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Abstract: Feature-based remote sensing image registration methods have achieved great accomplish-
ments. However, they have faced some limitations of applicability, automation, accuracy, efficiency,
and robustness for large high-resolution remote sensing image registration. To address the above
issues, we propose a novel instance segmentation based registration framework specifically for
large-sized high-resolution remote sensing images. First, we design an instance segmentation model
based on a convolutional neural network (CNN), which can efficiently extract fine-grained instances
as the deep features for local area matching. Then, a feature-based method combined with the
instance segmentation results is adopted to acquire more accurate local feature matching. Finally,
multi-constraints based on the instance segmentation results are introduced to work on the outlier
removal. In the experiments of high-resolution remote sensing image registration, the proposal effec-
tively copes with the circumstance of the sensed image with poor positioning accuracy. In addition,
the method achieves superior accuracy and competitive robustness compared with state-of-the-art
feature-based methods, while being rather efficient.

Keywords: registration; large-sized high-resolution remote sensing image; instance segmentation;
Convolutional Neural Network; instance matching; outlier removal

1. Introduction

The process of image registration is to find the pixel space mapping relationship
between the sensed and reference images, thereby, transforming the sensed image into the
geometric coordinate system of the reference image. The sensed and reference images are
usually the same scene taken by different times, sensors, or viewpoints [1–3]. Registra-
tion is a significant task in the application of remote sensing images, and feature-based
methods are often recommended to achieve it due to their effectiveness [4]. Feature-based
methods usually consist of three key steps: key point detection and feature description,
feature matching, and outlier removal [5]. Specifically, key point detection and feature
description refer to searching the distinctive points in an image and representing them
by descriptors. The process performs through algorithms, such as scale-invariant feature
transform (SIFT) [6], speeded up robust features (SURF) [7], oriented FAST and rotated
BRIEF (ORB) [8], accelerated KAZE features (AKAZE) [9], etc. Feature matching refers to
matching the key points based on the particular similarity measures (such as Euclidean
distance, etc.) of their feature vectors. Outlier removal refers to the use of algorithms, such
as random sample consensus (RANSAC) [10], to eliminate the false matches.

In recent years, continuous breakthroughs in satellite technology have made the spatial
resolution of remote sensing images increasingly improved, so the image pixel size of the

Remote Sens. 2021, 13, 1657. https://doi.org/10.3390/rs13091657 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7830-3704
https://doi.org/10.3390/rs13091657
https://doi.org/10.3390/rs13091657
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13091657
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13091657?type=check_update&version=2


Remote Sens. 2021, 13, 1657 2 of 21

same shooting area also becomes larger, and the application of high-resolution remote
sensing images is more widespread [11]. Combining the definitions in References [5,11,12],
this paper considers the spatial resolution higher than 1 m (or the ground sampling distance
less than 1 m) is high resolution, and the number of pixels greater than 10,000 × 10,000
is a large size. State-of-the-art feature-based remote sensing image registration methods
have achieved a great accomplishment. However, they have faced some limitations of
applicability, automation, accuracy, efficiency, and robustness for large high-resolution
remote sensing images, which will be discussed in detail in Section 2. To address the above
issues, we propose a novel registration framework based on instance segmentation in this
paper. First, the approach makes full use of the convolutional neural network (CNN) to
extract the concerned instances in the sensed and reference images. An instance matching
strategy that does not depend on positioning accuracy is applied to match the local areas.
Next, a feature-based method combined with instance segmentation results is adopted to
acquire more accurate, local feature matching. Finally, multi-constraints are used to work
on outlier removal and the registration is achieved. There are two main contributions of
this work.

1. We propose an automatic registration framework specifically for large high-resolution
remote sensing images. The method enhances the applicability of the sensed image
with poor positioning accuracy, improves the accuracy and robustness of registration,
and remains rather efficient. Furthermore, the framework supports embedding vari-
ous feature-based methods to satisfy the requirement for more flexible applications.
The above points will be illustrated in detail in Sections 3 and 4.

2. We propose an instance segmentation algorithm based on deep learning to achieve
fine-grained and efficient extraction of the concerned objects for the registration
framework, which will be introduced in Section 3. Even if it is not used for subsequent
registration, the independent application of this algorithm to intelligent interpretation
of remote sensing images also has broad significance and value.

The rest of this paper is organized as follows. Section 2 introduces the related works
and analyzes their limitations. The proposed method is detailed in Section 3. Experimental
results are illustrated in Section 4. Finally, Section 5 draws the conclusions of this paper.

2. Related Works

In this section, we briefly introduce the state-of-the-art feature-based registration
methods for remote sensing images. In addition, we analyze the limitations of related
works applied to large high-resolution remote sensing images.

