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ABSTRACT Although the traditional image fusion method can obtain rich image results, obvious artificial
noise and artifacts are often present in the resulting image. Fusion algorithms based on neural networks
can avoid the shortcomings of traditional methods, but they are more complex and less flexible. In this
study, we proposed a fusion method using the deep residual neural network ResNet152, which can not only
effectively suppress artificial noise but also preserve the edge details of the image and improve the efficiency
of the neural network. The proposed method is characterized by a multiscale transformation of an infrared
image and visible light image in the optimized nonsubsampled contourlet transformation domain, and the
deep residual neural network ResNet152 is used to extract the deep features of the low-pass component
to guide the fusion of the low-pass component. The bandpass component is fused by taking the modulus
maximum. This method can fully retain the global features and structural information of the source image in
the result image. Compared to existing fusion methods using public test image sets, the experimental results
show that on a subjective level, the fusion method creates sharper depth edges and fewer noise artifacts than
traditional fusion methods. From an objective perspective, the average value for the results of the evaluation
function is greater than that of other fusion methods.

INDEX TERMS Image fusion, nonsubsampled contourlet transform, residual network, feature guidancet.

I. INTRODUCTION
In fields such as the military, navigation, stealth weapon
detection, and medical imaging [1]–[4], a variety of different
imaging bands are typically necessary to monitor the target
scene to obtain a more comprehensive visual understanding.
Surveillancemethods commonly use both visible and infrared
images. Using cameras at different wavebands to acquire
images can provide rich and detailed scene information.
Nevertheless, for specific observation scenarios, the imaging
advantages of multiple image bands can be combined to show
more detailed information.

Image fusion technology has been extensively studied in
the past several decades. Initially, the multiscale transfor-
mation method based on Laplacian [5], [6] and contrast
pyramids [7], [8] was proposed for image decomposition.
Liu et al. [9] designed an image fusion method based on
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a steerable pyramid and expectation maximization. This
method is superior to traditional fusion methods using steer-
able pyramids. The wavelet transform, which is also used
in image decomposition, has coefficient incoherence, which
differs from the pyramid transform, and has been widely used
in the field of image fusion. Using the traditional wavelet
transform, Chai et al. [10] proposed an image fusion model
based on the quaternion wavelet transform. The traditional
wavelet transform uses a set of filters to decompose the
original image into a series of high-pass and low-pass subim-
ages. However, this approach still has shortcomings such as
oscillation, shift variance, and insufficient directivity, which
cause artifacts to appear in the fused image.

Do and Vetterli [11] proposed a multidirectional mul-
tiresolution image transformation method called contour
transformation. This method is impacted by the problem
of displacement variance caused by upsampling and down-
sampling of the pyramid filter bank. To solve this problem,
Da Cunha et al. [12] proposed a nonsubsampled contourlet
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transform (NSCT) model with full shift invariance. Due to its
advantages in image decomposition, NSCT is used in image
fusion research. Adu et al. [13] proposed a fusion method
based on NSCT and gradient characteristics. The method
can not only extract the target from infrared images but also
preserve details in the visible image. However, because of
rough feature extraction, more artificial noise is produced in
the results.

A number of studies have focused on the high-frequency
component of NSCT decomposition. For example,
Jin et al. [35] used intersecting cortical models (ICMs)
to extract the edge information of the image from the
high-frequency component. Huang et al. [36] used a pulse
coupled neural network (PCNN) to fuse different subbands of
the high-frequency component. However, when deep learning
technology was introduced into the field of image fusion
based on multiscale decomposition, many studies focused
on the low-frequency subbands [38] because the neural
network can better extract the hierarchical features of the
low-frequency image when processing low-frequency images
containing contour information, which allows the resulting
image to retain more information of the source image.

Neural networks have been applied in the field of infrared
and visible image fusion due to their strong adaptability,
fault tolerance, and antinoise ability [14], [15]. The PCNN
[16]–[18] has been studied extensively to fuse infrared and
visible light images. This network simulates the pulses of
brain neurons and requires input excitation to generate pulses.
Qu et al. [22] proposed a fusion method that uses spatial
frequency (SF) to excite a PCNN. The decision map is then
calculated using the pulse time of the PCNN and ultimately
generates a fusion image. Liu et al. [29] and others proposed a
fusionmethod based on Convolutional Sparse Representation
(ConvSR). They extracted deep features from the source
image and then used these features to generate a fusion image.

