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ABSTRACT Infrared and visible image fusion is a hot topic due to the perfect complementarity of their
information. There are two key problems in infrared and visible image fusion. One is how to extract
significant target areas and rich texture details from the source images, and the other is how to integrate
them to produce satisfactory fused images. To tackle these problems, we propose a novel fusion framework
in this paper. A multi-level image decomposition method is used to obtain the base layer and detail layer
of the source image. For the fusion of base layer, an ingenious fusion strategy guided by the saliency map
of source image is designed to improve the intensity of salient targets and the visual quality of the fused
image. For the fusion of detail layer, an efficient approach by introducing the enhanced gradient information
is presented to boost the detail features and sharpen the edges of the fused image. Experimental results
demonstrate that, compared with fifteen classical and advanced fusion methods, the proposed image fusion
framework has better performance in both subjective and objective evaluation.

INDEX TERMS Image fusion, base layer, detail layer, saliency map, gradient information.

I. INTRODUCTION

Multi-sensors image fusion is an enhancement technology
that integrates the image information obtained by different
kinds of sensors into one image, and it plays a vital role
in computer vision tasks, such as target recognition, remote
sensing, and surveillance [1]-[3].

Infrared images can distinguish targets from the back-
ground according to the thermal radiation information and
work well in day/ night and all-weather conditions, but they
have low resolution and weak details. Visible images contain
detailed texture information and high spatial resolution, but
they are easily affected by the weather and brightness [4].
Therefore, the infrared and visible image fusion becomes a
very hot topic due to the perfect complementarity of their
information. There are two key problems in infrared and
visible image fusion. One is how to extract significant target
areas and rich texture details from the source images, and
the other is how to combine them to produce excellent fused
images. This paper aims to explore an effective method to
achieve satisfactory fusion of infrared and visible images.
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Multifarious infrared and visible image fusion methods
have been proposed in recent years, and they can be grouped
into three dominant types, including multi-scale transform,
sparse and low-rank representation learning-based, and deep
learning-based methods [S]-[7].

Multi-scale transforms have developed for decades in the
field of infrared and visible image fusion. Discrete wavelet
transform is a typical multi-scale transform method [8], [9],
which decomposes the input image into high and low
frequency sub-images. Then, these sub-images are fused
to a single image through appropriate fusion rules. The
dual-tree complex wavelet transform (DTCWT) is proposed
to over-come the shift variance and lack of directional-
ity problems of the discrete wavelet transform [10]. For
capturing the abundant directional information of source
images, contourlet transform is proposed [11]. Nonsubsam-
pled contourlet transform (NSCT) is a modified form based
on contourlet transform, which is widely used in infrared
and visible image fusion due to its flexibility and shift-
invariance [12], [13]. However, the above-mentioned fusion
methods need to transform images to frequency domain,
which increases the computational complexity [14].

In order to avoid image transformation, representation
learning-based methods have attracted the attention of
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researchers. The most common methods are on the basis
of sparse representation (SR) [15] and dictionary learn-
ing [16], [17], which are consistent with the physiological
mechanism of the human visual system. Nevertheless, image
fusion methods based on SR suffer from high sensitivity
to misregistration. To tackle this drawback, Liu et al intro-
duce the convolutional sparse representation (CSR) model
to fuse multi-modal images. Even so, fused images obtained
by fusion methods based on SR have insufficient texture
details [18].

With the development of deep learning, many innova-
tive image fusion methods based on deep learning are
designed [19]-[21]. The convolutional neural network (CNN)
attracts much focus due to its ability of powerful feature
representation. Liu et al utilize CNNs to finish the fusion
of infrared and visible images [22]. Whereas, CNN model
usually requires the ground truth of training images. It is not
considered to build the ground truth in infrared and visible
image fusion because it is unrealistic to define a standard
for fused images. To solve this issue, Ma et al. construct an
end-to-end model named generative adversarial network for
infrared and visible image fusion (FusionGAN) [4]. On this
basis, they ameliorate the loss function of FusionGAN to
increase the detail information and sharpen the edge of
fused images [23]. There are mainly two drawbacks of deep
learning-based fusion methods. One is that the network model
is difficult to train when the number of images is limited,
especially for infrared and visible image fusion, the other
is that a good network often depends on GPUs with good
performance.

Recently, the latent low-rank representation (LatLRR)
model has been gradually attracted attention in image fusion.
Fusion methods based on LatLRR can decompose source
images into base and detail parts without transformation,
which is beneficial to design fusion rules so that generate
high quality fused images. In addition, these methods can fuse
infrared and visible image without complex training process
and good performance GPUs. Thus, fusion methods based on
LatLRR are widely used in image fusion [14], [24], [25].

Inspired by this, we propose a novel framework for infrared
and visible image fusion. The main challenge of infrared
and visible image fusion is to generate a single image con-
taining salient target areas and texture details. This paper
proposed a novel infrared and visible image fusion frame-
work, which improving the fusion image quality by intro-
ducing the saliency and gradient information to the fusion
strategy. To facilitate the design of the fusion strategy,
we decompose the source image into the detail and base
layers. To improve the intensity of salient targets and the
visual quality of the fused image, the saliency information
of the source image is introduced to fuse the base layer.
To boost texture details of the fused image, the gradient infor-
mation is used to assist the fusion of detail layer. Experimen-
tal results prove that the proposed image fusion framework
outperforms than other traditional and deep learning fusion
methods.
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The main contributions of this paper are summarized as
follows.

1. A novel method based on multi-level image decomposi-
tion is proposed for infrared and visible image fusion.

2. For base layer fusion, an excellent strategy guided by the
saliency map is designed to increase the salient informa-
tion and improve the visual quality of the fused image.

