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ABSTRACT The fusion quality of infrared and visible image is very important for subsequent human
understanding of image information and target processing. The fusion quality of the existing infrared
and visible image fusion methods still has room for improvement in terms of image contrast, sharpness
and richness of detailed information. To obtain better fusion performance, an infrared and visible image
fusion algorithm based on latent low-rank representation (LatLRR) nested with rolling guided image
filtering (RGIF) is proposed that is a novel solution that integrates two-level decomposition and three-
layer fusion. First, infrared and visible images are decomposed using LatLRR to obtain the low-rank
sublayers, saliency sublayers, and sparse noise sublayers. Then, RGIF is used to perform further multiscale
decomposition of the low-rank sublayers to extract multiple detail layers, which are fused using convolutional
neural network (CNN)-based fusion rules to obtain the detail-enhanced layer. Next, an algorithm based on
improved visual saliency mapping with weighted guided image filtering (IVSM-GIF) is used to fuse the
low-rank sublayers, and an algorithm for adaptive weighting of regional energy features based on Laplacian
pyramid decomposition is used to fuse the saliency sublayers. Finally, the fused low-rank sublayer, saliency
sublayer, and detail-enhanced layer are used to reconstruct the final image. The experimental results show
that the proposed method outperforms other state-of-the-art fusion methods in terms of visual quality and

objective evaluation, achieving the highest average values in six objective evaluation metrics.

INDEX TERMS
detail-enhanced layer.

I. INTRODUCTION

Since richer, more comprehensive scene information can-
not be obtained using a single image sensor, which leads
to certain limitations, multiple sensors tend to be used to
capture images for image fusion. An algorithm is employed to
extract and integrate the effective information from multiple
images captured from the same scene at the same moment
for multidirectional, multiangle fusion to obtain good visual
effects and rich detailed information. Therefore, image fusion
research has received much attention in a variety of fields,
such as military applications [1], [2], computer vision [3], [4],
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Image fusion, rolling guided image filtering, latent low-rank representation,

remote sensing detection [5], [6], and medical imaging [7],
with very broad and important application value. In particular,
infrared and visible image fusion is a focus in multisensor
image fusion research because it is the foundation of image
fusion research.

The mechanism of infrared images is different from that
of visible images, and the two types of images have dif-
ferent characteristics. Specifically, visible images have high
spatial resolution and rich background information, and they
are suitable for human visual perception. However, they are
susceptible to poor lighting, smoke, and adverse weather
conditions. Infrared images, depending on the detectors, are
able to perceive thermal radiation at different wavelengths
and have strong night vision and fog penetration capabilities;
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however, they suffer from low resolution. The complemen-
tary information of these two types of images can be used
to compensate for the deficiencies in the respective imag-
ing techniques, making the fused images more informative
and understandable. At present, image fusion algorithms are
generally categorized into spatial domain-based fusion, mul-
tiscale transform (MST)-based fusion, edge preserving filter-
based fusion, sparse representation (SR)-based fusion, neural
network (NN)-based fusion, and other methods.