Ma et al. [37] proposed a fusion framework for gen-
erative confrontation networks with multiple classification
constraints. This method innovatively transformed the fusion
problem into a multiple distribution estimation problem, and
it is currently one of the most advanced neural network
fusion models. However, there is information loss in the
fusion process using neural networks or fully connected net-
works, and the algorithms have poor performance in terms of
complexity and robustness. Liu et al. [39] used the residual
neural network ResNet50 to fuse the low-pass components of
the nonsubsampled shearlet transform (NSST) domain and
achieved good fusion results in multifocus images. A new
fusion idea was thus introduced. However, the training of
ResNet50 affects the flexibility of the algorithm.

A key factor for approaches to image fusion is the selection
of rules for conversion and fusion. Combining the advantages
of different methods to establish an enhanced image fusion
model is a critical issue when fusing infrared and visible
images. In this study, we proposed a new fusion method
that uses the NSCT decomposition strategy to decompose
infrared and visible images. This approach not only retains

the direction information of the image but also increases
the decomposition speed. The deep residual neural network
ResNet152 was used to extract the features of the decom-
posed low-pass subbands to obtain a feature map. There-
fore, the main information in the infrared and visible light
images is retained in the fusion result. This method avoids
the algorithm complexity caused by training the network
and has good fusion efficiency. The fusion of the bandpass
subband uses the method of taking the maximum value of
the modulus so that the resulting image contains the most
obvious detail information of the source image. Finally,
NSCT inverse transformation was used to obtain the resulting
image.

The structure of this paper is as follows: In Section 2,
we focus on the NSCT and residual network (ResNet).
Section 3 introduces the image fusion method based on
ResNet in the NSCT. Section 4 provides the results of com-
parative tests. Section 5 presents our conclusion.

II. RELATE METHODS
A. NSCT
The NSCT is a multiscale decomposition method pro-
posed by Do and Vetterli [11] that aims to overcome
the displacement invariance and pseudo-Gibbs phenomenon
(shift-invariant and pseudo-Gibbs phenomena). Contour
transformation does not experience translation invariance
because of the upsampling and downsampling operations
in the Laplacian pyramid and the directional filter bank.
To preserve the direction and multiscale properties of the
transformation, the Laplacian pyramid is replaced with a
nonsubsampled pyramid (NSP) structure in the NSCT to
preserve the multiscale properties. Moreover, the directional
filter bank is replaced with nonsubsampled directional filter
banks (NSDFBs) that are used to preserve directionality.
After decomposition, each subband image is similar in size
to the original image.

The NSCT is an image decomposition strategy that
employs multiple scales, multiple directions, and shift invari-
ance [Figure 1a]. First, an NSP is used to perform multiscale
image decomposition. Each NSP decomposition can produce
a low-pass component and a bandpass component and iter-
atively decompose low-pass components to obtain the main
information in the image. The two-dimensional division of
the image during NSCT decomposition is shown in Figure 1b.
If the NSCT decomposition level is x, then original image can
be decomposed into 1 low-pass component and x bandpass
components.

A nonsubsampled directional filter bank (NSDFB) is then
used to decompose the bandpass components of each scale in
different directions, generating directional subbands with the
same size as the source image, which is beneficial for image
fusion. In the application of image fusion [12], the NSCT
method can effectively retain features of the original image
while exhibiting outstanding decomposition performance.

Liu et al. [38] compared two different decomposition
strategies, NSST and NSCT, on the fusion of multifocus
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FIGURE 1. (a) NSCT decomposition framework; (b) NSCT frequency division.

FIGURE 2. NSCT transformation process.

images, and the results showed that NSST is less time con-
suming. The reason for increased time during NSCT decom-
position is that the source image is decomposed at multiple
levels, and the image is sampled by different filters in the
NSP and NSDFB stages. To reduce the time loss of the entire
decomposition process, the multiple filtering processes of the
image need to be integrated into a one-step filter. The essence
of the NSCT decomposition method used in this study is to
replace the binary tree structure in NSCTwith a multichannel
structure and use the reduced iterative process in the NSCT
decomposition process to reduce time to a certain extent.