2.1. Feature-Based Methods for Remote Sensing Image Registration

Distinctive image features are usually described by about two categories: hand-
crafted features and deep features [4]. In view of the characteristics of remote sensing
images, scholars have made various improvements to the classic hand-crafted, feature-
based methods to propose new feature descriptors or feature matching strategies [11–24].
For example, Morel et al. [11] introduced transition tilt to measure the amount of distortion
from one view to another, and proposed a modified SIFT feature, Affine-SIFT (ASIFT),
which is proved to be a fully affine invariant. Dellinger et al. [12] presented a new gradient
calculation, which is robust to speckle noise, and used it to adapt the steps of the SIFT
algorithm, which introduced the SAR-SIFT for synthetic aperture radar (SAR) image
registration. Ma et al. [13] proposed a modified SIFT feature, PSO-SIFT, which introduces
a new gradient definition to overcome the difference of intensity between the remote
sensing images, as well as an enhanced feature matching method to increase the number
of correct correspondences. Ye et al. [14] proposed the channel features of orientated
gradients (CFOG), which is an extension of the histogram of the oriented gradient (HOG)
descriptor and outperforms both in-matching performance and computational efficiency.
Huo et al. [15] introduced a coarse-to-fine strategy for large-sized, very high-resolution,
remote sensing image registration. The original image pairs were reduced to a small
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size and low resolution by direct down sampling, and SIFT was implemented to the
down-sampled images to obtain the global matching and coarse transformation. Then,
the coarsely aligned original images were divided into corresponding block pairs and
block-wise SIFT was applied to reach the refinement. Sedaghat et al. [17] introduced a
uniform robust selection strategy of SIFT features in the full distribution of location and
scale where the feature qualities are quarantined based on the stability and distinctiveness
constraints. Goncalves [18] et al. combined image segmentation and SIFT to propose a
remote sensing image registration scheme, which allowed for an accurate obtention of
tie points. Gong et al. [19] proposed a coarse-to-fine scheme for remote sensing image
registration, which implemented the coarse registration by SIFT and the fine-tuning by the
maximization of mutual information. Kupfer et al. [21] presented a mode seeking SIFT
(MS-SIFT) method, which exploits the scale, orientation, and position associated with the
SIFT feature to refine the result by eliminating outliers.

However, hand-crafted features are designed based on careful engineering and domain
knowledge, which makes them somewhat specific but less generalized [25]. Moreover,
hand-crafted features are usually low-level features of edge, texture, corner, and the
statistical information of gradient, but lack high-level semantic information. Therefore,
they solely perform well on the specific local areas while they cannot cope with the
global complexity of remote sensing images [4,5,25]. Then, some research studies put
effort on automatically acquiring more expressive deep features through deep learning
for registration. For instance, Wang et al. [25] first adopted SIFT to detect key points and
obtained patches centered on them. Then, a deep neural network (DNN) was trained to
learn the matching label of an input patch pair vector. Next, patch pairs from the sensed
and reference images were input to the trained DNN to determine whether they match,
thus, acquiring matching point pairs. Finally, the transform matrix was computed after
outlier removal. Zhu et al. [5] proposed a two-branch Siamese convolutional deep belief
network (CDBN). The patches centered at the key points were entered into the CDBN
to learn discriminative feature representations for patch matching, while the key points
were detected by Difference of Gaussian (DoG). The size of each patch was determined
by the scale of its central key point through an adaptive sample selection strategy, and
two matching strategies are designed to improve the efficiency and accuracy. Ma et al. [4]
presented a two-step coarse-to-fine registration method based on CNN. In the first step, the
deep features of sensed and reference images were extracted from the deep feature maps
of CNN, and were matched by the Euclidean distance to calculate the approximate spatial
relationship. For the second step, a classic feature-based method, such as SIFT, was applied
to the local areas to refine the result.

2.2. Limitations of Related Works for Large-Sized High-Resolution Remote Sensing Images

In the previously mentioned related works [4,5,11–25], the test data of References [5,14,15]
are large, high-resolution, remote sensing images (spatial resolution is higher than 1 m, and
the number of pixels is greater than 10,000 × 10,000). In other works [4,11–13,16–25], the
number of pixels of the test data are basically less than 800 × 800, and the spatial resolutions
are between 10 m and 100 m. Due to the limitation of hardware computing power, it is
hard to directly use the entire large-sized, high-resolution, remote sensing images as inputs.
Therefore, the methods proposed in References [5,14,15] align the sensed and reference images,
according to their geographic spatial coordinates and divide them into blocks, and then
perform their respective procedures between the corresponding block pairs. We believe the
methods proposed in References [4,11–13,16–25] should adopt similar approaches when being
applied to large-sized, high-resolution remote sensing images. However, when the positioning
accuracy of the sensed image is poor, there is no actual overlapping area between its block and
the corresponding reference block, which is diagramed as in Figure 1. In Figure 1, (a) is the
sensed image whose positioning accuracy is poor, and (b) is the reference image in the same
geographic area. The same color indicates the corresponding block pair, which shows that
there are basically no overlapping areas between the pairs. Therefore, it is impossible to
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match the correct key points between the corresponding blocks in theory. The related works
except References [5,15,25] rely on the positioning accuracy to obtain the corresponding
block pairs and are not applicable in this case. The method [15] first down-samples the
original images for coarse registration, and then obtains the corresponding block pairs.
However, the SIFT matching may fail when the down-sampling ratio is too large [15], and
SIFT does not work well for the global complexity of remote sensing images [25]. The
method [5] first performs iterative manual coarse registration of the original images to a
certain accuracy, which is not automatic. The method [25] to obtain the corresponding
block pairs does not rely on geographic areas but on SIFT key points. However, the number
of key points in large, high-resolution remote sensing images is very large (see Figure 2
below), and the method uses brute force matching for block pair generation, so it is almost
infeasible in this case. Furthermore, even if the computing power allows the registration
of the images, the number of key points will be far greater than the dimension of the
descriptor. At this time, the features will be overwhelmed by the large number of samples
and lose meaning, resulting in a complete failure of subsequent matching, which is shown
in Figure 2. Figure 2 shows the registration result of the entire sensed image (left, size
of 10,000 × 10,000 pixels) and reference image (right, size of 10,000 × 10,000 pixels). The
numbers of key points detected by SIFT are about 2.8 million (left) and 1 million (right),
respectively. The dimension of the SIFT descriptor is 128. Each key point has too many
similarities in such a large sample size, thus, losing its uniqueness. We randomly select 100
matches for drawing, and they are basically all wrong.
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In addition, high-resolution remote sensing images contain more clear and detailed
ground objects, while using some of them for registration is counterproductive. This
problem has not been studied in related works. For example, the buildings in the images
will be deformed as the off-nadir angle changes [26], which is shown in Figure 3. We
register a pair of images of the same area containing buildings by SIFT. Through manual
inspection, we find that 29 pairs of key points are correctly matched, of which 25 pairs
are on the ground and four pairs are on the buildings. More than 100 pairs of key points
are mismatched. We randomly select 100 of them for statistics and find that 60 pairs are
on the buildings and 40 pairs are on the ground. We diagram the correct matches on the
ground in Figure 3a and the mismatches on the buildings in Figure 3b, respectively. The
example shows that, if the key points on the buildings participate in registration, it will
seriously reduce the accuracy. In other words, we prefer to match the key points on the
ground rather than on the buildings. Another example, as illustrated in Figure 4, (a) and
(b) are the summer and winter images of the same area containing greenhouses (within
the red lines), respectively. (c) and (d) are the summer and winter images of the same
area containing ponds (within the red lines), respectively. The green dots are the key
points detected by SIFT and many of them are on the greenhouses and ponds. However,
the greenhouses and ponds have changed a lot in different seasons (such as shape, color,
material, etc.) or even cease to exist, and they are easy to form key points in the images
due to sudden changes in brightness caused by reflections. Therefore, the key points on
the greenhouses and ponds are temporary rather than fixed. That is, these key points are
detected under specific shooting time and conditions, and they are difficult to be reproduce
in another scene, thus, being meaningless for registration. Furthermore, if these key points
are involved in registration, the correct matching ratio will be diluted and the accuracy will
be reduced.