In recent years, to improve the fusion quality and
obtain clearer scene information and better target features,
researchers have devoted themselves to the research of new
infrared and visible image fusion methods, and a variety of
infrared and visible image fusion methods have been pro-
posed [8]-[19]. To overcome the shortcomings of methods
based on MST and SR, Li et al. [8] proposed an image
fusion framework integrating nonsubsampled contour trans-
formation (NSCT) into sparse representation. In this method,
NSCT is used for source image decomposition. The high-pass
coefficients are fused by using the sum modified Laplacian
(SML). A principal component analysis dictionary learning
algorithm is applied to the low-pass subband to reduce the
dimensionality of the learning dictionary as well as the com-
putational cost. The low-pass coefficients are fused using
the SR-based method. The final fusion image is obtained
by NSCT inverse transform. Huang et al. [9] proposed an
infrared and visible image information fusion method based
on phase congruency and image entropy. In this method,
NSCT is used to decompose the source image to obtain the
corresponding high- and low-frequency subbands. For the
top decomposition layer of the high-frequency subband,
the PCNN model [10] is used to measure the activity level
of the high-frequency coefficients. For other high-frequency
decomposition layers, the absolute maximum rule is used
to measure the activity level of the absolute value of each
high-frequency coefficient. For the low-frequency subband,
according to activity measures, such as the phase consistency
(PC), the local measure of sharpness change (LSCM), and
the local signal strength (LSS), the low-frequency fusion
rule is formulated. Nie ef al. [11] proposed a novel total
variation (TV) with joint norm-based infrared and visible
images. A weighted fidelity term is employed to fuse both the
infrared objects in the infrared image and the salient scenes in
the visible image. In the process, a weight estimation method
is developed based on the global luminance contrast-based
saliency, and the > 1 -norm is employed to produce struc-
tural group sparseness. To fuse more details from the visible
image, a gradient sparseness constraint is further introduced,
resorting to the /j,2-norm; however, the ability to retain
detailed information is limited. Li ez al. [12] presented a novel
fusion framework based on a deep residual network (ResNet)
and zero-phase component analysis (ZCA). The pretrained
model ResNet50 is employed as a feature extraction tool to
extract deep features from source images. Then, the ZCA
and /1-norm are used to normalize the deep features, and
finally, the fused image is reconstructed by obtaining the
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weight coefficients through a softmax operation. The fusion
performance of this method is, to some extent, better than
that of several existing fusion methods, but the visual effect
of the fused image is not adequate. The DenseFuse [13]
network requires a longer training time, the extracted features
are inadequately comprehensive, and the texture precision
is low in the fusion result of the FusionGAN-based fusion
method [14]. Yang et al. [15] proposed an infrared and visible
image fusion method based on a texture conditional genera-
tive adversarial network (TC-GAN) and a multiple decision
map fusion strategy. TC-GAN is constructed to generate a
combined texture map from the visible and infrared images
to capture the gradient changes in the fused image. Then,
the combined texture map is utilized as a guidance image of
the adaptive guided filter (AGF) to filter the source image,
and the decision map based on the combined texture map
is obtained. Finally, a multiple decision map fusion strategy
is proposed to reconstruct the fused image. This method
can preserve the texture details of the source image while
highlighting the infrared target information.

Latent low-rank representation (LatLRR) [17], an improved
version of low-rank representation (LRR) [16], has also been
introduced into the image fusion field. Li et al. [18] pro-
posed a LatLRR-based fusion method for infrared and visible
images that uses simple fusion strategies (weighted-average
strategy and sum strategy) to fuse the low-rank parts and
the saliency parts, resulting in insufficient information from
the source image and poor visual perception. Subsequently,
they [19] proposed a new image fusion framework based on
latent low-rank representation of multilevel image decom-
position (MDLatLRR). A projection matrix L is learned by
LatLRR. The matrix is used to extract the detail and base
parts of the input image at several representation levels. The
detailed parts are reconstructed using a fusion strategy based
on the kernel norm and a reshape operator. The base parts
are reconstructed by averaging strategy fusion. The fusion
performance of this method overly depends on the number
of decomposition levels, and as the decomposition levels
increase, the time complexity increases.

The existing fusion methods have improved fusion per-
formance; however, problems such as loss of fine details
and degradation of contrast still exist [14], [30], [32], [34].
Consequently, the fusion quality of the existing infrared and
visible image fusion methods still has room for improve-
ment in terms of image contrast, sharpness and richness of
the detailed information. In this regard, the present study
proposes a new infrared and visible image fusion method.
LatLRR with denoising and local structure representation
capabilities is used as an image decomposition tool, nested
with RGIF as a means of image enhancement. Two improved
algorithms are employed as fusion rules for sublayers to
reconstruct images.

The contributions of the proposed algorithm are as follows:

(1) A novel solution of two-level decomposition and three-
layer fusion is proposed. Specifically, the solution includes
the two-level decomposition method of LatLRR nested RGIF
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and the three-layer fusion ideas of low-rank sublayer fusion,
saliency sublayer fusion and detail layer fusion.