The NSCT transformation process is shown in Figure 2,
where H0(Z) and H1(Z) represent the low-pass filter and
high-pass filter in NSP, respectively, and U0(Z) and U1(Z)
are the NSP Sector filters and quadrant filters. To satisfy the
orthogonality and support between the filters and to maintain
the size of the decomposed image, convolution calculation
was carried out on the NSCT filter, and the convolution result
was used as the replacement channel to replace the filter in the
dashed box in Figure 2. The equation is as follows:

F(Z ) = H0(Z )⊗ H1(Z )⊗ U0(Z )⊗ U1(Z ) (1)

When the decomposition level is x, the number of NSCT
decompositions in this study is 2(x+1)−2. Compared with
traditional NSCT decomposition (2(x+2)−4), the time is
reduced by 50%. Therefore, the optimized NSCT decompo-
sition is able to increase the efficiency.

FIGURE 3. (a)-(b) Infrared and visible light images; (c)-(d) fusion results
of NSST and NSCT-based method.

The proposed NSCTmethod was compared with the NSST
method using the same parameters to verify its fusion per-
formance. The image resolution used in the experiment was
640×450. Figure 3 shows the fusion results of the two decom-
position strategies. The fusion results of the proposed method
in this study have clear and detailed features. Table 1 shows
the structural similarity SSIMa and the time consumption
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FIGURE 4. (a) Building block of residual architecture; (b) bottleneck block.

TABLE 1. Comparison of fusion results of two decomposition methods.

of the algorithms. The results showed that the performance
of the decomposition method in this study is more effective.
Moreover, the time consumption of the algorithm proposed in
this study was similar to that of the NSST method, indicating
that the proposedmethod has the same efficiency as the NSST
decomposition method. Therefore, collectively, the proposed
NSCT-based fusion method has better performance.

B. DEEP ResNet
Studies have shown [19], [21] that the deeper the neural
network layers, the more image information is available, and
the richer the features. However, experiments have shown
that as the neural network deepens, the optimization effect
declines, while the quality of the test data and the related
accuracy rate decrease. These effects occur because the deep-
ening of the network may cause the gradient to increase or
decrease exponentially. At the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Zhang
and Dana [20] and others proposed a new neural network
structure, ResNet, to solve the problem of gradient descent.
This network structure makes use of shortcut connections and
residual representations, which can be more easily optimized
than previous networks and can increase the depth to improve
the accuracy.

ResNet is widely used in various fields of computer vision
and has achieved good results in the field of multifocus image
fusion [39]. However, the deep residual neural network has
not been widely considered. Therefore, in this study, the deep
residual neural network ResNet152 was applied to the fusion
of infrared images and visible light images.

ResNet is composed of multiple subnetwork connections
[Figure 4a]. X represents the input of the subnetwork, 9(X)
represents the network operation on the two weight layers,
and ‘‘relu’’ represents the activation correction operation on
the linear unit. The final mapping result can be calculated
by 9(X)+X. The residual network used in this study is
composed of bottleneck blocks as shown in Figure 4b. The
number of channels was reduced through a 1×1 convolutional
layer. The number of channels in the middle 3 × 3 convolu-
tional layer was 1/4 of the original number of channels, and
the number of channels output by the middle convolutional
layer remains unchanged. The third 1×1 convolutional layer
is used to restore the number of channels so that the input and
output channels of the entire bottleneck block are the same.
The first and last two 1 × 1 convolutional layers effectively
reduce the number of convolution parameters and the amount
of calculation.

The deep residual neural network is a chain structure com-
posed of a large number of residual blocks or bottleneck
blocks. There are details regarding the training process of the
residual network ResNet50 in [39]. The ResNet152 used in
this study was not simply an increase in the number of layers
on the basis of ResNet50; there was additional processing
in each convolutional block. Figure 5 shows the structure
of ResNet152 and the processing of low-pass components
of infrared and visible images. The first convolutional layer
Conv1 of ResNet152 is a 7 × 7 convolutional layer. Conv2,
Conv3, Conv4, and Conv5 are convolutional layers composed
of bottleneck blocks shown in Figure 4b. There are 50 bot-
tleneck blocks in total, which is 34 more than ResNet50.
According to the principle of residual network, the increased
convolution operation will not cause information loss and can
extract deep information in the images. In this study, the deep
feature extraction capability of ResNet152was used to extract
the main features of infrared and visible images, which were
used to guide the fusion of low-pass subbands, thereby pre-
serving the overall information and structural features of the
source image to the greatest extent. The results of Conv5were
used in subsequent processing, which avoids the complicated
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FIGURE 5. ResNet152 structure and extraction of deep feature map.