3. For detail layer fusion, an efficient method with
enhanced gradient information is presented to increase
the detail information of the fused image.

4. Compared with the classical and state-of-the-art fusion
methods, our proposed fusion framework has a better
performance in terms of both subjective and objective
evaluation.

This paper is organized as follows. In Section II, the pro-
posed infrared and visible image fusion framework is intro-
duced in detail. In Section III, information about the dataset
and parameter settings is given. In Section IV, the experimen-
tal results and analyses are provided. In Section V, conclu-
sions and the future work are presented.

Il. THE PROPOSED INFRARED AND VISIBLE IMAGE
FUSION METHOD

The proposed fusion framework is schematically presented
in Figure 1, which is mainly composed of four parts:
(1) image decomposition, (2) the fusion of base layer, (3) the
fusion of detail layer, and (4) image reconstruction.

Image decomposition: a multi-level image decomposition
method based on LatLRR is employed to obtain the base
layer and detail layer of source images, which is beneficial
to design fusion strategies. Infrared and visible images are
decomposed to base layer images b/{‘ and bi}, detail layer
matrixes M f{:l and Mé:l after [ levels decomposition. The
base layer includes the primary intensity and brightness infor-
mation of the input image. The detail layer contains texture
details and feature information of source images.

The fusion of base layer: an ingenious fusion strategy
guided by the saliency map of the source image is designed.
As shown in Figure 1, salient regions of infrared and visible
images are different. Because of the different imaging ways,
the infrared image mainly highlights the thermal radiation
information of objects, whereas the visible image focuses
on the spectral information reflected by different objects.
Inspired by this, the weight matrix used to fusion the base
layer is calculated depends on the saliency map, which aims
to retain suitable intensity information and improve the visual
quality of the fused image, simultaneously.

The fusion of detail layer: an effective approach is pre-
sented to achieve the fusion of detail layer. First, the detail
matrixes of infrared and visible images are fused based on
weighted-average rule. Then the enhanced gradient informa-
tion is added to the detail layer to improve the contrast and
sharpness of the fusion result.

Image reconstruction: the final step of the proposed fusion
framework is reconstructing fusion results of base layer and
detail layer to obtain the fused image.
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FIGURE 1. The framework of the proposed image fusion method.

The four parts of our proposed method will be described in
detail in the following sections.

A. IMAGE DECOMPOSITION

A successful fusion of infrared and visible images should
integrate as much as target prominent and detail information
as possible to the fusion image. Therefore, it is a significant
process to adequately extract the intensity and texture content
of source images. Recently, a multi-level image decomposi-
tion method based on latent rank representation (LatLRR)
is presented, which can divide input images into base layer
and detail layer [14], [24]. The base layer mainly contains
intensity and brightness information of source images, and
the detail layer principally includes texture and structure
information of source images. This decomposition way is
beneficial for designing the fusion strategies. Inspired by this,
we utilize this approach to decompose the source images. The
flowchart of image decomposition is shown in Figure 2.

The LatLRR model is described as Equation (1).

min [[Z|, + Ll + A E];
Z,L.E
st, X =XZ+LX+E (1

where X is a positive balance factor, A is an empirical value,
we set the value to 0.4 in this paper according to refer-
ence [26]. |||, represents the nuclear norm, and ||.||; is the
[1-norm.

X denotes the observed data, which is the input image in
this paper. Z and L are the low-rank and saliency coefficients,
respectively. E expresses the sparse noise. The low-rank part
XZ, saliency part LX and sparse noise part E can be obtained
from Equation (1). The noise part is removed in image fusion
operation.
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The multi-level image decomposition method is con-
structed according to the LatLRR model in reference [14],
which can obtain the base layer and detail layer of the input
image. The detail layer and base layer images are expressed
as follows:

Mi=PxW (b"—l) )
d' = RIMY) (3)
pr=b"1—d, i=1,2,3,...,1 4)

where [ is the highest decomposition level, M’ and b’ repre-
sent the detail matrix and the base image at level i. Note that
BV is the source image. After [ levels LatLRR decomposition,
the source image derives [ detail images d ' and a base image
b'. P is the projection matrix learned by LatLRR. The size of
the projection matrix P is 16 x 16, and the decomposition
level is set to {1, 2, 3, 4}. W(-) denotes a two-stage operator
including the sliding window technology and reshuffling, and
R(-) means the function reconstructing the detail image d’
according to the detail matrix M".

The process of W(-) operator is shown in Figure 3. The
window size is 16 x 16, the stride of sliding window is 1.
Before sliding window, the source image is resized to (1, i)
to guarantee the width and height of the resized image are
both integer multiples of 16. m and 7 are calculated as Equa-
tions (5)-(8).

, Rp,=0
=" , " )
m—+ 16 —N,,, others
, R, =0
i=1" " 6)
n+ 16 —N,, others
Ny = mod(m/16) @)

VOLUME 9, 2021



Q. Li et al.: Infrared and Visible Image Fusion Method Guided by Saliency and Gradient Information

IEEE Access

d'

reconstruction

FIGURE 2. The flowchart of image decomposition.

. \

7
ar

Sliding window

/7
7
7/

Reshuffling

!

256xC

FIGURE 3. The process of the operator W(-).

N, = mod(n/16) ®)

where, (m, n) is the size of the source image, mod is the
function to calculate the remainder.

Then, a window with size of 16 x 16 is used to slide over
the source image, which aims to get a series of image patches
with size 16 x 16.

After sliding window, the image patch is reconstructed into
the matrix 7 with size S, x 1. Next, these matrixes fi; are
reshuffled to one matrix H with size S, x C.