Moreover, the related works except References [4,5,25] perform feature-based registra-
tion processes on all parts of the images. For large, high-resolution remote sensing images,
the computational and storage costs of feature-based methods are very huge [15], thus,
resulting in low efficiency.

In summary, related works have faced some limitations in the application of large-
sized, high-resolution remote sensing images. The first is inapplicability or non-automatic
due to the sensed image with poor positioning accuracy. The second is the loss of accuracy
or the poor robustness due to some certain ground objects in the images. The third is the
inefficiency caused by a huge amount of calculation.
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3. Proposed Methods

Addressing the above issues, we propose a novel framework for large, high-resolution,
remote sensing image automatic registration. Since hand-crafted features perform well
on the local areas but have poor global performance, we first use deep features to match
the local areas between the global images, and then use hand-crafted features to match
the key points between the local areas. Specifically, we propose an instance segmentation
CNN model specifically for high-resolution, remote sensing images to acquire the deep
features. The instance segmentation results are the generalized deep features, which
is different from the related works whose deep features are pure feature vectors. The
instance segmentation based framework has better generalization ability and robustness
than related works. In particular, the methods proposed in References [5,25] train deep
learning models to predict the matching labels of the input image block pairs, and select
training samples on the sensed and reference images. Therefore, each registration task
requires reselecting the samples and retraining the model, and the deep learning model
trained each time cannot be applied to other tasks. The method [4] randomly selects 1000
disjoint block pairs from 10 multimodal remote sensing images of the same scene as 1000
categories to train a CNN for classification. However, this kind of category selection is
purposeless, and the categories do not have specific and independent characteristics. In
addition, remote sensing scenes are ever-changing while a single scene cannot provide
representative samples. In contrast, we choose several categories of samples that contain
specific and independent characteristics to train the instance segmentation model, and
our training data comes from a variety of remote sensing scenes. Therefore, our trained
model can be used repeatedly for each registration task, thus, having better generalization
ability and robustness. In fact, the deep learning models of the methods proposed in
References [4,5,25] are only intermediate results of the registration tasks without practical
significance. In contrast, our model is the result of a standard instance segmentation task
for extracting concerned ground objects, so it is also meaningful and valuable to be applied
independently to the remote sensing image’s intelligent interpretation. Considering that
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some ground objects affect the registration accuracy as discussed in Section 2, we select
them as the concerned instances to extract from the sensed and reference images, and
the proposed framework is depicted as in Figure 5. Taking the instance segmentation of
buildings as an example, according to the segmentation masks (the blue and green ones),
we design an instance matching strategy, which uses an image processing approach and
does not rely on geospatial information, thus, effectively coping with the problem of the
sensed image with poor positioning accuracy. The orange ones indicate a pair of matching
instances, and we obtain the corresponding local areas by their positions in the images.
Then, we mask out the buildings in the local areas and perform a feature-based method to
acquire more accurate matching key points between the local areas. Finally, we introduce a
multi-constraints strategy to work on outlier removal. Our framework is two-step rather
than coarse-to-fine as in References [4,15,19]. That is, we do not coarsely register first and
then refine but register only once, which simplifies the intermediate process. In addition,
we only perform a feature-based registration method between the matching local areas,
which greatly reduces the amount of calculation and improves efficiency. The feature-based
method is performed in an independent step, so it can be selected flexibly. Moreover, the
automation of our method is of great significance for engineering applications [4,14,19]. The
proposed instance segmentation model, instance matching, and outlier removal strategies
are described in detail below.
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3.1. Single-Stage Fine-Grained Instance Segmentation Network for High-Resolution Remote
Sensing Images

Instance segmentation is a classic task in computer vision [27], which detects the
concerned objects from the image and segments the instance foregrounds. With the rise of
deep learning technology, instance segmentation algorithms based on CNN [28–33] have
received more attention and research, and have played an increasingly important role in
remote sensing image interpretation [34–37]. Since the subsequent instance matching step
rely heavily on fine segmentation boundaries, and in order to improve the efficiency of in-
stance segmentation, we propose a single-stage, fine-grained (SSFG) instance segmentation
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network for high-resolution remote sensing images, whose structure is shown in Figure 6
and the main points are as follows.

