metamodels at the HF sampling point 
xh,i can be calculated using

δ
(
xh,i

) = fh
(
xh,i

) − ρ f̂ l
(
xh,i

)
. (2)

With the HF sample space xh and the results of the correspond-
ing δ (x) for the scaling data, the Kriging model is used to construct 
the scaling function δ̂ (x) [56]. A widely used method for selecting 
the LF scale factor is minimizing the distance between the HF sam-
ple points and the LF scaled metamodel:

find ρ

min e =
n∑

i=1

[
ρ f̂ l

(
xh,i

) − fh
(
xh,i

)]2 , (3)

where n denotes the number of HF sampling points. However, this 
approach ignores the fluctuation effects of the scale function.

2.2. Density-based GSA

Density-based GSA, which does not address the output at a par-
ticular moment in time but considers the entire distribution, has 
been studied for a long time by Park and Ahn, Chun et al., and 
Borgonovo [57–59]. By definition, it takes into account the prob-
ability distribution of the output and not only the output at a 
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certain point in time. Specifically, the sensitivity to xi is the value 
measured by the distance between the unconditional probability 
distribution of y obtained when all inputs change simultaneously 
and the conditional distribution obtained when all inputs change 
except xi .

For brevity, the conditional and unconditional probability dis-
tributions are characterized using their CDFs instead of PDFs be-
cause CDFs are easier to calculate [60–62]. The following time-
independent GSA is defined:

δi = 1

2
E Xi [s (Xi)] . (4)

Suppose that FY (y) and FY |Xi (y) intersect at m points of in-
tersection, y = a1, a2, · · · , am . If FY (a1) − FY |Xi (a1) > 0,

s (Xi) = 2
{[

FY (a1) − FY |Xi (a1)
] − [

FY (a2) − FY |Xi (a2)
] + · · ·

+ (−1)(m−1)
[

FY (am) − FY |Xi (am)
]}

. (5)

If FY (a1) − FY |Xi (a1) < 0,

s (Xi) = 2
{[

FY |Xi (a1) − FY (a1)
] − [

FY |Xi (a2) − FY (a2)
] + · · ·

+ (−1)(m−1)
[

FY |Xi (am) − FY (am)
]}

, (6)

E Xi [s (Xi)] =
∫

F Xi (xi) s (Xi)dxi, (7)

where δi denotes the sensitivity index of input Xi to Y ; s (Xi) de-
notes the separation between the output density FY (y) and the 
conditional density of Y , FY |Xl (y) given Xi ; and F Xi (xi) denotes 
the density of Xi . The expectation E Xi [s (Xi)] accounts for the av-
erage shift in the decision-maker’s view of the output provided by 
Xi .

3. Intelligent sensitivity analysis framework

In this section, the details of the intelligent sensitivity analy-
sis framework are presented. First, the sampling strategies of the 
proposed framework are introduced. The batch processing system 
based on the MF metamodel is then described. Next, to further ac-
celerate the evaluation of the model, the RBF neural network based 
on an IMEA is specified. Finally, a practical workflow is presented 
in detail.

3.1. Sample input spaces

Before GSA can be evaluated, it is necessary to first select an 
appropriate sampling strategy to sample the inputs within their 
variability space that can be used to construct a sample input 
space.

Many efficient sampling strategies exist, for example, Latin hy-
percube sampling (LHS), which is a statistical method for generat-
ing random samples of approximate parameter values in the mul-
tivariate that has long been widely applied in the GSA of multiple 
parameters [63–65]. However, a common drawback of traditional 
LHS and many other widely used sampling strategies is that they 
generate the entire sampling space at once, which requires the 
user to specify the sample size before sampling. Generally, users 
tend to use large sample sizes, although this may increase the 
number of unnecessary calculations and even lead to oversam-
pling. However, when sample-based analysis fails to meet users’ 
needs (e.g., the sample size needs to be expanded), the expanded 
samples should be used for sample-based analysis. At this point, 
users encounter a difficult problem. The expanded samples and 
previous samples cannot form a complete Latin hypercube; hence, 
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he original samples are discarded and the expanded samples are 
ecalculated, which increases the computation costs significantly.

To solve these problems, a novel efficient sequential version of 
he LHS proposed by Razi [66] was applied in this study, called 
rogressive Latin hypercube sampling (PLHS). PLHS is an algo-
ithm that uses sampling in stages. The sample sets at each stage 
re obtained using LHS; hence, the sample sets at all stages are 
atin hypercubes, that is, PLHS allows users to observe the effect 
f sample-based analysis and terminate sampling based on actual 
emand. This not only avoids the impact of model parameter un-
ertainty on the sampling space as well as on the GSA, but also 
nsures that the sampling space is homogeneous and represen-
ative of the overall distribution of the model parameters, which 
reatly improves the efficiency of sampling and model evaluation. 
 mathematical scheme of PLHS follows.

Suppose S (n, p) is a sample matrix consisting of n × p variables 
i, j ∈ [0,1], where i = 1, . . . , n and j = 1, . . . , p. Additionally, a new 
et of auxiliary binary variables, yq, j , is defined:

yq, j =
{

1
0

(8)

∑p
j=1

∑n
q=1 yq, j

n.p
= 1. (9)

When Eq. (9) is satisfied, S (n, p) is a sample space based on 
HS and can be referred to as LHS sampling at this stage:

T

=1

∑p
j=1

∑nt
q=1 yt

q, j

nt .p
= T , (10)

here t = 1, 2, . . . , T is the number of stages. In essence, deter-
ining the solution of PLHS is regarded as an optimization prob-

em:

aximize

(
T∑

t=1

∑p
j=1

∑nt
q=1 yt

q, j

nt .p

)
. (11)

.2. Batch processing system based on an MF metamodel

After establishing the sample input space, the model is then 
valuated with inputs from the space. In traditional thermal analy-
es of spacecraft, a large amount of data for the thermal design pa-
ameters and thermophysical model parameters need to be loaded. 

anually loading data into software such as NX/TMG and extract-
ng thermal analysis results are the most widely used approaches, 
ut are nonetheless time-consuming and error prone.