(2) The detail layer information is extracted by using RGIF.
The detail layers are fused by using convolutional neural net-
work (CNN)-based fusion rules to obtain a detail-enhanced
layer to address the low contrast and low sharpness of fused
images.

(3) The low-rank sublayers are fused using an algorithm
based on improved visual saliency mapping with weighted
guided image filtering IVSM-GIF), and the saliency sub-
layers are fused using an algorithm of adaptive weighting of
regional energy features based on Laplacian pyramid decom-
position. This preserves the detailed texture information of
the source image and highlights important targets. The two
fusion rules ensure good fusion performance.

The rest of this paper is organized as follows. In Section II,
the basic principles of the LatLRR model and RGIF are
introduced. Section III describes in detail the fusion methods
for low-rank sublayers and saliency sublayers, acquisition
of a detail-enhanced layer, and image reconstruction. The
experimental results are analyzed and discussed in Section I'V.
Finally, the conclusions of this study are presented in
Section V.

Il. TECHNICAL BACKGROUND

A. LatLRR

In 2010, LRR theory was first proposed by Liu ef al. as a
method for exploring the spatial structure of data [16]. This
method uses the observed data matrix itself as a dictionary
and considers only the global structure of the image. Hence,
its application is limited. To address this problem, these
authors put forward LatL.RR as an improved scheme based on
LRR theory [17]. LatLRR uses the observed data matrix itself
and the unobserved latent data to construct a dictionary, fully
considering the aspects of global structure, local structure,
and sparse noise of image data. The presence of noise in
the image may introduce visual artifacts [20], which will
have some negative effects on the fusion results. Many fusion
algorithms are devoted to denoising before fusion. LatLRR
is not only able to robustly extract salient features from
corrupted data but also has strong robustness to noise and
outliers. Thus, LatLRR is used as an image decomposition
tool in our research. Specifically, the LatLRR problem can
be formulated as the following optimization problem:

ZlTlLi}qE 1Z1l. + LI + A NE
st X=XZ+ILX+E ()

where A > 0 1is a noise-related equilibrium parameter; ||-||; is
the /1-norm; ||-||, is the nuclear norm;X is the data matrix
of the source image; Z and L are the low-rank coefficient
matrix and the saliency coefficient matrix, respectively; and
E represents the sparse noise. Equation 1 represents a type of
minimization problem with the nuclear norm and the /;-norm.
This is a convex optimization problem and can be solved
using the augmented Lagrangian multiplier (ALM) method.
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LatLRR effectively integrates image segmentation and fea-
ture extraction to eventually obtain the solved low-rank sub-
layer (XZ), the saliency sublayer (LZ), and the sparse noise
sublayer (E). The sparse noise sublayer is directly discarded
in the proposed method, which is equivalent to pre-denoising
of the source image, which helps to improve the quality of
image fusion [20]. Figure 1 shows the decomposition results
by taking a set of images as an example. The decomposition
process is time consuming.

Infrared §
image

Visible
image

Original image

Low rank sublayer Saliency sublayer Sparse noise sublayer

FIGURE 1. LatLRR decomposition operation.

B. RGIF

The concept of RGIF was first proposed by Zhang et al. [21].
RGIF performs iterative operations on the basis of an
edge-preserving filter to control the smoothness of small
structures under a scale measure and to recover edge struc-
tures through iterative processing. As a result, the dual
effect of smoothing small structures and preserving edges is
achieved. RGIF can preserve more image information and is
more suitable for various types of image processing tasks.
Therefore, in this study, the detail layers are extracted through
multiscale decomposition by RGIF with scale-aware and
edge-preserving features. They are used for the subsequent
acquisition of the detail-enhanced layer. In general, RGIF can
be divided into the following two main steps.

The first step is to smooth the image by using a Gaussian
filter to remove small structures. The Gaussian filter for the
input image with its center pixel at position n can be expressed
as follows:

1 —
Go=2 exp(— 1=y )

202
™ mes, S

Y exp(—|ln — ml||/202) is a normalization
meS,
factor, m is a neighboring pixel of n, S, is the set of neighbor-

ing pixels of pixel n, I,,, is the grayscale value of pixel m in the
input image, and o is the standard deviation. The filter scale
can be controlled by changing the o value to achieve different
smoothing results. The image output G from the Gaussian
filter is used as the guidance image for the next step.