Remote Sens. 2021, 13, 1657 8 of 21 
 

 

3.1. Single-Stage Fine-Grained Instance Segmentation Network for High-Resolution Remote 
Sensing Images 

Instance segmentation is a classic task in computer vision [27], which detects the con-
cerned objects from the image and segments the instance foregrounds. With the rise of 
deep learning technology, instance segmentation algorithms based on CNN [28–33] have 
received more attention and research, and have played an increasingly important role in 
remote sensing image interpretation [34–37]. Since the subsequent instance matching step 
rely heavily on fine segmentation boundaries, and in order to improve the efficiency of 
instance segmentation, we propose a single-stage, fine-grained (SSFG) instance segmen-
tation network for high-resolution remote sensing images, whose structure is shown in 
Figure 6 and the main points are as follows. 

 
Figure 6. The structure of our single-stage, fine-grained, instance segmentation network for high-
resolution remote sensing images. The input size in this paper is 896 × 896 and note that the BiFPN 
requires the input size to be a multiple of 128 pixels. P2-P6 indicate the HRNetV2p backbone out-
put layers. In the instance segmentation head of each BiFPN output layer, the three branches rep-
resent the classification branch, kernel branch, and feature branch, respectively, which is the same 
as in SOLOv2. ‘Align’ means the adaptive-pooling, which is the same as in Reference [38]. C refers 
to the number of the instance categories. S × S refers to the number of grids in SOLOv2, and s re-
fers to the scale of the input size while 1/4s is 228 × 228 in this paper. In the feature branch, each 
BiFPN output layer is up-sampled by convolutions and bilinear interpolations until it reaches 1/4 
scale, and ⊕ indicates the element-wise summation of them to acquire the unified feature. ⊛ 
denotes the dynamic convolution operation, which is the same as in Reference [39]. ⊗ denotes 
the fusion of the boundary map and the direction map and ‘Refinement’ denotes the post-pro-
cessing of the coarse mask, which is the same as in Reference [40]. 
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images. The input size in this paper is 896× 896 and note that the BiFPN requires the input size to be a multiple of 128 pixels.
P2-P6 indicate the HRNetV2p backbone output layers. In the instance segmentation head of each BiFPN output layer, the
three branches represent the classification branch, kernel branch, and feature branch, respectively, which is the same as in
SOLOv2. ‘Align’ means the adaptive-pooling, which is the same as in Reference [38]. C refers to the number of the instance
categories. S × S refers to the number of grids in SOLOv2, and s refers to the scale of the input size while 1/4s is 228 × 228
in this paper. In the feature branch, each BiFPN output layer is up-sampled by convolutions and bilinear interpolations
until it reaches 1/4 scale, and ⊕ indicates the element-wise summation of them to acquire the unified feature. ~ denotes the
dynamic convolution operation, which is the same as in Reference [39]. ⊗ denotes the fusion of the boundary map and the
direction map and ‘Refinement’ denotes the post-processing of the coarse mask, which is the same as in Reference [40].

• Backbone of high-resolution feature maps. With the pooling of CNN, the loss of
object features (especially boundary features) is severe, so that the subsequent up-
sampling generates a segmentation mask with poor object boundary fineness. We
use HRNetV2p [41] as the backbone of the SSFG, which enables the feature maps to
maintain a high-resolution representation during the feature extraction (the size of the
feature maps in the main branch is always one-fourth of the input size). This allows
the final segmentation to be performed on high-resolution feature maps to acquire
finer boundaries. Note that the output of HRNetV2p in Reference [41] is a four-layer
feature pyramid network (FPN, P2–P5), and we add a layer after P5 through a 3 × 3
convolution, that is, the output of our backbone is P2–P6.

• Attention mechanism of bidirectional feature fusion. High-resolution remote sensing
images cover a very wide area and have more detailed textures, resulting in extremely
complicated backgrounds [37]. It leads to a large amount of noise in the feature maps
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of CNN, thus, reducing the accuracy of object extraction and foreground segmenta-
tion [33]. The attention mechanism can make feature extraction pay more attention
to the object foreground as well as reduce the noise of the feature map, which is
especially suitable and effective for remote sensing images. We adopt the bidirectional
cross-scale connections and weighted feature fusion network BiFPN [42] to achieve
the attention mechanism. Note that, as recommended in Reference [42], our model
uses six layers of BiFPN (when the input size is 896 × 896), but only 1 layer is shown
in Figure 6 for illustration.

• Single-stage instance segmentation head. We adopt the SOLOv2 [39] as the head of
the SSFG, which directly segments the instances without relying on bounding box
detection to generate the coarse instance segmentation mask.

• Post-processing for the segmentation boundary refinement. We adopt a model-
agnostic post-processing method SegFix [40], which predicts the boundary map and
the direction map based on the shallow feature maps (C2) and fuses the two into
an offset map to refine the segmentation boundary. Note that the SegFix network is
trained and used separately in Reference [40], while we integrate it into the instance
segmentation process to achieve end-to-end. The input of SegFix is P2 of the backbone,
and the coarse mask is refined by the offset map to obtain the fine-grained result.

• The training loss function is defined as follows.

L = Lcate + λ1Lmask + λ2Lsb + λ3Lsd, (1)

where Lcate is the Focal Loss [43]. Lmask is the Dice Loss and the details are the same as in
Reference [38]. Lsb is the binary cross-entropy loss of the boundary branch in SegFix, and
Lsd is the categorical cross-entropy loss of the direction branch in SegFix, and their details
are the same as in Reference [40]. λ1, λ2, and λ3 are the balance weights, and their values
are all set to 1, which is the same as in References [38,40].