An intelligent batch processing system based on machine learn-
ng and an MF metamodel is proposed in this paper. The MF meta-

odel not only speeds up model estimation but also ensures the 
ccuracy of model estimation. The intelligent batch processing sys-
em incorporates the automation of data loading and extraction of 
hermal analysis results. The two methods proposed in this section 
ot only improve the speed of model estimation, but also ensure 

ts accuracy.
The intelligent batch system consists of multiple functional 

odules (Fig. 1), including the (i) Software Interface module for 
ommunication between modules; (ii) Input Samples module, 
hich generates multiple sets of thermal design parameters for 

he spacecraft using PLHS; (iii) Text Retrieval module, which ap-
lies the macro-recording function of FEA software to record the 
rocess of space thermal analysis based on machine learning for 
nalysis and learning, and generates a text file that can be recog-
ized and run by FEA software; (iv) Parameter Extraction module, 
hich transfers the sampling data from the Input Samples mod-

le to a text file from the Text Retrieval module; and (v) Thermal 
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Fig. 1. Workflow of the batch processing system.

Analysis module, which performs transient thermal analysis and 
steady-state thermal analysis on MF metamodel, and serves to run 
specified space thermal analysis programs in FEA software (e.g., 
NX/TMG) based on the text file produced by the Text Retrieval 
module. The results of the calculation and the analysis change the 
variables, and data exchanges are performed in real time through 
the Software Interface module. After the resulting data are pro-
cessed by the Text Retrieval and Parameter Extraction modules, 
which execute machine learning algorithms, it is automatically ag-
gregated into a database as needed for later GSA.

The intelligent system implements a sampling of thermal de-
sign parameters, parameter loading, and extraction of the space 
thermal analysis results. Additionally, it automates the construction 
of datasets of the space thermal analysis results under unsuper-
vised, which not only effectively saves manpower and reduces time 
consumption, but also significantly improves the efficiency of space 
thermal analysis.

3.3. RBF neural network based on an IMEA

Designed by Powell in 1987 [67], the RBF neural network is a 
widely applied multilayer feedforward neural network, which has 
a simple structure, concise training, and fast learning convergence, 
and approximates any nonlinear function. The IMEA is an evolu-
tionary algorithm that was proposed by Yanqing et al. in 2018 
[51]; it contains an optimization algorithm for the mind evolution-
ary algorithm proposed by Chengyi et al. [68]. Its RBF is a Gaussian 
function, for which its activation function is

r
(
xq − ci

) = exp(− 1

2σ 2
r

∥∥xq − ci
∥∥2

), (12)

and the output of the network is

y j =
k∑

i=1

ωi j · exp(− 1

2σ 2
r

∥∥xq − ci
∥∥2

), j = 1,2, · · · ,n, (13)

where xq denotes the qth input vector of the n dimensional vector 
x, ci denotes the center of the Gaussian function, and ωi j denotes 
the connection weight between the hidden and input layers.

The proposed RBF based on an IMEA (Fig. 2) incorporates the 
following optimization steps:

(1) Depending on the topology of the RBF, the mapping of the 
solution space to the coding space is achieved, and the length 
of IMEA coding is determined from

L = L1L2 + L2L2 + L2L3 + L2 + L3 (14)

where L1, L2, and L3 are the number of nodes in the input 
layer, hidden layer, and output layer, respectively.
4

Fig. 2. Structure of the RBF neural network based on an IMEA.

(2) The reciprocal of the MSE of the training set is selected as 
the reward function F of each individual and population, and 
expressed as

F = n∑n
i=1(xobs,i − xpre,i)

2
, (15)

where xobs,i is the true value of the ith sample and xpre,i is the 
predicted value of the ith sample.

(3) The group is initialized to obtain an excellent subgroup and a 
temporary subgroup. After convergence and mutation opera-
tions, the global optimal individual and its score are obtained.

(4) The optimal parameters obtained from the RBF optimized by 
the IMEA are input into the RBF for further training.

3.4. Practical workflow of IDGSA-3M

The proposed IDGSA-3M is divided into two stages and seven 
steps, and applies three programming languages and space thermal 
analysis software to take advantage of each programming language 
and analysis software (Fig. 3).

The 1st stage: First, LF metamodels are applied to enhance the 
computational efficiency of the sensitivity analysis while maintain-
ing the accuracy of the model output through HF metamodels. 
Then, an RBF neural network based on an IMEA (RBF-IMEA) is ap-
plied to approximate the thermophysical model of the spacecraft 
calculated by the batch MF system and subsequently used as the 
function for later GSA to accelerate post-processing. Finally, the 
effect of RBF-IMEA is evaluated and a determination is made on 
whether to further expand the sampling space based on the con-
vergence analysis.

The 2nd stage: First, the sampling space based on PLHS for GSA 
is generated. Then, the model is evaluated by the Batch-RBF system 
based on RBF-IMEA generated in the 1st stage. Finally, the effect 
of the density-density GSA is evaluated depending on the conver-
gence analysis, and again, a determination is made on whether to 
further extend the sampling space.

After these two steps, the results are graphed to enable a 
comparative analysis of GSA. The key is that all the above steps 
are performed automatically without human supervision. Both the 
computational efficiency of the GSA and the accuracy of model 
evaluation are improved.

4. Example applications and results

To verify its performance, IDGSA-3M is applied to the GSA for 
the thermal design parameters of a detector for extreme ultra-
violet (EUV) radiation situated on the space-based Lyman-alpha 
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Fig. 3. Practical workflow for IDGSA-3M.
Solar Telescope (LST) developed by China, and compared with 
MFGSA, PAWN, and the traditional method based on the Monte 
Carlo method and manual tuning.