H = [h1, hp, hs, ..., hcl ©)]
where, S, = 16 x 16 = 256. C is calculated as follows:
2
C =[] W: —sqre(Sp) + Sa) (10)
=1

where, sqrt(-) is the operation to get the square root. Sy is the
stride value of sliding window, Sy = 1, Uy = m, U, = n.
The process of R(-) is similar to the inverse process of W (-).

B. FUSION OF BASE LAYER

The base layer can be obtained through image decomposi-
tion. As exhibited in Figure 4, with the increase of decom-
position level, the image of base layer becomes more and
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more smooth, and the contrast between pixels gets lower
and lower. As a result, the salient object regions cannot
be retained integrally, the salient object edges are blurred,
and the intensity information is decreased at a great degree.
Traditional average-rule only averages the pixel values of
infrared and visible base images, which cannot satisfy the
requirement of sufficiently integrating intensity information
from the base layer to the fused image. However, as exhibited
in Figure 4, the salient regions of infrared and visible images
are highlighted in their saliency maps. Besides, the saliency
map possesses strong contrast and clear object edge. There-
fore, an innovative fusion strategy guided by the saliency
map of source image is designed to improve the intensity of
salient targets and the visual quality of the fused image. This
base layer fusion method consists of two steps: extraction of
saliency map and design of fusion strategy. The two parts are
described in detail next.

1) EXTRACTION OF SALIENCY MAP

The human visual system always pays more attention to
the salient area than background in an image to reduce the
difficulty in some tasks, such as object detection, tracking and
recognition [27]. Pixels of salient structure, region and object
stand out from the surrounding neighbor pixels. Saliency
detection is on the purpose of extracting visually salient
regions of images. For image fusion, a suitable saliency
detection method should simultaneously meet two require-
ments: clearly extract the salient region and preserve the edge
and background information as far as possible. These two
conditions guarantee the rich intensity information and inte-
grated structure of the fused images. Inspired by [28], [29],
apixel-level saliency detection method named visual saliency
map (VSM) is employed to obtain the saliency map of images
in this step. The saliency map of an image is described as
follows:

m

Sy =Y > . y) = 1(g. 1) (11)

g=1 t=1
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FIGURE 4. Base layer images and their saliency maps. The carmine box denotes the salient regions. (a) source images; (b) base layer at level 1;
(c) base layer at level 2; (d) base layer at level 3; (e) base layer at level 4; (f) saliency map. From up to down: infrared image, visible image.

where, the size of the input image is m x n. ||-|| represents the
distance between the intensity values of two pixels. I(x, y)
and /(q, t) are intensity values at the pixels (x, y) and (g, ),
respectively.

In order to accelerate the computation and make saliency
maps of infrared and visible images in the same order of
magnitudes, S(x, y) is normalized to [0,1], which is rewritten
by:

_ S(x,y) — min(S)

@) = xS) — minGS)

12)

For proving the advantages and reasonability of the above-
mentioned method which can extract the saliency map,
we compare it with four classical saliency detection algo-
rithms: GS [30], SF [31], GBMR [32], RBD [33]. As shown
in Figure 5, saliency maps of GS, SF, GBMR and RBD meth-
ods all can detect the salient regions. However, these methods
have a common deficiency that they overemphasize salient
areas so that filter out plenty of background information,
which will result in missing a large amount of information
in fused images. Compared with the above four methods,
VSM can not only perfectly extract the salient object (such as
people of infrared image) but also reserve the major content
in infrared and visible images. In summary, VSM is more
suitable for image fusion.

2) DESIGN OF FUSION STRATEGY

To maintain sufficient intensity information of salient targets
in the source image and improve the visual quality of the
fused image, the saliency map is considered as an important
reference to calculate the weight matrix and guide the base
layer fusion. The weight matrixes of infrared and visible
images fusion are provided by:

0.5,
Wpa(x,y) = if ®a(x,y)=Pp(x,y)=0 (13)
| Palx, ) others
Dy(x,y) + Ppx,y)’
wp(x,y) = 1 — wpa(x, y) (14)
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where, ®4(x,y) and Pp(x,y) are the saliency values of
infrared and visible images at the pixel (x, y), wpa(x, y) and
wpp(x, y) are the weight values of infrared and visible images
at the pixel (x, y). Note that, at the pixel (x, y), if ®4(x,y)
is. 0 and ®p(x,y) is E.IISO 0, 'the formula' %
will be unusable. In this condition, the saliency values of
infrared and visible images are equal at pixel (x, y). There-
fore, we set the weight value wps(x, y) to 0.5.

Therefore, the fused image of base layer Fjq, is generated
as follows:

Fpase = wpably + wppbly (15)

The details of the proposed base layer fusion strategy are
described as Algorithm 1.

Algorithm 1 The Proposed Base Layer Fusion Strategy in
This Paper
Input: a pair of aligned infrared and visible images;
Output: the fused image of base layer Fpyge;

1. Input images are decomposed by Equations (1)-(4) to
obtain base layer images bi and bg;

2. Normalized saliency maps ®4 and ®p are obtained by
Equations (11) and (12);

3. Weighted matrixes wpq and wpp are computed by
Equations (13) and (14);

4. Fused image of base layer Fjse is acquired by Equa-
tion (15).

C. FUSION OF DETAIL LAYER

As shown in Figure 2, the detail layers of input images are
acquired by decomposition. Generally, the thermal radia-
tion information produced by targets is contained in infrared
images, which can be emphasized in the fused parts of base
layer. Nevertheless, texture detail information of objects is
included in visible images, which is beneficial to improve
target tracking and recognition due to its high spatial reso-
lution. The gradient map of an image contains contour and
edge information, which has strong sharpness and contrast.
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FIGURE 5. The comparison of different saliency detection methods. From up to down: infrared image, visible image.