3.2. Instance Matching and Corresponding Local Area Generation

As mentioned above, we generate corresponding local areas (i.e., image block pairs)
of sensed and reference images by matching instances in their segmentation masks. In
order to deal with the problem of the sensed image with poor positioning accuracy, we
present a strategy that does not rely on geospatial information but only exploits image
processing to achieve instance matching. The concept of moments can be used for binary
or gray level region description, a set of moments calculated from a digital image usually
describes different types of geometric characteristic information of the global image, such
as size, position, direction, shape, etc. Hu moments are highly condensed image features,
which can measure the similarity of two gray-scale images and are robust to translation,
rotation, and scale changes [44]. Hu moments are characterized by fast speed and a better
description of shape features, but a poor description of texture features [45]. Our instance
segmentation masks are binary and only contain instance shapes without texture. In
addition, our instance segmentation model is dedicated to obtaining fine-grained instance
boundaries. Thus, the corresponding instances have similar geometric shapes. Therefore,
based on Hu moments to realize instance matching, the detailed steps are as follows.

• For both instance segmentation masks, we use morphological operations, such as
dilation followed by erosion to fill gaps and remove noise.

• For each instance in the sensed image, we take its minimum enclosing circle (the result
of instance segmentation includes the contour coordinates). The center of the circle is
denoted as cs

i , and the radius is denoted as rs
i .

• We take a circular patch as the local area to make it rotation invariant. The patch has
cs

i as its center and m · rs
i as its radius, where m is the expansion scale. This is done

because the patch formed by the instance and its neighbors has a higher accuracy for
matching than the single instance. Since we use OpenCV to calculate the Hu moments
and it requires the input to be a matrix, we fill the circular patch with 0 into its smallest
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external square (the instances are filled with 1 and the background is 0 in our binary
segmentation masks) and we can obtain the Hu moments of each instance patch in
the sensed image.

• For each instance in the reference image, the center of the minimum enclosing circle
of the instance is denoted as cr

i , and the radius is denoted as rr
i . We use the same

approach to get the Hu moments of each instance patch. Note that, since the Hu
moments calculated directly have a small order of magnitude, we actually take their
base 10 logarithms as the result, which is the same as in Reference [45].

• For each Hu moments vector in the sensed image, we use brute force matching to
find the vector with the smallest Euclidean distance in the reference image, thereby,
achieving instance matching. In fact, this step can be implemented quickly through
matrix operations. The above steps are depicted in Figure 7.

• For each pair of matching instances, we take cs
i and cr

i as the centers and generate a
pair of boxes of size δ× δ in the sensed and reference images, respectively. We filter
out the boxes with the Intersection over Union (IoU) greater than 0.5 in the same
image, which is the same as in Reference [27]. Finally, we crop the remaining pairs of
boxes into the corresponding image block pairs. This step is illustrated in Figure 5.

• We discuss the impact of the values of m and δ on performance in the subsequent
experiments, and we take m as 2 and δ as 600 in this paper. Please refer to Section 4
for details.
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3.3. Local Feature Matching, Outlier Removal, and Registration

Based on the generated image block pairs, the steps of outlier removal and the final
registration are as follows.

• For each image block pair, we mask out the unwanted instances and adopt a classic
feature-based method (such as SIFT, etc.) to obtain the initial matching key points. The
key points are matched by the Euclidean distance ratio between the nearest neighbor
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and the second nearest neighbor of corresponding features, and the ratio is set to 0.8,
which is the same as in Reference [6]. This step is illustrated in Figure 5.

• We eliminate the key points of mismatch through multi-constraints. First, we introduce
a cross-validation strategy, which identify the mismatches based on whether the center
instances of the image block pair have similar relative positions with the key points.
Since many classic hand-crafted features (SIFT, SURF, ORB, etc.) are rotation invariant,
we can obtain the relative positions according to the major orientations (which are
included in their features) of the key points. Specifically, we denote a pair of matching
key points in the sensed and reference image blocks as ps

i and pr
i , respectively. Taking

ps
i and pr

i as the origins and their major orientations as the positive directions of the
x-axes, we can get the locations of cs

i and cr
i in the corresponding coordinate systems.

In fact, the coordinates of cs
i and cr

i are the relative position vectors of the key points
and the corresponding center instances. Then, we calculate the Euclidean distance
of the pair of vectors. If it is greater than the threshold thcv, it is considered a false
match and eliminated. The thcv is set to 10 in this paper, and please refer to Section 4
for details. Note that the relative position vector does not have scale invariance. If the
spatial resolutions of the sensed and reference images are different, it is necessary to
scale with the ratio of the resolutions while calculating the relative position vectors.
Figure 8 illustrates an example of the cross-validation in detail.

• RANSAC is used to further eliminate false matches for a more accurate matching
result. Finally, the affine matrix T is computed by the least squares algorithm.
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3.787. Therefore, ps

1 and pr
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basic analytical geometry method, so we do not elaborate on it here.

4. Experiments and Results

In this section, we test the instance segmentation model SSFG and the instance seg-
mentation based registration framework on large-sized, high-resolution remote sensing
images, compared them with related works, and analyzed the experimental results.
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4.1. Instance Segmentation for High-Resolution Remote Sensing Images
4.1.1. Datasets and Metrics

We use three datasets for experiments to test the effect of SSFG for high-resolution
remote sensing image instance segmentation. First, to compare with the methods in
References [28–30], we use the same dataset Vaihingen [46] as in their experiments to carry
out the building instance segmentation experiment. Vaihingen is a public aerial image
dataset with a spatial resolution of 9 cm, which is provided by the ISPRS. We follow the
same data partition as in Reference [28] to divide the training set and test set. Second, we
use WHU Building Dataset [26] to do the building instance segmentation experiment. We
only use the aerial images in this dataset, whose number is 8189, size is 512 × 512, and the
spatial resolution is 30 cm. We follow the original data partition to acquire the training,
validation, and test sets. Finally, we use a self-made dataset Jilin-1-HZ to perform the pond
and greenhouse instance segmentation experiments. The images in Jilin-1-HZ come from
the Jilin-1 satellite image data. The original images cover 15,000 km2 on Hangzhou, China
with 0.75 m spatial resolution, and images are multi-period. Expert manual annotations are
provided for four classes: pond, greenhouse, tea, and rice field, while pond and greenhouse
labels are used in our experiments. We crop the areas containing the instances in the
original images into 10,422 tiles with a size of 896 × 896, and randomly divide 1/2, 1/6,
and 1/3 of them into training, validation, and test sets, respectively.