The second step is edge recovery through an iterative
operation. In addition to the bilateral filter [22], which
is an edge-preserving filter used in Reference [21], other
well-known edge-preserving filters include guided image fil-
tering (GIF) [23] and the weighted least squares filter [24].

where K, =
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Image
Gaussian Guided image
filtering filtering

Step 1 Step 2

FIGURE 2. lllustration of the implementation process of RGIF.

Since GIF has a high computational efficiency, the second
step of the present study is mainly based on GIF, which differs
from the rolling guided filtering used in past studies.

The GIF process includes the guidance image, the input
image, and the parameters that control the filtering perfor-
mance. The i-th iteration can be expressed as follows:

G = GIFUS,U);(GH, H (i=12...T (3)

where GIF (-) represents the GIF operator; G' is the output
image of the i-th iteration, which will be used as the guidance
image of the next GIF; the initial guidance image G° is the
output image of the Gaussian filter; / is the input image and
remains unchanged during the iteration;oy is the radius of a
square window, which is the same as Equation (2); o, is a
regularization parameter, which controls the range weight;
and T represents the number of iterations.

The first and second steps are combined to form the RGIF,
which is defined as follows:

IB = RGIF(Ia Oy, Oy, T) (4)

where RGIF (-) represents the RGIF operator and Ip is the
base layer image filtered by RGIF. When o5 = 3 and 0, =
0.001, Figure 2 shows the entire iterative process taking a
set of visible images as an example. After several iterations,
the details of the image are smoothed, and the edges are
restored. The detail layer image at this scale can be obtained
by subtracting the image filtered by RGIF from the source
image.

IIl. PROPOSED FUSION METHOD

A. FUSION FRAMEWORK

In this paper, we propose a new method for the fusion of
infrared and visible images. The framework of the proposed
method is shown in Figure 3. This method is based on
LatLRR nested with RGIF. There are five steps, namely,
image decomposition, acquisition of a detail-enhanced layer,
fusion of low-rank sublayers, fusion of saliency sublayers,
and image reconstruction.
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Guidance
Image

Guided image
filtering

Step 2

Step 1: The infrared and visible images are decomposed
using LatLRR, and the sparse noise sublayers are discarded.
We obtain the low-rank sublayers (IR_Irr, VIS_Irr) and
saliency sublayers (IR_sal, VIS_sal).

Step 2: Multiscale decomposition of IR _Irr, VIS Irr is
performed using the above RGIF to extract the information of
multiple detail layers, the weight mapping matrix is obtained
by extracting the deep features using the CNN-based model,
and the detail-enhanced layer is obtained by fusing the detail
layers through the weight mapping matrix.

Step 3: IR Irr, VIS _Irr are fused using the IVSM-GIF
algorithm. The visual saliency maps of IR_Irr, VIS Irr are
obtained and compared to generate the initial weight map
values P; and P,;;. Then, optimizations of P;- and P,;s are
performed using the GIF to obtain the final weight map values
wir and wy.

Step 4: IR_sal, VIS _sal are fused using an algorithm of
adaptive weighting of regional energy features based on
Laplacian pyramid decomposition. Pyramid decomposition
of IR_sal, VIS _sal is carried out, and then, the fusion weight
coefficients of the decomposed layers are assigned adaptively
according to the local regional energy similarity.

Step 5: Reconstruction is performed with the obtained
detail-enhanced layer and the fused low-rank sublayer and
saliency sublayer.