256xC

FIGURE 6. The process of re(-) function.

Some researchers have utilized the gradient information by
different ways to enhance the image quality [34], [35]. To get
fused images with rich texture details and sharpened edges,
an efficient approach by introducing the enhanced gradient
information is presented to finish the fusion of detail layer,
which is specifically introduced as follows.

After [ levels decomposition, detail matrixes M Ll of an
image with size m x n is obtained. The size of a detail matrix
M'is Sp x C.§p =256, C is calculated by Equation (10).

The weight for each pair of corresponding image patches
can be written as follows:
|,

ik
Wi =

|reaais], + [0t
* *k
i=1,23,, Lk=123-,C (I6)

where, A and B are infrared and visible images, respectively,
Il denotes the nuclear norm to calculate the sum of singular
values of the matrix. re(-) indicates the function that reorga-
nizes the matrix M** with size 256 x 1 into the image patch
with size 16 x 16. The process of re(-) is shown in Figure 6.

Based on Equation (16), the fused detail matrix is provided
as below:

ik ik ik ik ik
M jpusea = Wia X My~ +wip X My a7

i i i2 ik ic
Marusea = Mgpysea> Marusear ** » Marusea> ** » MaFuseal
(18)

The fused image of detail layer at level i is expressed by
Equation (19):

d}‘used = R(MéFused) (19)
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Here, R(-) is the same function as Equation (3), which
reconstructs the detail image d’ according to the detail
matrix M".

For improving the quality of the fused image, enhanced
gradient information of the visible image is added to the
fusion of detail layer image as the supplementary content.
Gamma transformation function is used to increase the con-
trast of gradient map, which is denoted as follows:

G=(g+e) (20)

where, g and G are the input matrix and the matrix after
Gamma transformation, respectively. ¢ is a very small con-
stant term called compensation factor, which makes sure
(g + &) is non-zero, y is the Gamma coefficient. In this
paper, the input of Equation (20) is the gradient map of visible
image, which can be solved by:

Vip(x,y)

= JUsx +1,3) =[x, OP + Up(x, y + 1) =[x, P
@

where I is the visible image. According to Equations (20)
and (21), the gradient map Vp after Gamma transformation
can be expressed as follows:

Vig = (Vi + &) (22)

Based on Equations (19) and (22), the fused image of detail
layer Fje14i1 can be derived as follows:
[ .
Faerait =) djoyseq + VI3 (23)
i=1
The details of the proposed detail layer fusion strategy are
given as Algorithm 2.

D. IMAGE RECONSTRUCTION

Image reconstruction contains mainly two parts in this paper.
One part is to reconstruct the fused image of detail layer and
the other part is to reconstruct the final fused image depend
on the fused images of base layer and detail layer.
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FIGURE 7. Five pairs of source images. From up to down: infrared images, visible image.

Algorithm 2 The Proposed Detail Layer Fusion Strategy in
This Paper
Input: a pair of aligned infrared and visible images;
Output: the fused image of detail layer Fe4ir;

1. Input images are decomposed by Equations (1)-(4) to
obtain detail layer matrixes M, f{:l and M gﬁl ;

2. The fused matrix M}, ... of detail layer at level i is
calculated by Equations (16)-(18);

3. The fused image d}use 4 of detail layer at level i is
reconstructed by Equation (19);

4. The gradient map Vy, of visible image is acquired by
Equation (21);

5. The gradient map Vy, of visible image is enhanced
based on Gamma transformation so that the enhanced
gradient map Vig is acquired by Equation (22);

6. The fused image of detail layer is obtained by Equa-
tion (23);

The fused image F of infrared and visible image is sum-
marized as follows:

F(x,y) = Fpase(x, y) + Fewit(x, y) 24)

Ill. EXPERIMENTAL DATASET AND SETTINGS

A. EXPERIMENTAL DATASET

In this paper, we test our method on TNO Image Fusion
Dataset [36] and KAIST Dataset [37]. TNO dataset contains
many registered infrared and visible images under differ-
ent scenes, which can freely be used for research purpose.
Therefore, the TNO dataset is widely used for infrared and
visible image fusion research. A sample of these image pairs
is shown in Figure 7. KAIST is a multispectral pedestrian
dataset, which contains abundant registered infrared-visible
image pairs.

B. COMPARISON METHODS

Fifteen classical and state-of-the-art image fusion meth-
ods are chosen to evaluate the fusion performance of
our proposed fusion framework, including: curvelet trans-
form fusion method (CVT) [38], dual-tree complex wavelet
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transform fusion method (DTCWT) [10], multi-resolution
singular value decomposition fusion method (MSVD) [39],
cross bilateral filter fusion method (CBF) [40], guided fil-
ter fusion method (GFF) [41], gradient transfer and total
variation minimization fusion method (GTF) [42], hybrid
multi-scale decomposition with Gaussian and bilateral filters
fusion method (HMSD-GF) [43], infrared feature extrac-
tion and visual information preservation fusion method
(IFEVIP) [44], convolutional neural networks fusion method
(FCNN) [22], gradient filter fusion method (GF) [45],
visual saliency map and weighted least square optimization-
based fusion method (WLS) [28], latent low-rank repre-
sentation fusion method (LatLRR) [24], GAN based fusion
method (FusionGAN) [4], dense block based fusion method
(DenseFuse) [46], and Nest Connection and Spatial/Channel
Attention fusion method (NestFuse) [47]. All above compar-
ison methods are conducted based on their publicly available
codes, and their parameters are set according to their papers.