We measure the accuracy using four different metrics, which are adopted in Refer-
ences [28–30]. Dice, mean Intersection over Union (mIoU), Weighted Coverage (WCov) [47],
and Boundary F-score (BoundF) [48]. Among them, BoundF focuses more on evaluating
the accuracy of boundary prediction. In addition, the experiments in this paper are all
single-category, so the mIoU is actually IoU.

4.1.2. Implementation Details of the SSFG

We implement the SSFG based on the MMDetection [49], the SOLO benchmark project
(https://github.com/WXinlong/SOLO, accessed date: 1 January 2021), and the SegFix
benchmark project (https://github.com/openseg-group/openseg.pytorch, accessed date:
1 January 2021). We use the pretrained HRNetV2p-W40 as the backbone, which is pro-
vided by the MMDetection model zoo, and we initialize the newly added layers as in
Reference [43]. The number of grids in the SOLOv2 head is set as in Reference [39]. The
generation of the boundary labels and direction labels for the SegFix branch is the same
as in Reference [40]. We train for 36 epochs on Vaihingen, 60 epochs on WHU Building
Dataset, and 60 epochs on Jilin-1-HZ. For Vaihingen and WHU Building Dataset, the batch
size is 4 and the layers of BiFPN in the SSFG is 3, as recommended in Reference [42]
(input size of 512 × 512 pixels). For Jilin-1-HZ, the batch size is 2 and the layers of BiFPN
is 6 (input size of 896 × 896). The SSFG are compared with DSAC [28], DarNet [29],
and TDAC [30] on Vaihingen, and SiU-Net [26] on WHU Building Dataset, which are
state-of-the-art high-resolution remote sensing image instance segmentation methods. In
addition, we adopt three state-of-the-art benchmarks Msak RCNN [27], Yolact [50], and
PointRend [51] for comparison on Jilin-1-HZ, and they are all implemented based on the
MMDetection. Stochastic gradient descent (SGD) is used as an optimizer, and its weight
decay and momentum are set as 0.0001 and 0.9, respectively. The initial learning rate is
0.001 and is reduced tenfold after 3/4 and 11/12 of the total epochs.

4.1.3. Results

The quantitative results of the Vaihingen, WHU Building Dataset, Jilin-1-HZ Pond, and
Jilin-1-HZ Greenhouse experiments are illustrated in Tables 1–4, respectively. Meanwhile,
the visualization test results are depicted in Figure 9, which intuitively confirm the fine-
grained effect of the SSFG. Tables 1 and 2 show that the SSFG achieves either superior or
competitive performances to state-of-the-art methods, which are dedicated to the building
instance segmentation of high-resolution remote sensing images. Tables 3 and 4 reflects the
SSFG outperforms state-of-the-art instance segmentation benchmarks on high-resolution

https://github.com/WXinlong/SOLO
https://github.com/openseg-group/openseg.pytorch
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remote sensing images. Note that the BoundF is an indicator that focuses on measuring
the accuracy and fineness of the boundary as mentioned above. Our BoundF values are
the best in all experiments, and is higher than the second place at about 5.4% on average.
The experiments prove that the combination of high-resolution representation backbone,
attention mechanism, and boundary post-processing can effectively improve the instance
segmentation accuracy of high-resolution remote sensing images. Furthermore, Tables 3
and 4 show the frames per second (FPS) of each method, and the SSFG is second only to
the Yolact. Note that the SSFG uses a more complex backbone than the compared methods
and adds an attention mechanism, but its speed is about twice of the Mask RCNN as well
as the PointRend, which confirms the efficiency of the single-stage strategy of the SSFG.

Table 1. Comparison with related works on the Vaihingen dataset.

Method Vaihingen

Model Backbone Dice mIoU WCov BoundF

DSAC [28] DSAC - 71.10 70.70 36.40
DarNet [29] DarNet 93.66 88.20 88.10 75.90
TDAC [30] TDAC 94.26 89.16 90.54 78.12
SSFG (ours) HRNetV2p-W40 94.79 88.51 90.26 81.54

Table 2. Comparison with related work on WHU building dataset.

Method WHU Building Dataset

Model Backbone Dice mIoU WCov BoundF

SiU-Net [26] U-Net - 88.40 - -
SSFG (ours) HRNetV2p-W40 93.87 89.18 89.93 80.02

Table 3. Comparison with related works on Jilin-1-HZ pond dataset.

Method Jilin-1-HZ Pond

Model Backbone Dice mIoU WCov BoundF FPS

Yolact [50] ResNet101 78.15 72.06 73.11 39.45 29.1
Mask RCNN [27] ResNet101 86.70 77.36 82.55 56.80 10.4

PointRend [51] ResNet101 89.31 82.13 85.04 78.60 8.9
SSFG (ours) HRNetV2p-W40 94.88 90.68 92.54 83.10 20.3

Table 4. Comparison with related works on Jilin-1-HZ greenhouse dataset.