B. ACQUISITION OF DETAIL-ENHANCED LAYER

The low-rank sublayers obtained from LatLRR decompo-
sition still contain some details in addition to the global
information and contrast information of the source image.
To further ensure the integrity of the fused image information,
the multiscale decomposition of the low-rank sublayers is
performed using RGIF to extract more information prior
to the fusion of low-rank sublayers. In the present study,
we set the same regularization parameter o, and images with
different degrees of blurring are generated by changing the
filter window radius value og. That is, when a‘/ > (T{ s
the corresponding Ij is smoother and more blurred with less

structural information than I] , and the detail layer can
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FIGURE 3. Schematic visualization of the proposed method.
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FIGURE 4. RGIF-based multiscale decomposition.

be obtained by the following equation. Assuming that the
number of multiscale decomposition layers is N, the detail
layers I;) at different scales are as follows:

B=0"—1,=1"—RGIFU}, ", ol,0,,T)
G=1,2....,N) (5

where Ié is the detail layer image of the jth layer after
decomposition and Ié is the base layer image of the jth
layer after decomposition. In particular, / g is the source input
image without filtering, namely, 11(3)1 = VIS_Irr, and 122 =
IR_Irr. Thus, the detail layers 131(2),1[2)1(2) . ’Igl(Z) are
obtained through the above process of multiscale decompo-
sition of VIS_[rr, IR_Irr. The process of RGIF-based multi-
scale decomposition is shown in Figure 4.
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GIFU”,G’G’T)- o - e -
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1 2 N-1
Iy Iy, I

Subsequently, the extracted detail layers are summed sep-
arately as follows:

N

Ip_vis = Zlél (6)
i=1
N .

Ipw=Y I @)
i=1

As demonstrated in Reference [25], the CNN model can be
used to achieve feature extraction and weight assignment in
an “optimal” manner through network learning parameters,
indicating the feasibility of the CNN for image fusion. There-
fore, this network is employed in the present study to gener-
ate decision mapping containing the integrated pixel activity
information from the input image. That is, the processed
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images Ip jg and Ip yss are input into the CNN model, the
decision map values are obtained through deep feature extrac-
tion and used for image fusion. The network includes three
convolutional layers (with a step size of 1 and a zero padding
of 1 for the convolution process involved), one maximum
pooling layer, and one fully connected layer [26]. The specific
process for generating decision mapping D is described in
Reference [26].

Finally, the detail-enhanced layer is obtained by the fol-
lowing pixel weighting strategy:

Dy = DG, pIp_ir(i, ) + (1 = DG )p_vis(i,)) ~ (8)

C. FUSION OF LOW-RANK SUBLAYERS
It is known that the low-rank sublayer contains global infor-
mation, contrast information, and other background informa-
tion of the source image. The fusion strategy of the low-rank
sublayers affects the overall appearance and contrast of the
fused image to some extent. Therefore, the fusion of the
low-rank sublayers should not be neglected. Simple weighted
fusion is the most basic, easy to implement, and widely
used fusion strategy. However, since this strategy is not fully
applicable to any imaging scene, certain information of some
infrared and visible images is lost to varying extents, leading
to the degradation of the quality of the fused images. There-
fore, fully considering the overall visual effect of the imaging,
the IVSM-GIF algorithm is proposed in the present study
for the fusion of low-rank sublayers. The VSM method [27]
defines the saliency of each pixel by calculating the intensity
contrast information of that pixel relative to other pixels in
the image. Hence, the obvious visual structures and regions
in the source image can be well identified, and better fusion
of low-rank sublayers can be achieved. The method includes
the following steps.

Step 1: The saliency value of each pixel is determined,
the visual saliency maps of IR_Irr, VIS_Irr are obtained.

Suppose that pixel p in image [ has an intensity of 1,; then,
the saliency value V (p) of pixel p is as follows:

Vip) = Z ’Ip _Iq}

Vgel
=L, —nh|+|L,—b|+-+|l,—Iw|] (©

where W is the total number of pixels in image /. Considering
the presence of multiple pixels with the same intensity, for
the simplicity of the algorithm, the above equation can be
rewritten as follows:

L—1
V) =Y _Ki|l, - 1] (10)
t=0

where ¢ is the pixel intensity, K; is the number of pixels
with the same intensity of ¢, and L represents the number of
gray levels in the image. In this paper, all the images used
for testing are 8-bit images with a total of 256 gray levels,
and thus, L = 256. The saliency values of other pixels are
calculated successively, the normalized visual saliency maps
Vir, Vyis are ultimately obtained.
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Step 2: Compare the above obtained saliency maps Vi, Vyis
pixel by pixel to obtain the initial weight mapping, which is
defined as follows:

P (i J) _ 1 lf Vir(iaj) > Vvis(i»j)
e 0 otherwise

Pyis(i,j) = 1 = Pir (i, )) (1)

where P;.(i,j) is the initial weight mapping at the position
(i,j) in IR_Irr. This weight mapping is essentially a binary
mapping and is implemented using the maximum selection
strategy.