Experiments of these deep learning methods (including
FusionGAN, DenseFuse and NestFuse) are finished on a
GPU (NVIDIA GeForce GTX 1070). Experiments of our
method and other comparison methods are implemented in
MATLAB 2018a on a computer (Intel Core i7, 2.20-GHz
CPU).

C. EVALUATION METRICS
For objectively analyzing the fusion results of the proposed
method, seven quality metrics are utilized.

1) ENTROPY(EN)

EN calculates the information richness of the fused image.
The higher the EN is, the more information is contained in the
fused image, and the better quality of the fused image is [48].
The definition of EN is provided by:

Z—1
EN ==Y p.log,p: (25)
z=0

where Z is the number of gray values, p, is the normal-
ized histogram of the corresponding gray level in the fused
image.
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2) MUTUAL INFORMATION(MTI)

MI computes the amount of information that is integrated
from the source images to the fused image. The larger MI
means the higher quality of the fused image [49]. MI is
defined as below:

MI = MIs r + Mlp F (26)
ps,F(s, h)

Milsr = ) psr(s, h)log ———— 27
; ® ps@pr()

where pgs(s) and py(f) are the marginal histograms of source
image S and fused image F, respectively. ps (s, f) are the
joint histogram of the source image and the fused image.

3) AVERAGE GRADIENT(AG)

AG measures the degree of sharpness and clarity in the fused
image. Large AG means the fused image has much details
information and clear edges [50]. AG is calculated as below:

AG

> Y (F,»)—Fx+1,))24+F(x, y)—F(x, y+1)?
x=1y=1

mn
(28)

In which, F(x, y) is the pixel value of the fused image with
the size m x n.

4) SPATIAL FREQUENCY(SF)

SF calculates the distribution of the intensity information and
structure features in the fused image. Larger SF means the
fused image has more texture details and more sharpening
edges. It contains two parts: spatial Row Frequency (RF)
and spatial Column Frequency (CF) [51]. SF is expressed as

follows:
SF = v/ RF? + CF? (29)
> Y (Fx,y)—F(x,y—1)?

RF = | =l — (30)
Z Z (F(x,)’)—F(x_ 1’}’))2
x=1y=I

CF =

€2y

mn
where F'(x, y) is the pixel value of the fused image.

5) STANDARD DEVIATION(SD)

SD indicates the spread of the information in the image.
Larger SD means that the fused image has higher contrast,
wide distribution of the gray value, and richer informa-
tion [52]. SD is defined as follows:

m n
Z Z F(x,y)— Fmean)2
=1 y=1
sp= | =2 (32)
mn
Here, F'(x, y) is the pixel value of the fused image with the

size m X n, Fyeqn 1s the mean pixel value of the fused image.
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FIGURE 8. The average values of evaluation metrics for all fused images
obtained by the proposed fusion framework with different y and
different level /. NON on the X-axis means the proposed fusion
framework without y enhanced visible gradient information.

6) SUM OF THE CORRELATIONS OF DISSERENCES (SCD)

SCD means the amount of complementary information con-
tained in the fused image. The larger SCD is, the higher
quality of the fused image is [53]. SCD is defined as follows:

SCD = YDy, 1y 1) + YDy 1y, Ip) (33)

where Dy, 1 and Dy j, are the difference between the source
image and the fused image. Y(Dy,I) is the correlation
between Dy and I. It is represented as follows:

Y(Dy, I)
% Zn: (Dy(x,y) — D) (x,y) — a)
x=1y=1

i=1j=1 i=1j=1

\/(i 3 (D1 y) — DAY S (U, y) — a)?)
(34)

where D and a are the average value of the pixel values of Dy
and I, respectively.
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CBF GFF

FCNN GF WLS

FusionGAN

DenseFuse

Ours (level 1) Ours (level 2)

FIGURE 9. Experiments on “street” images of TNO dataset.

7) VISUAL INFORMATION FIDELITY FUSION(VIFF)

VIFF expresses the visual information fidelity of the fused
image, the higher the VIFF is, the better visual quality of
the fused image is [54]. VIFF is a metric with complexity
calculation, which can be simplified as follows:

VID
VIND

where VID is the visual information with distortion infor-
mation, whereas, VIND is the visual information without
distortion information.

All above-mentioned evaluation indicators are positively
correlated with fusion quality, that is, the greater the metric
value is, the better the fusion quality is.

VIFF = (3%)

108950
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D. PARAMETER SETTINGS

In this paper, the image decomposition level / is set to
{1, 2, 3, 4}. In Section II-C, for the fusion of detail layer,
an efficient approach by introducing the enhanced gradient
information is presented to increase the texture detail infor-
mation and sharpen the edges of the fused image. A vital
parameter of this approach is y, which is a factor of Gamma
transform and determines the enhancement degree to the
gradient map. Different y value will result in different fusion
performance. In this part, we set the y from 0.25 to 2.5.
The interval is 0.25. It is necessary to select one appropri-
ate y value for our proposed fusion framework based on
the test images. Thus, we use seven metrics to evaluate the
performance of the proposed fusion method with different y .
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GTF

Ours (level 1) Ours (level 2)

FIGURE 10. Experiments on “umbrella” images of TNO dataset.

The average values of seven metrics for all fused images
obtained by the proposed fusion framework with different y
and different level / are shown in Figure 8.

In Figure 8, NON on the X-axis means the proposed fusion
framework without y enhanced visible gradient information,
which is considered as the reference to estimate the fusion
quality of the proposed fusion framework with different y.
Compared with NON, when y = 0.25, the average values
of metrics (except AG and SF) are observably decreased,
which illustrates that the fusion performance of the proposed
framework has not been improved. When y belongs to [0.5,
1.5], the maximum average values of metrics (including EN,
MI) are still smaller than NON condition. When y > 1.5, the
average values of metrics at levels 1 to 4 are all larger than

VOLUME 9, 2021

FusionGAN

Ours (level 4)

Ours (level 3)

NON, which proves that the fusion quality of the proposed
framework has been significantly increased.