In this section, the application of IDGSA-3M to the LST is de-
scribed in detail. First, the research background of the LST is 
introduced. Then the thermophysical model of the LST is de-
scribed. Next, based on the proposed IDGSA-3M, sensitivity anal-
ysis of thermal design parameters of the LST is conducted under 
high temperature conditions. Finally, IDGSA-3M is compared with 
the classical density-based PAWN method and the classical Monte 
Carlo-based and manually adjustable MFGSA method.

4.1. Background of the LST

To meet the needs of astronomers for the observation and study 
of various solar activities, such as coronal mass ejections, solar 
flares, and sunspots, the Chinese Academy of Sciences designed 
a new space-based Lyman alpha and visible dual-band internal 
occulting coronagraph that enables simultaneous high-resolution 
imaging and observation of the corona at 121.6 nm and 700 nm. 
The overall structure of the LST is shown in Fig. 4A. The lens bar-
rel always faces the sun. The SCI121.6 detector and SCI700 detector 
are the two core detectors of the LST, which are the basic equip-
ment for observing solar activity in 121.6 nm and 700 nm bands, 
and studying solar internal dynamics, respectively. However, the 
cold black space, sharp transition between high and low temper-
atures, single particle effect, atomic oxygen corrosion, and other 
space environmental factors have significant effects on the obser-
vation. As shown in Table 1, the parameters and settings of the 
orbital environment are described, which indicates that the LST 
5

Table 1
Parameters and settings for the orbital environment.

Parameter Hot case Cold case

Orbit Sun-synchronized orbit
Minimum Altitude 720 km
Spacecraft Attitude Lens barrel is facing the sun and 

orbiting under inertia
Satellite Position Local Time at Ascending Node 18:00:00
Orbit Period 5942.6 s
Orbit Inclination 98.38◦
Albedo 0.306
CMOS Power 0.65 W
System Heating Power ≤120 W
Temperature Index for Frameworks 19∼25 ◦C
Stefan-Boltzmann Constant 5.67×10−8 W/(m2· K4)
Solar Constant 1412 W/m2 1322 W/m2

Earth IR 237 W/m2 220 W/m2

operates in a solar synchronous orbit at 720 km altitude and faces 
a complex thermal environment, including direct sunlight, infrared 
radiation from the Earth, and reflected sunlight from the Earth (see 
Fig. 5). Additionally, there is a large difference in heat flux between 
the sunny side and the shady side, which may lead to an uneven 
temperature distribution between the main mirror and detectors, 
thus affecting the imaging quality of the LST. Therefore, it is nec-
essary to design a reliable, effective, and accurate thermal control 
system for the LST, particularly for the detector.

Because of the complex and changeable space environment, the 
LST requires very high thermal control accuracy during storage 
and operation. The operating temperature range of the frame is 
19 ◦C–5 ◦C. The SCI121.6 detector is required to maintain a low op-
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Fig. 4. Overall structure of the LST and detector. (A) Overall structure of the LST. (B) Heaters attached to the SCI121.6 detector. (C) Structure diagram of the SCI121.6 detector.

Fig. 5. External heat flux of the LST in the hot case and cold case.

Table 2
List of materials used in the detector and their physical properties.

Name Material Density Thermal conductivity Specific heat capacity
K g/m3 W/m·K J/kg·K

Focal plane box Aluminum alloy (2A12) 2780 121 921
CMOS Photosensitive material 1800 20 500
PCB Composite materials 1800 20 500
Thermal conductor Aluminum alloy (7A09) 2850 134 921
Thermal cable Copper 8750 350 400
Cold cover Aluminum alloy (7A09) 2850 134 921
Insulation pads/rings Polyimide 1420 0.25 1130
erating temperature of −50 ◦C to −20 ◦C. Because the CMOS in 
the SCI121.6 detector relies on an aluminum ammonia heat pipe 
for cooling (see Fig. 4C), and this pipe will fail when it is lower 
than −70 ◦C, the temperature of the CMOS must be controlled at 
−30 ◦C to −25 ◦C, which poses a great challenge to the thermal 
design of the SCI121.6 detector. Fig. 4C shows the structure dia-
gram of the SCI121.6 detector after careful thermal design. Table 2
details the materials used in the detector and their physical charac-
teristics, which are also affected by manufacturing and craftsman-
ship (see Table 3). In particular, the optimization of a large number 
of thermal design parameters would be very time-consuming and 
almost impossible if it was based on the thermal design engineer’s 
experience.

The sensitivity analysis of the thermal design parameters of the 
LST is very important for the thermal design of the LST. Sensitivity 
6

Table 3
List of surface craft and their thermophysical properties.

Name Solar absorptivity Infrared emissivity

Black anodizing 0.80-0.95 0.80-0.95
Gold plating 0.15-0.40 0.02-0.05
S781 white coatings 0.12-0.25 0.80-0.94
F46 0.11-0.45 0.60-0.80

analysis generally focuses on two types: local sensitivity analysis 
(LSA) and GSA. LSA examines the change in the response of the 
temperature of the LST caused by a small variation in a single 
model parameter. However, LSA does not provide global informa-
tion about the impact of parameter uncertainty. GSA addresses the 
limitations of the LSA, which is one advantage of the proposed 
IDGSA-3M. In the context of model-based design, GSA can guide 
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research aimed at reducing model parameter uncertainties that 
significantly affect the expected performance and allow engineers 
to neglect model parameters that do not significantly affect the 
temperature of the LST. To verify the performance of IDGSA-3M, 
it was applied to the GSA of thermal design parameters affecting 
the CMOS temperature of the EUV radiation detector on the space-
based LST, which is called the SCI121.6 detector. Fig. 4C shows the 
structure of the SCI121.6 detector.