FIGURE 6. (a)-(b) Infrared and visible light images (c)-(d) fusion results of
ResNet50 and ResNet152.

calculations associated with network training and enhances
the flexibility of the algorithm.

Figure 6 is a comparison of the fusion results of ResNet50
and ResNet152 with the same NSCT decomposition
parameters. The result of ResNet152 showed clear and
detailed features. Table 2 shows the structural similarity
SSIMa and SCD of the fusion results. The results show that
the performance of ResNet152 is better when fusing low-pass
components.

III. IMAGE FUSION METHOD BASED ON NSCT-ResNet
This paper assumes the use of K=2 preregistered source
images. This method is also applicable to situations in which
K>2 [34]. The source image is expressed as Ik, where
k∈{1, 2}, in which 1 and 2 represent the infrared image and
the visible light image, respectively. The NSCT multiscale
decomposition method is used to decompose source images
I1 and I2 into multiscale, multidirectional low-pass compo-
nent groups (Id1 , I

d
2 ) and bandpass component groups (Ib1 , I

b
2 ).

TABLE 2. Comparison of fusion results based on different residual
networks.

The low-pass component group obtained after decomposition
contains the main information in the source image, while
the bandpass component reflecting the detailed information
contains contour features from different directions and scales.
Therefore, the fusion strategy of low-pass subband groups
(Id1 , I

d
2 ) is the key to fusing infrared and visible light images.

Here, the ResNet is used to guide the method for feature
fusion of the deepest layers, which involves fusing the main
information of the two images. The bandpass component
groups (Ib1 , I

b
2 ) mainly consist of detailed information from

the image, and the weighted fusion is performed by taking
a large modulus value, which can preserve the texture con-
tour of the source image in the fusion image to the greatest
extent. Finally, fusion image F is reconstructed by fusing
fundamental part and contour part using the inverse NSCT.
The framework of the fusion method proposed in this paper
is shown in Figure 7.

A. FUSION OF LOW-FREQUENCY SUBBAND
COEFFICIENTS
For low-pass components and, this paper proposes a strategy
of using deep residual neural networks to guide the image
feature fusion process (Figure 8). ResNet152 [23] is used
to extract feature maps for low-pass components in infrared
and visible light images. Weight mapping is then obtained
through feature mapping operations in formula (3) and for-
mula (4). Finally, fundamental part Fd is reconstructed using
weight mapping and low-pass components. In x-level decom-
position, the ideal low-pass subband supporting frequency
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FIGURE 7. Proposed framework of image fusion.

FIGURE 8. Framework of ResNet guidance method.

FIGURE 9. Four pairs of source images. First row is infrared images, and second row is visible images.

domain is [−π/2x, π/2x]2, and that of the ideal high-pass
subband is [−π/2x−1, π/2x−1]2/[−π/2x , π/2x]2. The range
of the high-pass subband is the complement of the low-
pass subband [40]. The low-pass subband contains the global
features and content information of the source image, and the
high-pass subband is the detailed information of the source

image. To obtain more image features, neural networks were
used to the fusion of low-pass subbands [35]. Compared to
the fusion of high-pass subbands that contains image details
and edges [41], the fusion of low-frequency component based
on deep residual network can obtain a more complete image
contour.
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FIGURE 10. Results for ‘‘ship’’ images. (a) Infrared image; (b) visible image; (c) BGR result; (d) CBF
result; (e) FPDE result; (f) GFCE result; (g) ConvSR result; (h) VGG result; (i) NSST-ResNet50 result;
(j) the result for the proposed method.

ResNet152 is a pretrained network consisting of five con-
volutional blocks (conv1, conv2, conv3, conv4, conv5) and
containing a total of 152 weight layers. Thus, the deep fea-
tures output by the i ∈ {1, 2, 3, 4, 5}th convolution block can
be expressed as follows:

I i,mk = ψ(I
d
k ) (2)

where represents a convolutional block of the ResNet, and
m represents the number of channels in each feature layer,
k∈{1, 2}.