In summary, if y is set to an appropriate value, the fusion
quality of the proposed fusion framework will be enhanced.

For intuitively and concretely evaluating the fusion per-
formance of the proposed fusion method with different y,
we propose a max-comparison method to score y, which is
described as follows:

NM
Score(y) = > sgn(max(Ey (nm)) — max(E(nm))) ~ (36)
nm=1
E,(nm) = (E,(nm, 1), E,(nm, 2), E,(nm, 3), E, (nm, 4))
37
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FIGURE 11. Experiments on “men” images of TNO dataset.

TABLE 1. The max-comparison score results of different y. The best score
is denoted in red.

¥ value 0.25 0.50 0.75 1.00 1.25
Score -3 -3 1 1 3
¥ value 1.50 1.75 2.00 2.25 2.50
Score 3 7 7 7 7

TABLE 2. The rank scores of different y. The best score is denoted in red.

7 value 1.75 2.00 225 2.50
Rank Score 22 19 18 11

where NM is the number of evaluation metrics, in this paper,
NM is equal to 7. The nm values (from 1 to 7) corre-
spond to the metrics EN, MI, AG, SF, SD, SCD, and VIFF,

108952
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respectively. E, (nm) contains the nm-th evaluation metric
values calculated according to the fusion result obtained from
the proposed fusion method with y enhanced visible gradi-
ent information, E, (nm, i) represents the evaluation metric
value at level i. E(nm) is the nm-th evaluation metric values
calculated according to the fusion result obtained from the
proposed fusion method without y enhanced visible gradient
information. sgn(-) is the signum function, which is denoted
as follows:

1, x>0
sgn(x) =41 —1, x<0 (38)
0, x=0

The higher the Score(y) is, the better the fusion quality is.
The max-comparison score results of different y is shown
in Table 1. When y = 1.75,2,2.25, 2.5, the scores are all
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TABLE 3. The average evaluation metric values obtained by different fusion methods on TNO dataset. The best three values in each metric are denoted in

red, green, and blue, respectively.

Methods EN MI AG SF SD SCD VIFF
CVT 6.857488 13.714975 5.417645 5.806767 76.824097 1586156 0315645
DTCWT 6.387783 12.775566 5334281 5.734421 54.324967 1590848  0.304397
MSVD 6.187836 12.375671 3.660290 4445638 48.162419 1583146 0241612
CBF 6.857488 13.714975 6.784169 6.862700 76.824097 1294660  0.265627
GFF 6.854095 13.708189 5.197526 5.621794 82.197150 1261495  0.250367
GTF 6.635343 13.270686 4.543870 5.085128 67.626026 0.965453  0.188175
HMSD-GF 7.006695 14.013389 6.268162 6.491452 87.904729 1.645908  0.494975
IFEVIP 6.591954 13.183908 4.706830 5.410741 79.224212 1.631409  0.312994
FCNN 7.067761 14.135523 5.561077 5.932891 96.762089 1.572781 0.430778
GF 6.588266 13.176532 4.071189 4.611556 69.984434 1.660118  0.354707
WLS 6.637861 13.275722 6.338700 6.534948 71.484084 1652197  0.443601
LatLRR 6.328579 12.657159 3.521720 4.252030 53.665687 1702454 0.289102
FusionGAN 6.362867 12.725734 2.874152 3.612263 54358016 1013374 0.186125
DenseFuse 6.174034 12.348068 3.053937 3.711629 47.820403 1592125 0.255122
NestFuse-a 6.919710 13.839419 4728811 5.383777 82.752426 1563750  0.344662
NestFuse-m 6.894208 13.788416 4.650401 5307727 80.363710 1561454  0.352859
NestFuse-n 6.904613 13.809227 4736089 5.386202 82.925723 1560105  0.353456
Ours (levell) 6.533856 13.067712 4.349085 4911336 69.309516 1.648503  0.376077
Ours (level2) 6.693662 13.387324 6.133988 6.267771 75.181072 1667130 0.528114
Ours (level3) 6.898194 13.796389 8.605596 7.780944 84.570625 1.654878  0.737768
Ours (leveld) 7.070026 14.140051 11.246767 9.022772 95.688861 1.607489  0.960138

7 and higher than when y is equal to other values. That is,
the proposed fusion framework with y = 1.75,2,2.25,2.5
can achieve good performance.

To further select the best y from these four values, we pro-
pose a novel rank-score method based on [55]. The modified
rank-score method is expressed as follows:

NM

RScore(k) = Z Rank(nm, k) (39)
nm=1

Rank(nm, k) = K —k +1 (40)

where K is the number of y value, and K = 4. K is the
ranking of the fusion performance with y.The rank scores of
these Gamma y = 1.75, 2, 2.25, 2.5 are presented in Table 2.
When y = 1.75, the rank score is the maximum among
these four conditions, which means the fusion quality is the
best. As a result, we set y to 1.75 in our proposed fusion
framework.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this part, fusion results of the proposed method are eval-
uated subjectively and objectively. We choose fifteen com-
parison methods and seven evaluation metrics introduced in
Section III to demonstrate the fusion performance of our
method. To test the fusion performance of our proposed
method, we conduct our method and the fifteen compari-
son methods on TNO and KAIST datasets. In the field of
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image fusion, researchers generally select about 20 pairs of
images to test the algorithm [46], [47]. Therefore, we select
20 infrared and visible image pairs from TNO dataset and the
other 20 infrared and visible image pairs from KAIST dataset
for testing. The subjective and objective analyses are provided
as follows.