4.2. Thermophysical model of the LST

4.2.1. Theoretical analysis of the thermophysical model
Before IDGSA-3M can be applied to the thermal analysis of the 

LST, the thermophysical model of the spacecraft needs to be an-
alyzed. Currently, the node network method [69,70] is the most 
commonly used method in modeling spacecraft thermal design. 
Depending on their characteristics, the LST can be broken into 
numerous finite units, each of which is treated as an isothermal 
object. The application of the heat balance equation for each node 
yields

Q sj + Q pj +
M∑

i=1

Bi, j Aiεiσ T 4
i +

N∑
i=1

Di, j(T j − Ti)

= (cm) j
dT j

dτ
+ A jε jσ T 4

j , (16)

where Q sj is the external heat flux absorbed by node j; Q pj is the 
internal thermal power consumption of node j; Bi, j is the Gebhart 
factor; Ai is the radiant heat transfer area of node i facing node 
j; εi is the infrared emissivity of node i facing node j; σ is the 
Stefan–Boltzmann constant; Ti denotes the real-time temperature 
value for node i; M is the number of nodes that exchange radi-
ant heat with node j; Di, j is the thermal conductivity coefficient 
between node i and node j; T j denotes the real-time temperature 
value for node j; N is the number of nodes that exchange con-
duction heat with node j; (cm) j is the heat capacity of node j; 
c is the specific heat capacity of node j; m is the quality of node 
j; τ is time; A j is the area of radiant heat dissipation of node j; 
and ε j is the infrared emissivity of node j for radiant heat dissi-
pation. For each node on the spacecraft, such an equation can be 
derived, and the temperature of each node can be obtained using a 
simultaneous solution, which is called the node network method:

(cm) j
dT

dτ
=

∑
i

Ri, j(T 4
j − T 4

i ) +
∑

i

D(i, j)(T j − Ti) + Q sj + Q pj,

(17)

where R(i, j) is the heat transfer coefficient of the heat radiation 
network between nodes in the network mode and D(i, j) is the 
thermal conductivity coefficient of the heat conduction network 
between nodes in the network model.

4.2.2. Boundary conditions
The common boundary conditions in space thermal analysis can 

be classified into three categories:

(I) the temperature at the boundary of the spacecraft at any time:

τ > 0, T w = f T (x, y, z, τ ), (18)

where T w is the temperature of the boundary of the space-
craft; f T is a function of the temperature at the boundary 
of the spacecraft; and (x, y, z) denotes the coordinates of the 
spacecraft boundary in the space coordinate system;
7

Fig. 6. Thermophysical model of the LST.

(II) the heat flux on the boundary at any time:

qw = fhl(x, y, z, τ ), (19)

where qw is the heat flux in the normal direction on the 
spacecraft boundary and fhl is a function of the heat flux at 
the boundary of the spacecraft; and

(III) the temperature and convective heat transfer coefficient of the 
fluid medium conducting with the spacecraft:

∂T

∂n

∣∣∣∣
w

= −h

λ
(T w − T f ), (20)

where ∂T
∂n

∣∣
w is the temperature gradient in the normal di-

rection on the spacecraft boundary; h is the convective heat 
transfer coefficient between the spacecraft surface and fluid; 
λ is the thermal conductivity coefficient of the material; and 
T f is the temperature of the fluid medium conducting with 
the spacecraft.

4.2.3. Establishing the thermophysical model of the LST
According to the three-dimensional model of the LST and the 

thermal control scheme, the thermal physical model of the LST 
was established using NX/TMG, as shown in Fig. 6. The model has 
53,970 cells, 55,874 nodes, and 236 thermal couplings.

4.3. Application of IDGSA-3M

4.3.1. Sample input spaces based on PLHS
Before the proposed IDGSA-3M is used to conduct GSA of the 

key thermal design parameters of the SCI121.6 detector, a sampling 
space needs to be constructed. Convection is not considered in this 
study because it is only relevant for pressurized spacecraft with an 
internal atmosphere. When selecting the thermal design parame-
ters for GSA, the first selection criterion is based on whether the 
parameters in the SCI121.6 detector can be arbitrarily changed as 
the selection criteria. Because of the limitation of the optical struc-
ture of the system, many parameters that affect the temperature 
T cannot be changed. Then, among the parameters that can be 
changed, the main parameters that are directly or indirectly re-
lated to the temperature T are selected:

(a) For the selection of adjustable parameters that directly affect 
the temperature T of the CMOS, the parameters related to di-
rect thermal radiation and conduction by the CMOS are mainly 
selected because of the vacuum treatment in the detector. In 
terms of the selection of the radiation parameters, because the 
inner surface of the focal plane box and the thermal conductor 
transfer radiation heat to the CMOS, they are mainly selected. 
In terms of the selection of the heat conduction parameters, 
as the thermal conductor, press plate, and focal plane box are 
directly connected with the CMOS thermally, they must be se-
lected. Thermal resistance is related to the contact surface and 
thermal conductivity, and the radiation parameters are related 
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Table 4
Descriptions and ranges of the thermal design parameters.