Method Jilin-1-HZ Greenhouse

Model Backbone Dice mIoU WCov BoundF FPS

Yolact [50] ResNet101 70.88 65.40 68.21 37.28 29.6
Mask RCNN [27] ResNet101 79.51 67.03 77.02 45.25 9.7

PointRend [51] ResNet101 86.52 80.90 83.29 71.45 9.0
SSFG (ours) HRNetV2p-W40 90.12 84.39 85.87 79.70 19.5
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Figure 9. The SSFG instance segmentation test results on high-resolution remote sensing images. The four columns from
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Dataset, the pond instance segmentation on Jilin-1-HZ, and the greenhouse instance segmentation on Jilin-1-HZ. We set the
classification score threshold as 0.6.

4.2. High-Resolution Remote Sensing Image Registration
4.2.1. Test Data and Evaluation Metrics

In this section, three pairs of large high-resolution remote sensing images are tested in
our experiments, where Christchurch is from WHU Building Dataset and Hangzhou-1 and
Hangzhou-2 are from Jilin-1-HZ. The description of the test data is given in Table 5. For
each pair, since the original images we obtained have already been registered, we select the
newly shooting image for random affine transformation as the reference image, and the
other as the sensed image for the experiment. We perform slightly, moderately, and heavily
random affine transformations on Christchurch, Hangzhou-1, and Hangzhou-2 to simulate
the high, medium, and poor positioning accuracy, respectively. For each pair, a total of
100 Ground Control Point (GCP) pairs are carefully selected from the sensed and reference
images by experts, which are distributed as evenly as possible in the two images. These
GCP pairs are used as the reference to test the precision of a registration method, and the
precision is evaluated by the Root-Mean-Square Error (RMSE), which is defined as follows.

RMSE =

√√√√ 1
N

N

∑
i=1

(
rx2

i + ry2
i
)
, (2)

where N is the number of matches and (rxi, ryi) is the residual for a certain match. In
addition, we adopt the number of correct correspondences (NOCC) and ratio of correct
correspondences (ROCC) to evaluate the robustness of the registration, which are the same
as in Reference [4].
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Table 5. Test data description.

Image Pixel Size Time Sensor Resolution Instance PE 1

Christchurch Sensed 32,507 × 15,354 Apr 2012
Aerial 0.3 m Building 22.3 mNew Zealand Reference 32,771 × 15,920 2016

Hangzhou-1,
China

Sensed 36,004 × 24,002 Aug 2020 Jilin-1
Satellites

0.75 m
Pond,

greenhouse 110.5 mReference 37,960 × 27,050 Jan 2021

Hangzhou-2,
China

Sensed 36,003 × 24,002 Aug 2020 Jilin-1
Satellites

0.75 m
Pond,

greenhouse 1204.1 mReference 40,989 × 32,504 Jan 2021
1 PE denotes the Positioning Error of the sensed image relative to the reference image, which is the average positioning error of the
GCP pairs.

4.2.2. Implementation Details of the Instance Segmentation Based Registration Framework

For the Christchurch experiment, we do the building instance segmentation to generate
the image block pairs. While, for Hangzhou-1 and Hangzhou-2 experiments, we do two
categories of instance segmentation (pond and greenhouse). The other details of our
method are the same as illustrated in Section 3. Our method is compared to state-of-the-art
methods Affine-SIFT [11], SAR-SIFT [12], PSO-SIFT [13], CFOG [14], and the classic SIFT [6]
on the test data. At the same time, we respectively adopt SIFT, SURF [7], and ORB [8] as
the local feature matching method of our framework for the ablation study. The key points
are matched by the Euclidean distance ratio between the nearest neighbor and the second
nearest neighbor of corresponding features, and the ratios for SIFT, Affine-SIFT, SAR-
SIFT, and PSO-SIFT are 0.8, 0.8, 0.9, and 0.9 (which are the recommended values in their
papers), respectively. We implement SIFT, SAR-SIFT, and PSO-SIFT based on the ‘Image-
Registration’ project (https://github.com/ZeLianWen/Image-Registration, accessed date:
1 January 2021), implement Affine-SIFT based on its official demo (http://www.cmap.
polytechnique.fr/~yu/research/ASIFT/demo.html, accessed date: 1 January 2021), and
implement CFOG based on its official demo (https://github.com/yeyuanxin110/ CFOG,
accessed date: 1 January 2021). For Affine-SIFT, SAR-SIFT, PSO-SIFT, and SIFT, we load
the sensed and reference images in grayscale and divide them into corresponding image
block pairs to perform registration, and the image block pairs are acquired by a seamlessly
sliding window. The window size is set to 600 × 600 pixels so as to be the same as the
input size of ours.

4.2.3. Results

We study the influence of the values of the three parameters m, δ, and thcv in our
framework for the registration result. m determines the radii of the circular patches for the
instance matching, which affects the accuracy of the instance matching. δ is the size of the
local areas, which affects the number and accuracy of the initial matching key points. thcv
is the threshold of the Euclidean distance for the outlier removal, which affects the number
and accuracy of the final matching key points. We control variables for experiments and
the results are shown in Figure 10. The ET in the figure refers to the execution time, and the
unit is minutes. According to the results and comprehensively considering the accuracy
(RMSE), robustness (NOCC and ROCC), and efficiency (ET), we choose that m = 2, δ = 600,
and thcv = 10 as a set of optimal parameters, which is used in the follow-up experiments.

https://github.com/ZeLianWen/Image-Registration
http://www.cmap.polytechnique.fr/~yu/research/ASIFT/demo.html
http://www.cmap.polytechnique.fr/~yu/research/ASIFT/demo.html
https://github.com/yeyuanxin110/
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The quantitative results of the registration experiments are shown in Tables 6–8. The
following points can be drawn from the analysis of the results. First, in the Christchurch and
Hangzhou-1 experiments, the RMSE of our method are the best. That is, our registration
accuracy for large-sized, high-resolution remote sensing images surpasses state-of-the-art
feature-based methods Affine-SIFT, SAR-SIFT, PSO-SIFT, and CFOG, as well as the classic
SIFT. In addition, the robustness indicator ROCC of our method ranks second (second
only to CFOG). The RMSE and ROCC results confirm the effectiveness of the proposed
framework, including the use of instance segmentation results as the deep features, as
well as the instance matching and outlier removal strategies. Furthermore, we shield the
ground objects that may affect the registration accuracy during the local feature matching,
and we believe it is one of the reasons for our accuracy advantage.