A. EXPERIMENTS ON TNO DATASET
1) SUBJECTIVE EVALUATION
Three examples of the fused results on TNO dataset are
given in Figures 9-11. As shown in the red and blue boxes
of Figures 9-11, the fused images of CBF method have much
noise and unclear detail information. Compared with our
proposed method, GTF, FusionGAN, and DenseFuse can
only generate very little saliency features in the fused images.
Although CVT, DTCWT, MSVD, and IFEVIP, LatLRR and
DenseFuse can integrate some salient and texture information
to the fused images, the edges are blurred and incomplete.
By contrast, GFF, HMSD-GF, FCNN, GF, WLS, NestFuse
and the proposed fusion framework can achieve better fusion
than others. Furthermore, our method can simultaneously
integrate enough luminance and detail structure informa-
tion to the fused image. The visual quality of fused images
obtained by our method is obviously better than others.
Especially, as shown in Figure 9, the words in the red
boxes obtained by our methods are quite clear, have the
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TABLE 4. The average evaluation metric values obtained by different fusion methods on KAIST dataset. The best three values in each metric are denoted

in red, green, and blue, respectively.

Methods EN MI AG SF SD SCD VIFF
CVT 6.153845 12.307690 3.291974 3.952871 54.422564 1.134236 0.621967
DTCWT 6.130921 12.261843 3.271274 3.930998 54.221100 1.135757 0.631665
MSVD 5.989234 11.978468 2.148555 2.904062 48.420646 1.235791 0.386309
CBF 6.623837 13.247734 3.979940 4.482026 77.467522 1.146893 0.808007
GFF 6.646380 13.293347 3.360617 4.027473 80.216184 0.987257 0.887131
GTF 5.692654 11.385316 2.652302 3.342401 35.670138 1.127157 0.313285
HMSD-GF 6.686621 13.384263 3.650204 4.319250 90.958343 1.349769 0.997625
IFEVIP 6.480973 12.967608 2.928441 3.669750 80.523631 1.301946 0.787849
FCNN 6.655659 13.321279 3.375459 4.045421 85.745091 1.064554 0.932067
GF 6.238149 12.476305 2.994091 3.621630 71.941797 1.256552 0.769432
WLS 6.266102 12.532716 3.620939 4.202929 77.564170 1.258300 0.890243
LatLRR 6.199751 12.399533 2.077855 2.864040 58.466047 1.381000 0.583438
FusionGAN 5.636667 11.273350 1.689583 2.259777 39.681618 1.193961 0.236257
DenseFuse 5.975567 11.951133 1.794913 2.381396 48.265991 1.171954 0.390878
NestFuse-a 6.537058 13.074139 2.772799 3.524377 78.594094 1.390104 0.741245
NestFuse-m 6.460591 12.921204 2.830861 3.571926 78.002794 1.419032 0.786303
NestFuse-n 6.476185 12.952395 2.850895 3.592109 79.390626 1.363164 0.786508
Ours (levell) 6.182518 12.365037 2.720172 3.485232 76.481881 1.182797 0.823638
Ours (level2) 6.318133 12.644489 4.109615 4.609438 84.175014 1.231801 1.095499
Ours (level3) 6.463926 12.939375 5.855435 5.996404 94.001882 1.219064 1.382719
Ours (leveld) 6.558945 13.126298 7.602689 7.258955 103.958743 1.149147 1.650828

whole contour and sharpened edges. In addition, as exhibited
in Figure 11, the men in red boxes and the window in blue
boxes are retained well in the fused images of our method.
With the increase of the image decomposition level (from
1 to 4), the saliency of the target regions is enhanced, and
the contrast of the fused image is improved gradually.

In summary, compared with traditional and deep learning
methods, our method can deliver fused images with stronger
intensity of the salient targets, more detail information, more
sharpened edges, and higher visual quality.

2) OBIJECTIVE EVALUATION

The average evaluation metrics values obtained by the pro-
posed method and comparison methods on TNO dataset
are shown in Table 3. In general, the average values of
our proposed method (decomposition level from 1 to 4) on
these metrics are acceptable. Specifically, the average values
(including AG, SF, VIFF) of our method (level 4) are much
larger than those of other methods. These values show that the
proposed method can produce the fused image with adequate
details information, clear edges, and high visual quality.

The average values of our method on these metrics are all
in the top three, which indicates that can achieve better image
fusion than other fifteen methods. The average values (includ-
ing EN, MI, AG, SF, VIFF) of our method (level 4) are the
maximum among these comparison methods. These values
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FIGURE 12. The bar charts of different fusion methods about seven
evaluation metrics on TNO dataset. a~u represent CVT, DTCWT, MSVD,
CBF, GFF, GTF, HMSD-GF, IFEVIP, FCNN, GF, WLS, LatLRR, FusionGAN,
DenseFuse, NestFuse-avg, NestFuse-max, NestFuse-nuclear, ours (level 1),
ours (level 2), ours (level 3), ours (level 4), respectively.

demonstrate that our method can preserve sufficient infor-
mation, enhance the features (such as edges), and improve
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FIGURE 13. Experiments on KAIST dataset.

the visual quality of fused images. The average values on the
metric SCD of our method are all bigger than most methods,
which illustrates that the information of the fused images
obtained by our method has credible complementarity.

For assessing the proposed fusion framework intuitively,
we give the bar charts of different fusion methods about
seven evaluation metrics on TNO dataset in Figure 12. The
different color bars represent the average evaluation metrics
values of different fusion methods. The average values of our
method on metrics EN, MI, SD, and SCD are very high, these
values illustrate that the proposed method can retain enough
information. It can be seen that the average values on metrics
AG, SF, and VIFF are significantly larger than those of other
methods, which proves that the proposed fusion method can
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produce fused images with strong spatial structure and fine
visual quality.