Parameter number Description Base value Lower limit Upper limit

Solar absorptivity 1 Inner surface of the cold cover 0.84 0.80 0.95
2 Outer surface of the cold cover 0.25 0.15 0.40
3 Radiation panel 0.18 0.12 0.25
4 Inner surface of double layer insulating board 0.84 0.80 0.95
5 Outer surface of double layer insulating board 0.25 0.15 0.40
6 Inner surface of focal plane box 0.84 0.80 0.95
7 F46 0.41 0.11 0.45

Infrared emissivity 8 Inner surface of the cold cover 0.84 0.80 0.95
9 Outer surface of the cold cover 0.05 0.02 0.05
10 Radiation panel 0.87 0.80 0.94
11 Inner surface of double layer insulating board 0.84 0.80 0.95
12 Outer surface of double layer insulating board 0.05 0.02 0.05
13 Inner surface of focal plane box 0.84 0.80 0.95
14 F46 0.68 0.60 0.80

Thermal resistance, 
K·W−1

15 Between thermal cable and thermal conductor 1.11 0.13 2.5
16 Between thermal cable and cold cover 0.23 0.13 2.5
17 Between thermal cable and heat pipe 1.23 0.13 2.5
18 Between heat pipe and thermal cable 0.67 0.13 2.5
19 Between thermal conductor and CMOS 4.22 1.48 4.44
20 Between thermal conductor and focal plane box 1.18 0.71 3.53
21 Between cold cover and insulation pads 3.79 2.28 25
22 Between cold cover and PCB 201.81 21.4 273.14
23 Between cold cover and double layer insulating board 68.42 3.98 81.68
24 Between cold cover and focal plane box 11.74 1.86 38.01
25 Between double layer insulating board and framework 68.42 3.98 81.68
26 Between double layer insulating board and external insulation ring 5.00 0.63 10
27 Between double layer insulating board and internal insulation ring 5.00 0.47 10
28 Between external insulation ring and framework 15.00 2.5 25
29 Between internal insulation ring and cold cover 5.00 2.10 10.47
30 Between focal plane box and CMOS 6.93 4.16 40
31 Between focal plane box and insulation pads 3.79 2.28 40
32 Between focal plane box and press plate 3.89 2.34 40
33 Between CMOS and press plate 12.15 7.29 66.67
34 Between CMOS and PCB 4.47 2.68 13.42

Thickness, 
mm

35 Internal insulation ring 2.35 1 5
36 External insulation ring 2.91 1 5
37 Insulation pads 1.24 1 5

Heat transfer coefficient, 
W·m−2·K−1

38 Between multilayer and wrapped area 0.17 0.05 0.6

Thermal conductivity, 
W·m−1·K−1

39 Thermal conductor 154.00 100 250
40 Thermal cable 300.00 150 300
41 Cold cover 154.00 100 250
42 Focal plane box 154.00 100 250
to the surface craft and material properties. The value ranges 
of the selected radiation parameters and thermal resistance 
are shown in Table 4. Additionally, the thermal conductivity of 
the thermal conductor also has a direct impact on the CMOS 
temperature, and its value also depends on the surface craft 
and material properties.

(b) For the selection of parameters that indirectly affect the tem-
perature T of the CMOS, the parameters that affect the tem-
perature of the cold cover and focal plane box are mainly 
selected. Because the radiation parameters of the inner and 
outer surfaces of the cold cover and double layer insulat-
ing board both affect the temperature of the focal plane box 
through heat conduction, they must be selected. The com-
ponents that are directly or indirectly connected to the cold 
cover and focal plane, such as PCB, insulation pads, and the 
press plate, have an indirect effect on the CMOS temperature, 
so they must be selected. Additionally, the thickness of the in-
sulation ring and insulation pads also has an indirect effect 
on the CMOS temperature through heat conduction. Simulta-
neously, the heat transfer coefficient between the multilayer 
and wrapped area directly affects the temperature of the focal 
plane box through radiant heat transfer, so they must be se-
8

lected. The value ranges of the selected parameters are shown 
in Table 4.

To establish RBF-IMEA with 42 thermal design parameters as 
input and COMS temperature T as output, the training set should 
be established. First, 42 parameters need to be sampled in their 
respective value spaces. To avoid the inhomogeneity of the sam-
pling input space, that is, the whole value space of the parameters 
cannot be covered, which leads to the great error of the prediction 
of RBF-IMEA, the PLHS method is adopted in this study to sample 
42 parameters in their value space, which can effectively improve 
the coverage of the sample values on the distribution space of the 
input random variables and avoid the impact of the uncertainty 
of the model parameters on the sampling space, finally forming a 
sample input space composed of 5,000 sets of data.

4.3.2. Reduction of the space thermal mathematical models
In the thermal analysis of spacecraft, thermal radiation is the 

main heat transfer mechanism, and the Monte Carlo Ray Tracing 
(MCRT) method [71] is the most widely used method to solve 
it. However, the MCRT method essentially requires a long com-
putational time and a large number of computational resources. 
Therefore, to improve the efficiency of thermal analysis, thermal 
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Fig. 7. Thermal analysis results of the DTMM and RTMM under the hot case based on the base value. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)
Table 5
Settings for six sample size combinations.

RTMM sample size DTMM sample size MSE

Case 1 2500 2500 15.6836
Case 2 3000 2000 3.4361
Case 3 3500 1500 1.2871
Case 4 3750 1250 0.9596
Case 5 4000 1000 4.3568
Case 6 4500 500 16.5249

model reduction is widely used. In this study, the thermal model 
reduction strategy proposed by Michael [72] is adopted. Based on 
this method, the detailed thermal mathematical model (DTMM) of 
the LST is used to obtain the reduced thermal mathematical model 
(RTMM) using reduction correlation, and then the Kriging model is 
established for the scaling function and RTMM metamodel.

In this study, the RTMM with 13,977 cells and 14,900 nodes 
is regarded as an LF metamodel, whereas the DTMM with 53,970 
cells and 55,874 nodes is considered as an HF metamodel. The 
time taken for modeling and simulation of an HF metamodel is 
about three times that for an LF metamodel. Using the base values 
in Table 4, the DTMM and RTMM were simulated for 10 orbital pe-
riods under the hot case, and the temperature distribution of the 
CMOS was calculated when the temperature was stable. As shown 
in Fig. 7 the temperature difference between the DTMM and RTMM 
was less than 2 K, which is accepted in the initial thermal design 
of the LST.