Deep features I i,mk are obtained, which initially undergo
L1 regularization to obtain the initial weight mapping. The
formula is as follows:

M i,∗
k =

∑x+η
p=x−η

∑y+η
q=y−η ||I

i,m
k (p, q)||1

η × (2η + 1)
(3)

In the above formula, η = 2 is a matrix sparse operation
with a step size of 5× 5 on the feature map I i,mk [24].
After two initial weight mappingsM i,∗

1 andM i,∗
2 are obtai-

ned through the two low-pass components Id1 and Id2 , they are
upsampled using bicubic interpolation and the initial weight
mapping is adjusted to the source image size. The final weight
mapping is calculated using the following formula:

W i
k (x, y) =

M i,∗
k (x, y)

M i,∗
1 (x, y)+M i,∗

2 (x, y)
(4)

The fusion result of low-pass components can be ultimately
obtained using the following formula:

Fd (x, y) =
2∑

k=1

W i
k (x, y)I

d
i (x, y) (5)
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FIGURE 11. Results for ‘‘two person’’ images. (a) Infrared image; (b) visible image; (c) BGR result; (d) CBF
result; (e) FPDE result; (f) GFCE result; (g) ConvSR result; (h)VGG result; (i) NSST-ResNet50 result; (j) the
result for the proposed method.

B. FUSION OF BANDPASS DIRECTIONAL SUBBAND
COEFFICIENTS
The part of the bandpass component separated from the
source image contains contour and texture information.
In this method, the maximum modulus method has been
chosen to fuse the bandpass components. The maximum
value of the bandpass component group is calculated using
formula (6). Formula (7) is then used to fuse the bandpass
components of the infrared and visible images to preserve as
much edge and contour information as possible in the source
image. The calculation equation is as follows:

Wmax = max(|Ib1 |, |I
b
2 |) (6)

Fb(x, y) = WmaxIb1 (x, y)+WmaxIb2 (x, y) (7)

In the formula, Wmax is the result of taking the maximum
value after taking the modulus of the bandpass component,
and (x, y) represents the pixel positions of Ib1 , I

b
2 , and Fb.

C. FUSION STEP
The process of this fusion method is as follows:

1) Preregistered source images I1 and I2 are subjected
to multiscale decomposition through the NSCT to obtain a
series of bandpass component images Ib1 and Ib2 and a set of
low-pass component images Id1 and Id2 .
2) The feature layer of low-pass components is extracted

using ResNet152, and a feature map is calculated. By guiding

the fusion process for low-pass component images Id1 and Id2 ,
fusion result Fd for the low-pass components containing the
main content of the image is obtained.

3) By taking the maximum modulus to fuse bandpass
component images Ib1 and I

b
2 , fusion resultFb for the bandpass

component is obtained, which contains the edge information
in the image.

4) Finally, Fb and Fd are transformed using the inverse
NSCT to obtain the final fusion image.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
The purpose of this section is to use experiments to verify the
proposed fusion strategy based on subjective and objective
standards and to compare the results with previous research
results.

A. EXPERIMENTAL SETTINGS
The 21 sets of infrared and visible light images used in the
experiment are all preregistered images provided by Toet [25]
and others. Four of sets of images were selected for subjective
evaluation, as shown in Figure 9. The image resolution is
505 × 510, 768 × 576, and 620 × 450, respectively. All
experimental codes were implemented in MATLAB R2017a.
The neural network operation uses MATLAB toolbox Mat-
ConvNet, which provides a friendly and efficient environ-
ment for researchers in the field of deep learning and image
processing.

91890 VOLUME 9, 2021



C. Gao et al.: Infrared and Visible Image Fusion Method Based on ResNet

FIGURE 12. Results for ‘‘two person’’ images. (a) Infrared image; (b) visible image; (c) BGR result; (d) CBF
result; (e) FPDE result; (f) GFCE result; (g) ConvSR result; (h) VGG result; (i) NSST-ResNet50 result; (j) the
result for the proposed method.