Step 3: Each initial weight mapping is optimized by intro-
ducing the GIF, and its corresponding low-rank sublayer as
the guidance image, is used to obtain the final weight map-
ping w;, and wyjs.

wir = GIF, (IR_lrr, Pjy)
Wyis = GIF, (VIS _Irr, P,js) 12)

where r is the filter window radius, and ¢ is the regularization
parameter.

Step 4: Pixel-by-pixel weighting is performed using the
final weight mapping, and the fused low-rank sublayer is
obtained as follows:

Br = wi IR _Irr (i, j) + wyis VIS _Irr (i, j) (13)

D. FUSION OF SALIENCY SUBLAYERS
To accurately integrate the important targets and features of
the source image, an adaptive weighted fusion method of
regional energy features based on Laplacian pyramid decom-
position is adopted [28] for the fusion of IR_sal and VIS _sal
with salient structures. To flexibly accomplish the fusion
task, the method adaptively adjusts the fusion coefficients by
comparing the similarity of the local regional energy.

First, IR_sal and VIS _sal are decomposed by the Laplacian
pyramid as follows:

LA = laplacian(IR_Sal)
LY = laplacian(VIS_Sal) (14)

where L/ﬂ and Lé denote the Laplacian pyramid decomposi-
tion of IR_sal and VIS _sal, respectively, and / represents the
decomposition level.

Next, the local energy features centered at pixel (m, n) are
obtained for the decomposition layers LA and Lllg, respec-
tively, using the corresponding equations as follows:

El(m,n) = ZZw-LA(m+p,n+q)2

p q
Eg(m.n) =Y "> "w-Lim+p.n+q?*  (I5)
P q

where w is a region window of size 3 x 3 and p and ¢ are the
offsets of the neighboring pixels relative to the center pixel
in w. In this paper,
121
w=—x(242).
16 129
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Similar to the covariance of two local windows to define
Myp, it characterizes the similarity of the local energy fea-
tures of L/g and Lfg, ie.,

M p(m, n)

X w- L+ p, n+ gL + p, n + ¢))?
P q

= 16
Ezf‘(m, n)- Ellg(m, n) (16)

In addition, a threshold A is set to determine the fusion
coefficient. If M If\B(m, n) < th, the similarity of the local
energy features of the point is considered low, in which case
the energy of image layers at this point are simply compared,
and the image layer with a higher energy at this point is
selected, while the rest are discarded. If M AB(m, n) > th,
the similarity of the point is considered high, so weights are
assigned according to the energy ratio.

The fusion rule is as follows:

LL(m, n) = wiLy(m, n) + waL(m, n) (17)

where wy and wy are the adaptive fusion coefficients, which
are obtained by the following equation:

]

(1,01” if My <th & E} > E}
T
Ey, B - !
N [EQJFEIQ’EQJFEIQ ¥ Map = th
[0, 117 if My <th & E} < E}

(18)

where [-]7 is the matrix transpose operator. This method
adaptively adjusts the fusion coefficients by comparing the
similarity of the local region energies to ensure the best
contribution to the fusion results. The L}(m, n) of each layer
is determined by the above equation, the fused image Sy of
the saliency sublayers is reconstructed by inverse Laplacian
transform.