B. EXPERIMENTS ON KAIST DATASET

1) SUBJECTIVE EVALUATION

The example of the fused results on KAIST dataset is given
in Figure 13. Pedestrians and fence are contained in the
red boxes. As shown in Figure 13, the fused images of
MSVD and GTF methods have poorer visual quality than
our method. Specifically, the pedestrians and zebra crossings
in MSVD and GTF fusion images are not obvious, and the
edge structures of the fence and zebra crossings are not clear.
Pedestrians in these fusion images (including CVT, CBFE,
GFF, HMSD-GF) is not salient. The texture information of
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FIGURE 14. The bar charts of different fusion methods about seven
evaluation metrics on KAIST dataset. a~u represent CVT, DTCWT, MSVD,
CBF, GFF, GTF, HMSD-GF, IFEVIP, FCNN, GF, WLS, LatLRR, FusionGAN,
DenseFuse, NestFuse-avg, NestFuse-max, NestFuse-nuclear, ours (level 1),
ours (level 2), ours (level 3), ours (level 4), respectively.

the fence in the fused image produced by FusionGAN is little.
As exhibited in Figure 13, our method, IEFVIP, FCNN and
LatLRR can generate the fused images with high quality.
Especially, compared with other methods, the pedestrians
and zebra crossings of the fused images obtained by our
method are more salient, and the edges of the fence are
more sharpened. In conclusion, the proposed fusion method
can generate fused images with salient targets, clear detail
textures, sharpened edges, and high visual quality.

2) OBJECTIVE EVALUATION

Table 4 gives the average evaluation metric values obtained
by different fusion methods on KAIST dataset. As shown
in Table 4, the average values (including AG, SF, SD and
VIFF) of our method (level 4) are the best among these
methods, which illustrates that the proposed infrared and
visible image fusion method can produce fused images with
clear edges and high visual quality. Although the average
values (including EN, MI and SCD) of our method are not
in the top three, they are all acceptable, which indicates that
our proposed method can maintain sufficient source image
information.

In order to compare the proposed fusion method with other
methods more intuitively, Figure 14 provides the bar charts of
different fusion methods about seven evaluation metrics on
KAIST dataset. The different color bars represent the aver-
age evaluation metrics values of different fusion methods.
As shown in Figure 14, the average values (including AG,
SF, SD and VIFF) of our method are obviously larger than
other methods. The average values (EN, MI and SCD) of our
method are not the maximum, but they are still greater than
many other methods. These values reflect the superiority of
the proposed method.
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TABLE 5. The average running time of our method and other comparison
methods on TNO and KAIST datasets. (unit: seconds).

Methods TNO KAIST
0.88 0.90
DTCWT 0.28 0.37
MSVD 0.29 0.30
CBF 13.90 14.35
GFF 0.40 0.37
GTF 4.75 7.49
HMSD-GF 1.42 1.24
IFEVIP 0.15 0.13
FCNN 56.99 60.69
GF 0.53 0.66
WLS 3.15 3.36
LatLRR 83.60 89.35
FusionGAN 3.85 3.65
DenseFuse 3.11 3.08
NestFuse-a 0.45 0.26
NestFuse-m 0.55 0.39
NestFuse-n 37.94 39.57
Ours (levell) 33.26 36.22
Ours (level2) 69.09 76.17

Ours (level3) 103.67 116.17

Ours (level4) 138.39 156.47

After quantitative and qualitative analyses of the experi-
mental results on TNO and KAIST datasets, we can draw a
conclusion that the proposed method can realize satisfactory
image fusion and outperforms than most of existing fusion
methods.

3) DISCUSSION ON TIME EFFICIENCY

Table 5 gives the average running time of the proposed
fusion method and other comparison methods on TNO and
KAIST datasets. As shown in Table 5, the LatLRR method
consumes more time to fuse a pair of images than many
algorithms since it needs sliding window during the fusion
process. Our method is designed based on the LatLRR model,
so it also takes a long time to fuse a pair of images. The
average running time of these methods (including LatLRR,
FCNN and NestFuse-n) are larger than our method (level 1).
As presented in Table 5, many methods require less running
time than the proposed method. However, there are still many
methods that cannot meet the real-time requirement.

Our work focuses on the quality of the fused images.
Although the proposed infrared and visible image fusion
method has a certain complexity, it performs better than lots
of classical and state-of-the-art methods. Considering the
previous subjective and objective analysis results, we can
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still say that the method proposed in this article has a good
performance and is suitable for the condition without the real-
time requirement. In the future work, we will try to accelerate
the image fusion speed of our method.

V. CONCLUSION

In this paper, we propose an effective method for infrared and
visible image fusion, which can produce fused images with
strong intensity information, high visual quality, rich texture
details, and sharpened edges. Source images are decomposed
into base layer and detail layer by the decomposition method.
For the fusion of base layer, an excellent strategy guided by
the saliency map is designed, which can preserve suitable
intensity information and improve the visual quality of the
fused images. For the fusion of detail layer, an ingenious
approach is constructed by utilizing the enhanced gradient
information. This approach can increase the details infor-
mation and sharpen the edges of the fused image. More-
over, lots of comparison experiments are conducted, which
convincingly proves the effectiveness and advantages of the
proposed fusion framework. In addition, image fusion tech-
nology has been widely used in many fields of computer
vision. Therefore, in the future, we will try to apply the
proposed fusion method to some computer vision tasks, such
as target recognition.
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