To fully consider the decomposition speed and imaging
quality [22], the initialized NSCT subband decomposition
parameters were ‘‘9/7’’ and ‘‘pkva,’’ representing the pyramid
filter and directional filter, respectively. The decomposition
level was 4, and the number of directions from coarse to
fine scale was set to [0, 1, 3, 4], which represent the num-
ber of decompositions and the number of directions at each
level. The low-pass component image is convolved through
ResNet152, and the feature results from the last convolution
layer of the fifth convolution block are extracted for the
feature mapping calculation.

For comparison and analysis, several classic fusion meth-
ods along with methods based on convolutional neural
networks were selected for the same experiment. The
selected comparison methods include the cross bilateral fil-
ter (CBF) [2], infrared feature lifting and visual informa-
tion preservation (BGR) [26], guided filter-based content
enhancement (GFCE) [27], a method based on fourth-order
partial differential equations (FPDE) [28], ConvSR [29],
VGG [34], and NSST-ResNet50 [39].

B. SUBJECTIVE EVALUATION
The results obtained by comparing the fusion method pro-
posed in this paper with five existing fusion methods
are shown in Figures 10-13. Figure 10 is a scene of a
ship on the sea with less detailed background information.

Figures 11 and 12 havemore detailed informationwith scenes
of houses, trees, and people. In Figure 13, there is less content
information in the visible image. Infrared images can effec-
tively identify targets such as people obscured by trees or
smoke, but they contain less background information. In vis-
ible images, target recognition is relatively poor, but there is
rich background information and edge texture information.

Figure 10 indicates that the six fusion methods compared
here were able to successfully fuse the visible and infrared
images. However, the fusion result of CBF contains a sub-
stantial amount of noise (Figure 10d). The BGR fusion image
has a low contrast and loses a substantial amount of back-
ground information (Figure 10c). The fusion result of GFCE
is blurry around the main target, and artifacts emerge. The
FPDE result has less texture information in the background
(Figure 10e and 10f). The fusion result of ConvSR shows
ripples on the edges of the people and boats in the image
(Figure 10g). Figure 10h is the fusion result of a deep learning
method where the deep network VGG19 was used to guide
the fusion of low-pass components. The results showed that
the overall image was dark, with poor visual effect. Figure 10i
is the fusion result of NSST-ResNet50. The details of the
characters were not as clear as the results of the method
in this paper. Figure 10j is the fusion image obtained using
the method in this article. It contains less artificial noise
overall and retains more background information. Observing
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FIGURE 13. Results for ‘‘two person’’ images. (a) Infrared image; (b) visible image; (c) BGR result;
(d) CBF result; (e) FPDE result; (f) GFCE result; (g) ConvSR result; (h) VGG result; (i)
NSST-ResNet50 result; (j) the result for the proposed method.

the area marked in the red window, the algorithm in this paper
is shown to retain more detailed information, and the edge
texture produced in the image is clearer than that obtained
with the other algorithms.

Figure 11 and Figure 12 are fusion comparisons in similar
scenarios. From the results, the image background obtained
by the CBF method is blurred and has serious artifacts. The
results obtained by the BGR and GFCE methods have less
edge texture information, and artifacts are present in the
background. Although there is no artifact problem in the
FPDE results, themain target of the obtained image is blurred,
and the edges are smoother than those in the results from the
method proposed in this paper. The fusion result of the VGG
method is the background is too bright, which is the result of
inheriting too much infrared image content, and there are arti-
facts at the edges of the object. The NSST-ResNet50 method
is similar to the method in this paper, but the fusion result
is slightly blurred. This difference is because the method in
this paper uses more feature information of the source image
to guide the fusion process. Comparing the window areas
marked in red and yellow in Figure 11, the edges of the people
in Figure 11j are clearer, and the texture of the tree branches is
clearer. In making a comparison with Figure 12, the contrast
is even more apparent. The method used in this paper obtains
even more prominent target information, including richer
roads and shrubs in the background information and clearer
edge texture information.