E. RECONSTRUCTION PROCESS

Finally, the final fused image is reconstructed from
Equation (19) using the acquired detail-enhanced layer Dy,
the fused low-rank sublayer By, and the saliency sublayer Sy
to obtain the final fused image as follows:

F =Bf +Df + S8 (19)

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. EXPERIMENT SETTINGS AND

IMPLEMENTATION DETAILS

To verify the feasibility and superiority of the proposed
fusion method, ten infrared and visible images in differ-
ent scenes are selected from the publicly available TNO
Image Fusion Dataset for the fusion performance test. The
contribution of the detail-enhanced layer to our method
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is first verified, then the fusion performance is compared
between our proposed method and other state-of-the-art
methods, including (1) convolutional sparse representa-
tion fusion (ConvSR) [29]; (2) gradient transfer fusion
(GTF) [30]; (3) a fusion method based on weighted least
squares (WLS) optimization [31]; (4) a fusion method that
uses infrared feature extraction and visual information preser-
vation (FEIP) [32]; (5) a fusion method based on multi-level
Gaussian curvature filtering (GCF) [33]; (6) a fusion frame-
work based on ResNet50 and zero-phase component analysis
(ResNet50) [12]; (7) Bayesian fusion (Bayesian) [34]; and (8)
a fusion framework based on LatLRR of multi-level image
decomposition (MDLatLRR) [19]. All algorithms used for
comparison with the proposed method are implemented using
the code provided by the original authors, and the default
parameter settings of the above methods reported in the
respective publications are adopted.

The settings of all parameters in our study are
based on the magnitudes provided by the relevant refer-
ences [18], [21], [31], [35], [36] and empirical analysis. Test
experiments within a reasonable range are also carried out.
According to the objective evaluation indicators, the corre-
sponding results are compared and analyzed. To achieve a
trade-off between performance and processing time, a more
appropriate parameter value is selected. The parameters are
set as follows: the regularization parameter for LatLRR A =
0.6; the number of decomposition levels for RGIF N = 4; all
regularization parameters o, are set to 0.02; and the parameter
oy = 3 initially and then doubles successively (i.e., 6, 12, .. .).
As aresult, we can obtain four detail layers. The parameters r
and ¢ for the GIF in the IVSM-GIF algorithm are 45 and 0.1,
respectively. The number of pyramid decomposition layers is
set to 8, and the threshold #% is set to 0.6 in the fusion method
of the saliency sublayers. The experimental simulation is
implemented on a platform with an Intel Core 17-10510U
CPU, 8 GB RAM, and a 64-bit Windows 10 system. The
programming environment is MATLAB 2014b.

B. SUBJECTIVE PERFORMANCE EVALUATION

It is straightforward to subjectively evaluate the image fusion
quality. Therefore, the fusion performance with and without
the detail-enhanced layer Dy are subjectively compared. Four
images are selected for verification. The fusion results with
and without Dy are shown in Figure 5.

By comparing the overall visual effects of the enlarged
trash bin in Figures 5(b) and 5(B), the enlarged soldiers
in Figures 5(c) and 5(C), and the enlarged windows in
Figures 5(d) and 5(D), it can be seen that the fusion method
with Dy highlights the edges and texture of the objects and
significantly improves the overall contrast of the images,
making the images more visible.

Next, we analyze the fusion results of the proposed method
and the compared methods. A comparison of the fusion
results from different methods is shown in Figure 6, where
the infrared images are in row (a), the visible images are
in row (b), the fused images by other methods are in rows
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Without D,

FIGURE 5. Fusion results with D and without D¢.

(c) to (m), and the fusion images by the proposed method are
in row (n). An overall comparison of the fusion results reveals
the following. The fused image from method (d) is blurred,
and detailed information is lost, resulting in low visibility.
The infrared target of the fused image from method (f) is
significant, but some of the visible image details are lost; e.g.,
in the third group of images, the windows of the ship are
missing and in the 10th group of images, the soldiers’ eyes
are missing. The contrast of the fusion image for method (h)
is low, and the visual perception is not very good. The fused
image of method (i) is visually closer to the visible image and
has rich texture details, but the infrared target features are not
prominent. Methods (j) to (m) correspond to the fusion results
of the different decomposition levels (between 1 and 4) of the
MDLatLRR method. The results show that with the increas-
ing number of decomposition levels, the salient features are
more enhanced and the detailed information becomes clearer;
however, the artifacts become more obvious. In contrast,
the fused images obtained by methods (e), (g) and the pro-
posed method have better visual quality.