4.3.3. Batch processing based on the MF metamodel
The sample input space composition of 5,000 sets of data was 

transferred to the batch processing system proposed in this paper, 
then the intelligent automatic thermal analysis of the DTMM and 
RTMM of the LST was conducted without manual operation. After 
the thermal analysis, the approach used to match the DTMM and 
RTMM to construct the MF metamodel was analyzed. From the ef-
fect of the RTMM/DTMM and their corresponding coefficients on 
each other (Table 5), the MSE of the resulting model was smallest 
when 3,750 RTMM models and 1,250 DTMM models were used to 
construct the MF metamodels.

4.3.4. RBF neural network based on an IMEA
In this study, to obtain the RBF neural network surrogate model 

with high fitting accuracy and improve the training and conver-
gence speed of the model, the RBF neural network toolbox of 
MATLAB was used. In the training process, 80% of the original sam-
ples in the dataset of 50,000 evaluation data sets obtained by MF 
metamodels were used for training, 10% were used to validate the 
generality of the network, and the remaining 10% were used for 
9

Fig. 8. Regression of the established RBF neural network surrogate model without 
optimization.

testing. After RBF neural network surrogate model was trained for 
695 iterations, its MSE was 5.489e-2, which was greater than the 
preset training goal of 1e-3 and did not satisfy the convergence 
requirement. The regression analysis in Fig. 8 shows that the com-
putational error between the RBF neural network surrogate model 
and the traditional thermophysical model is still less than 85%, so 
the hyperparameters of the RBF neural network surrogate model 
must be optimized.

As described in subsection 3.3, IMEA is used to optimize the hy-
perparameters of the RBF neural network surrogate model in this 
study. Finally, after 244 iterations of training and optimization, an 
RBF neural network surrogate model with a structure of 42-168-
84-40-4-1 was obtained, and its mean square error was reduced 
to 4.898e-4. Its regression analysis is shown in Fig. 9. In addi-
tion, the RBF-IMEA surrogate model has a computational speed 
that was 1000+ times faster than that of the traditional thermo-
physical model and a high computational accuracy of 99%+.
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Fig. 9. Regression of the established RBF-IMEA neural network surrogate model.

Fig. 10. Distribution of some parameters’ sampling.
4.3.5. Batch processing based on RBF-IMEA
As mentioned earlier, the PLHS method was adopted to sample 

42 parameters in their value space, which formed a sample input 
space composed of 50,000 sets of data. Fig. 10 shows the distri-
bution of some parameters after 50,000 times of sampling using 
PLHS method, and the distribution law of other parameters not 
given in Fig. 10 is consistent with that of parameters in the figure. 
Additionally, the sample input space composition of 50,000 sets of 
data was transferred to the batch processing system proposed in 
this paper, then the intelligent automatic thermal analysis of RBF-
10
IMEA of the LST was performed without manual operation. After 
the thermal analysis, 50,000 groups of sample input space and cor-
responding thermal analysis results constituted the dataset of the 
later density-based GSA.

4.3.6. GSA of the SCI121.6 detector based on IDGSA-3M
After RBF-IMEA achieved the desired accuracy (the absolute er-

ror of TMG-simulated T and RBF-IMEA predicted T did not exceed 
0.1 K and the relative error did not exceed 0.2%), it entered the 
second stage (see Section 3.4). As shown in Table 6, when the 
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Table 6
GSA of the SCI121.6 detector based on IDGSA-3M.

Main effect Total effect

No. Median Max Min Median Max Min

1 −0.0215 0.0063 −0.0287 0.0672 0.0736 0.0633
2 −0.0001 0.0166 −0.0048 0.0581 0.0654 0.0502
3 −0.0104 0.0123 −0.0228 0.0435 0.0482 0.0353
4 0.0870 0.1052 0.0661 0.1457 0.1507 0.1400
5 0.0582 0.0898 0.0536 0.1264 0.1324 0.1188
6 0.0022 0.0215 −0.0096 0.0610 0.0678 0.0572
7 −0.0722 −0.0486 −0.0869 0.1715 0.1865 0.1527
8 0.0093 0.0125 −0.0109 0.0886 0.0946 0.0818
9 0.0268 0.0402 0.0178 0.0993 0.1051 0.0930
10 0.0951 0.1195 0.0809 0.1635 0.1687 0.1573
11 −0.0365 −0.0208 −0.0536 0.0418 0.0476 0.0357
12 −0.0548 −0.0374 −0.0703 0.0134 0.0209 0.0078
13 −0.0241 0.0042 −0.0298 0.0382 0.0435 0.0301
14 0.0732 0.0904 0.0602 0.1366 0.1420 0.1289
15 −0.0359 −0.0082 −0.0472 0.0215 0.0262 0.0131
16 −0.0149 0.0049 −0.0285 0.0327 0.0379 0.0249
17 0.0010 0.0207 −0.0184 0.0528 0.0570 0.0439
18 0.0561 0.0800 0.0486 0.1189 0.1252 0.1146
19 0.7908 0.8162 0.7971 0.8654 0.8774 0.8618
20 0.0350 0.0625 0.0293 0.0938 0.0991 0.0865
21 0.0353 0.0600 0.0261 0.0940 0.0991 0.0874
22 0.0033 0.0275 −0.0095 0.0658 0.0711 0.0585
23 0.4026 0.4289 0.3908 0.6313 0.6523 0.6178
24 0.0921 0.1174 0.0863 0.1509 0.1562 0.1449
25 0.0916 0.1147 0.0849 0.1604 0.1655 0.1531
26 0.0470 0.0667 0.0379 0.1157 0.1216 0.1091
27 0.0813 0.1015 0.0785 0.1577 0.1624 0.1503
28 0.0837 0.1037 0.0750 0.1477 0.1531 0.1406
29 0.0663 0.0957 0.0656 0.1210 0.1268 0.1143
30 −0.0259 0.0043 −0.0254 0.0453 0.0497 0.0372
31 0.0404 0.0614 0.0324 0.1078 0.1142 0.1027
32 0.0110 0.0364 0.0053 0.0786 0.0839 0.0712
33 0.0608 0.0910 0.0572 0.1232 0.1285 0.1161
34 0.1187 0.1403 0.1101 0.3375 0.3574 0.3258
35 −0.0779 −0.0599 −0.0901 0.0191 0.0252 0.0139
36 −0.0619 −0.0452 −0.0741 0.0069 0.0110 −0.0012
37 −0.0069 0.0110 −0.0195 0.0614 0.0655 0.0525
38 −0.1833 −0.1587 −0.1988 0.0195 0.0377 0.0026
39 −0.0296 −0.0097 −0.0430 0.0391 0.0442 0.0315
40 0.0996 0.1205 0.0998 0.3184 0.3374 0.3018
41 0.1124 0.1371 0.1095 0.1811 0.1859 0.1736
42 −0.0358 −0.0060 −0.0396 0.0406 0.0449 0.0336