The visible image in Figure 13 has less information,
and the figures in the picture cannot be clearly identified

(Figure 13b). The BGR method has artifacts on the edges
(Figure 13c), and there is obvious noise in the red marked
box, while there is relatively little background information
such as trees. A substantial amount of noise appears in the
image in Figure 13d. Moreover, the feature information is
chaotic, and there is a significant artifact issue. The remaining
algorithms have ideal fusion effects. However, after compar-
ing the details in the marked boxes, the method used in this
paper is found to have a clearer texture for the tree trunks
in the background, and the edges of the people are more
distinct. When evaluated subjectively, the fusion method pro-
posed in this paper retains more thermal radiation intensity
information in the infrared images and more detailed texture
information in the visible light images. The results from the
proposed method also contain less artificial noise and fewer
artifacts, indicating that they are more natural.

C. OBJECTIVE EVALUATION
Six typical image quality evaluation functions were selected
to evaluate the performance of image fusion. The selected
functions include the sum of the correlation of differences
(SCD) [30], pixelmutual information (FMIpixel) [31], discrete
cosine mutual information (FMIdct) [32], wavelet feature
mutual information (FMIw) [32], modified without reference
image structural similarity (SSIMa) [32], and a new nonrefer-
ence image fusion performance metric (MS_SSIM) [33]. The
value represents the ability of the fusion method to preserve
the structural information of the source image. The increase
in the function value of the six image quality evaluations
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FIGURE 14. Quantitative comparisons of six metrics for all fused images. (a) FMIpixel vs. image
numbers. (b) FMIdct vs. image numbers. (c) FMIw vs. image numbers. (d) SCD vs. image numbers.
(e) SSIMa vs. image numbers. (f) MS_SSIM vs. image numbers.

represents the improvement in the performance of the fusion
method, thus indicating an optimized fusion effect.

Figure 14 shows a comparison of the evaluation functions
for the six comparison algorithms with 21 sets of fused
images. The comparison results indicate that the evaluation
function value of the algorithm proposed in this paper is more
effective than that of the other comparison algorithms for
most of the fusion results. To eliminate calculation errors
between different image scenes and algorithms, the com-
parison idea proposed by Li [34] is used to compare the
average value of the evaluation quality function values for the
21 images. The calculation method is as follows:

Valuefavg =

∑
n=1∼21

Valuef

21
(8)

In the above formula, Valuefavg represents the average
value of the evaluation functions FMIpixel, FMIdct, FMIw,

SCD, SSIMa, and MS_SSIM under the different algorithms
for the 21 evaluation images.

In Table 3, the maximum value from the average values of
all evaluation functions is shown in bold. Based on the evalu-
ation function results in the table, the fusion method proposed
in this paper produced results that are better than those of the
other fusion methods. The greatest evaluation function value
is calculated among the five comparison algorithms using
formula (9). Moreover, formula (10) is used to calculate the
relative amount of improvement in each evaluation function
value for the algorithm in this paper:

Maxvalue = max(Valuefavg) (9)

Re =
ValuePorposed −Maxvalue

Maxvalue
(10)

The calculation results show that the evaluation func-
tion value FMIpixel of the algorithm in this paper increased
by 2.74%, FMIdct increased by 33.7%, FMIw increased
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TABLE 3. Average values of FMIpixel, FMIdct, FMIw, SCD, SSIMa, and MS_SSIM for 21 fused image.

by 0.28%, SCD increased by 1.01%, SSIMa increased by
4.38%, and MS_SSIM increased by 9.61%. From an objec-
tive evaluation, the method in this paper has a better fusion
performance.

V. CONCLUSION
Based on an optimized multiscale NSCT, this paper proposed
a new method for the fusion of infrared and visible images.
Because the deep residual neural network ResNet152 has
powerful feature extraction capabilities, it can be used to
guide the fusion process of low-pass components. This
method has the advantages of multiscale decomposition in
the NSCT. In addition, the feature guidance and modulus
maximum methods can also be used to retain rich contour
texture in the source image, which provides clearer edge
information in the resulting image. In comparison with sev-
eral classic fusion algorithms, the proposed fusion strategy
was evaluated through subjective and objective evaluation
methods. The experimental results show that the fusion image
of this algorithm has a clearer visual expression and fewer
noise artifacts.

In terms of objective evaluation, the results of several
typical image quality evaluation functions were compared.
The average evaluation function of the fusion image of the
algorithm in this paper is greater than that of the other com-
parison algorithms. The FMIdct value of the evaluation func-
tion is 33.7% higher than the next best comparison algorithm,
indicating that the fusion image obtained by this algorithm
has better image quality.
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