Table 6. Comparison with related works on the test data Christchurch.

Method
Christchurch

RMSE NOCC ROCC ET (min)

SIFT [6] 1.6504 4419 0.39 9.48
Affine-SIFT [11] 6.2485 8506 0.32 27.19
SAR-SIFT [12] 9.8316 3081 0.40 62.52
PSO-SIFT [13] 1.6002 2165 0.31 46.31

CFOG [14] 2.3106 1303 0.69 3.60

ours + SIFT 1.5710 724 0.53 4.78
ours + SURF 2.0460 491 0.41 3.86
ours + ORB 2.5173 334 0.32 3.13
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Table 7. Comparison with related works on the test data Hangzhou-1.

Method
Hangzhou-1

RMSE NOCC ROCC ET (min)

SIFT [6] 4.3832 2079 0.34 15.11
Affine-SIFT [11] 9.2581 4608 0.32 39.03
SAR-SIFT [12] 14.1970 1713 0.30 87.50
PSO-SIFT [13] 2.4175 1084 0.48 65.85

CFOG [14] 2.7103 855 0.60 4.05

ours + SIFT 2.1988 452 0.51 4.46
ours + SURF 2.8581 207 0.35 3.52
ours + ORB 3.1062 89 0.18 2.81

Table 8. Comparison with related works on the test data Hangzhou-2.

Method
Hangzhou-2

RMSE NOCC ROCC ET (min)

SIFT [6] * * * 18.24
Affine-SIFT [11] * * * 44.28
SAR-SIFT [12] * * * 92.78
PSO-SIFT [13] * * * 56.15

CFOG [14] * * * 4.59

ours + SIFT 2.8635 527 0.45 4.92
ours + SURF 4.0626 331 0.29 3.79
ours + ORB 4.4175 118 0.14 3.11

* indicates that the registration has failed (RMSE > 50).

Second, in the Hangzhou-2 experiment, we simulate a scene of the sensed image with
poor positioning accuracy (the PE is about 1.2 km). At this time, as analyzed in Section 2,
the related works rely on the geospatial information to obtain the corresponding sensed
and reference image block pairs, and there are no actual overlapping areas between them.
Thus, the subsequent registration steps are wasted while resulting in the failure of the task.
In this case, the applicability, accuracy, and efficiency of our method are not affected at all.
That is, our method effectively copes with the circumstance of the sensed image with poor
positioning accuracy.

Third, ET in the table represents the execution time (in minutes), which is the same
as in Figure 10. Our method achieves the highest registration efficiency in the three
experiments. Note here that our ET does not include the time of performing the instance
segmentation. This is because the time largely depends on the number and performance of
the GPU devices, and the related works do not involve similar GPU operations. Therefore,
we believe that it is not objective and comparable to limit the number and model of GPUs
to calculate the time. In fact, our instance segmentation model SSFG is efficient. Taking the
Christchurch experiment as an example, we use four NVIDIA TITAN RTX GPUs in parallel
operation, and the execution time of instance segmentation is less than 10 s. Even if we add
this to our ET, it is still the fastest. Our efficiency advantage is mainly due to the fact that we
only select the matching local areas in the images to perform the feature-based registration
process, so the overall input and calculation amount are far less than related methods.

Finally, the experiment reflects that, for large-sized, high-resolution remote sensing
images, the registration accuracy is not positively correlated with the amount of input
information and the number of correct matching key points. In the Christchurch and
Hangzhou-1 experiments, our NOCC is the least (less than 1/10 of the maximum), but our
accuracy (RMSE) is the highest. Related works use the entire content of the images as an
undifferentiated registration element, which leads to a surplus of input information, and
the redundant information may not necessarily improve accuracy but may be counterpro-
ductive. For large-sized, high-resolution remote sensing images, we believe that it is more
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reasonable and efficient to perform registration using only valid local features, which can
provide gains for the registration work.

Figures 11–13 are the visualization results of our method on the experiments. In each
picture, from left to right in the first row is the sensed image, the reference image, and the
registration result on the checkerboard mosaiced image, respectively. The second row is
the display of some partial details. The satisfactory effects of our method are confirmed in
the figures.
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5. Conclusions

We focus on the specific scene of large-sized, high-resolution remote sensing image
registration, and consider the practical application difficulties, which have not been ex-
plored by related works. For this purpose, we propose a novel automatic registration
framework based on instance segmentation. The proposal makes full use of the CNN to
extract deep features, which overcomes the limitations of hand-crafted features for remote
sensing images. In addition, the approach achieves local area matching through image
processing without relying on the geospatial information, thus, effectively coping with
the problem of poor positioning accuracy. Based on the instance segmentation results and
the introduced outlier removal strategy, the accuracy of local feature matching as well as
the final registration is improved. Furthermore, the method only uses local features as
registration elements, so it is very efficient. The above advantages have been confirmed in
substantial experiments. In follow-up research, we will explore the feasibility of replacing
the local feature matching method from hand-crafted features to deep features.
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