calculation cost reached 5,000, the difference between the maxi-
mum value and the minimum value of the sensitivity index of the 
42 groups of thermal design parameters of the SCI121.6 detector 
based on IDGSA-3M was no greater than 0.05, which met the ac-
curacy requirements of the GSA of the LST thermal design in the 
early stage.

The main effect index represents the main effect contribution 
of each input factor to the variance of the output. Additionally, the 
total effect index accounts for the total contribution to the output 
variation caused by the input of its main effect plus all higher-
order effects caused by interactions. Table 6 shows that the main 
effect and total effect indices of No. 19, No. 23, No. 34 and No. 
40 parameters were the largest, they all exceeded 0.2, whereas the 
others were almost all lower than 0.2. This result shows that the 
No. 19, No. 23, No. 34 and No. 40 parameters had a greater impact 
on the CMOS temperature, whereas the other parameters had a 
relatively small impact. Among all 42 parameters, that 16 param-
eters had a main impact indicator that was less than 0 indicates 
that they had little effect on the CMOS temperature and were in-
sensitive to the CMOS temperature.

4.4. Results

To compare the evaluation results obtained by MGFSA, PAWN, 
and IDGSA-3M, four sets of parameters with a GSA index above 
11
Fig. 11. Comparison of the main effect based on the three algorithms.

0.3 were selected from Table 6 that have the greatest influence 
on CMOS temperature (s1: thermal resistance between the ther-
mal conductor and CMOS; s2: thermal resistance between the 
cold cover and double layer insulating board; s3: thermal resis-
tance between the CMOS and PCB; and s4: thermal conductivity 
of the thermal cable), and then used for analysis and comparison. 
Comparative analysis of the main effect (Fig. 11) and total effect 
(Fig. 12) of the three GSA methods was performed based on 100 
sensitivity indices estimated with a computation budget of 500 it-
erations, 5,000 iterations, and 50,000 iterations.

Fig. 11 shows that, after IDGSA-3M had calculated the compu-
tational budget for 5,000 iterations, its main effect reached the 
desired accuracy (the absolute error of maximal main effect and 
minimal main effect for one factor did not exceed 0.1) much faster 
than that of MGFSA and PAWN. Indeed, neither of the latter two 
reached the desired accuracy when the calculation cost was 50,000 
iterations. Additionally, when IDGSA-3M calculated the total effect, 
it also performed significantly better than the other methods (see 
Fig. 12). This means that IDGSA-3M was at least 10 times more 
efficient than the other methods.

As shown in Fig. 13, the convergence analysis of the main effect 
and total effect was performed based on the median, maximum 
and minimum values obtained by evaluating the GSA index of the 
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Fig. 12. Comparison of the total effect based on the three algorithms.

Fig. 13. Convergence analysis based on the three algorithms.

No. 19 parameter on CMOS temperature 100 times for each of the 
three methods at calculation budgets of 500 iterations, 5000 iter-
ations and 50,000 iterations, respectively. Obviously, for the main 
effect, all three methods have almost no deviation except for the 
different convergence rates. For the total effect, MFGSA did not 
have deviations, but the convergence speed was slow. IDGSA-3M 
not only improved the convergence speed and model evaluation 
speed considerably, but also minimized deviations.

Fig. 14 shows the GSA indexes for the 10 high-impact parame-
ters (as bolded in Table 6) calculated by the variance-based GSA 
MFGSA method and the density-based GSA IDGSA-3M method, 
along with the 95% confidence intervals estimated using 100 boot-
strap resamples. In addition, which shows the results of the pa-
rameter ranking based on the GSA index. Both methods clearly 
show that the No. 19 parameter is the most important parame-
ter, although the results of the parameter ranking vary, the top 5 
influential parameters are similar for the MFGSA and IDGSA-3M 
methods. In the IDGSA-3M method, the GSA indices for parame-
ters of rank 6 or higher are not significantly different from each 
other. Similarly, the MFGSA’s GSA indices for parameters ranked 6 
or higher are almost identical (almost zero). Therefore, this group 
of parameters can be considered as less influential. As shown in 
this Fig. 14, the IDGSA-3M method approach highlights the differ-
ences between the influencing parameters more than the MFGSA 
approach, for example the No. 23 and No. 25 parameters. Fur-
thermore, as can be observed, the application of the MFGSA and 
IDGSA-3M methods can result in completely different GSA indices 
for each parameter with the reason for these differences being 
related to the different ranges and meanings of the indicators; 
the MFGSA’s GSA index is based on the variance of the output, 
whereas the IDGSA-3M’s GSA index indicates the effect of the pa-
rameter on the overall output distribution. The 95% confidence 
interval (red line in Fig. 1) indicates that the IDGSA-3M method 
has a narrower interval compared to the MFGSA method. Thus, we 
can conclude that the IDGSA-3M method is more robust than the 
variance-based GSA MFGSA method.

The computational efficiency and accuracy of the three methods 
(Fig. 15) were compared and analyzed with those of the traditional 
method based on Monte Carlo methods and manual tuning. Clearly, 
these traditional methods had almost no evaluation error and am-
plitude, whereas MFGSA and PAWN had average evaluation errors 
of 0.1◦ and 0.05 ◦C, and maximum evaluation error of 0.2 ◦C and 
0.15 ◦C, respectively. MFGSA and PAWN took 66.7% and 33.3% less 
time to execute GSA based on 100 group models than the tradi-
tional method based on Monte Carlo methods and manual tuning. 
As a comparison, the average evaluation error and maximum eval-
uation error from IDGSA-3M were 0.08 ◦C and 0.12 ◦C, which were 
20% and 40% greater than those of MFGSA, respectively. In terms 
of computation efficiency, PAWN based on the traditional Monte 
Carlo method takes nearly one hour for each model evaluation, and 
MFGSA based on the MF metamodel takes only 30 minutes, while 
the IDGSA-3M proposed in this study takes only 542.6 seconds for 
each model evaluation. Clearly the proposed IDGSA-3M was 69.86% 
and 84.93% faster than MFGSA and PAWN, respectively. Addition-
ally, the calculation speed of GSA based on the MF metamodel and 
RBF-IMEA surrogate models in this study was also limited by the 
calculation resources (Intel Core i9-9900X CPU, 64 GB RAM, and 
GeForce RTX 2080 Ti), which resulted in a longer calculation time 
for the sensitivity index. Improving the computing resources will 
result in a further reduction of the calculation time of GSA, further 
promoting the application of IDGSA-3M in thermal analysis tasks.

5. Discussion

In this study, model reduction, MF metamodeling, and variance-
based GSA methods were combined and used in the field of space-
12
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Fig. 14. IDGSA-3M (left) and MFGSA (right) GSA index of the LST model parameters.
Fig. 15. Comprehensive comparison based on the three algorithms.

craft thermal analysis and design. To date, the density-based GSA 
of spacecraft thermal design parameters has not been studied in 
detail. However, it is a fundamental part of spacecraft thermal 
design because thermal analysis and GSA tasks are assigned in sev-
eral design phases of aerospace projects.

Model reduction has a high potential to automate and reduce 
the cost of model evaluation, but is also a challenging topic, par-
ticularly as research on the application of thermal model reduction 
for spacecraft remains weak, and there is a strong demand for fur-
ther extended research into engineering applications.

With model reduction, MF metamodeling can further improve 
the efficiency of model evaluation with high accuracy. Although 
there is still a lack of research on the application of MF metamod-
eling to spacecraft thermal analysis, there is great potential for its 
application and extended research on spacecraft thermal analysis.

Based on MF metamodeling, PLHS is used to sample the model 
parameters and terminate sampling according to demand by ob-
serving the fitting performance of modeling the RBF-IMEA sur-
rogate to the spacecraft thermal model. This not only avoids the 
influence of the uncertainty of model parameters on the sampling 
space and GSA, but also ensures the homogeneity of the sam-
pling space and the representativeness of the overall distribution of 
model parameters, which greatly improves the efficiency of sam-
pling and model evaluation.

Density-based GSA from IDGSA-3M has a major advantage over 
various traditional variance-based GSA methods in terms of both 
13
the complexity and convergence of the algorithm. Moreover, the 
entire algorithm process is being integrated into a software plat-
form to ease future research into its application to the optimization 
of spacecraft thermal design parameters. It has to be admitted that 
the current IDGSA-3M for engineering applications is too complex, 
and needs to be simplified and further improved in terms of con-
vergence efficiency and model evaluation accuracy.

Remark. To achieve better performance, the parameters should be 
optimally set from four perspectives:

(i) the scaling parameters of HF and LF for MF modeling should 
be set to ensure accuracy and enhance the evaluation speed;

(ii) the optimization of surrogate modeling should be based on 
MF metamodeling and RBF-IMEA for the high-precision fitting 
of space thermal analysis models;

(iii) the sampling method should be selected to well avoid the in-
fluence of the uncertainty of the model parameters on the 
GSA and ensure the homogeneity of the sampling space of the 
model parameters;

(iv) the parameter settings of the density-based GSA method affect 
the convergence and accuracy of the final GSA index.

6. Conclusions

An intelligent density-based GSA framework based on machine 
learning and MF was proposed that used pared-down RTMM to re-
duce the cost of computing GSA but maintained accuracy through 
DTMM based on an intelligent batch processing system and real-
time data interaction between MATLAB and NX/TMG. Then, RBF-
IMEA was applied to approximate the thermophysical model of a 
spacecraft. Finally, the output distributions of the RBF were charac-
terized by its CDF to obtain density-based sensitivity indices. The 
theoretical and experimental results proved that the evaluation ef-
fect of GSA based on IDGSA-3M was better than that of PAWN and 
the classical MFGSA methods based on Monte Carlo methods and 
manual tuning, with better model evaluation accuracy and higher 
computation efficiency, and better declaration of importance dif-
ferences between parameters. Crucially, the entire process was au-
tomated, which helped to improve the efficiency of optimization 
for spacecraft thermal design.
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Additionally, the convergence of IDGSA-3M was not particularly 
stable because the processes involved in engineering applications 
are complicated. However, to further improve the thermal design 
of the spacecraft in future research, the convergence accuracy and 
a simplified implementation process are indispensable for IDGSA-
3M.
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