To fully verify the above statement, we selected repre-
sentative images ‘“Kaptein” and ‘“‘marching” for detailed
analysis. The fusion results for the “Kaptein” image are
shown in Figure 7, where the canopy/shrubs and person are
marked with red and blue boxes, respectively, and enlarged
in the analysis. The data in Figure 7 show the following.
There are some white shadows at the edges of the canopy
contour fused by method (c). The fused target by method (d)
is more obvious, but the other information is too blurred; e.g.,
the boundary of the image contour is not clear, and the texture
details are not well preserved. In addition, the sky back-
ground of the fused image is dark, which affects the error in
information acquisition. Method (e) has obvious noise around
the tree canopy. In addition, the fused images of methods
(h), (i), and (j) have significantly less contrast information
than that of the proposed method and have poor visual effects.
The fused images of methods (k), (1), and (m) have clear shrub
texture and prominent infrared features, but obvious artifacts
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appear on the edges of the canopy contours and the figure
contours. However, the proposed method exhibits sharper
shrubs and more distinct lighting at the glass door, showing
good visibility.

The fusion results for the ‘“‘marching” image are shown
in Figure 8. The vehicle/soldiers and trees in the background
are marked with red and blue boxes, respectively, and are
enlarged. The data in Figure 8 show the following. Methods
(e), (), (g), (h) and (j) lead to the loss of the tire texture
details to varying degrees. The contours of the soldiers by
methods (f), (h), and (j) are blurred. In addition, a comparison
of the fusion results of the trees on the hillside shows that the
upper part of the trees fused by method (c) almost blends with
the night sky background of the image, making it difficult to
determine the edges of the trees. The trees fused by methods
(d), (), (h), (1) and (j) exhibit boundaries with the background
of the image, whereas they do not exhibit an advantage in
clearly extracting texture edges between trees. The trees fused
by methods (e), (1), and (m) and the proposed method have a
sharp texture, with the intertwining of tree branches clearly
visible. In summary, the proposed method can effectively
preserve texture detail information and has good performance
in overall image sharpness and contrast.

C. OBJECTIVE PERFORMANCE EVALUATION

Due to differences in visual sensitivity, it is not possible to
compare the advantages and disadvantages of fusion meth-
ods without bias. To evaluate the quality of fused images
more comprehensively and convincingly, the fusion results
of different methods are evaluated objectively and compre-
hensively. Different types of evaluation metrics are selected
from the objective evaluation methods to quantitatively eval-
uate the fusion results of different methods. These metrics
are based on information theory, structural similarity, image
features, and human visual perception, and include infor-
mation entropy (EN) [37], mutual information (MI) [38],
multiscale structural similarity (MS-SSIM) [39], standard
deviation (SD) [40], average gradient (AG) [41], edge-based
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FIGURE 6. Comparison of fusion results from different methods on ten infrared and visible image pairs. (a) Infrared
images; (b) Visible images; (c) ConvSR; (d) GTF; (e) WLS; (f) FEIP; (g) GCF; (h) ResNet50; (i) Bayesian;
(j) MDLatLRR _level1; (k) MDLatLRR _level2; (I) MDLatLRR _level3; (m) MDLatLRR _level4 and (n) the proposed method.

similarity (Qabf) [42], sum of the correlations of differences
(SCD) [43], and visual information fidelity (VIF) [44].

The changes in each metric for the cases with and without
the detail-enhanced layer Dy are analyzed in detail using
objective evaluation methods. The results of the objective
evaluation of Figure 5 are shown in Table 1. As shown
in Table 1, most of the objective evaluation metrics for
the fusion methods with detail-enhanced layer Dy tend to
be higher than those without Dy. To measure the changes,
we calculate the average values of the differences between
the metric values of the cases with and without Dy, as listed
in the last column of Table 1. These average values show that
the metrics of AG, MI, SD, and VIF increase significantly,
indicating that the superposition of the detail-enhanced layer
makes the fused image have rich gradient information (e.g.,
detail and texture) and remarkable contrast information,
improving the visual effect. This is consistent with the
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evaluation by the subjective method, thereby confirming the
contribution of the detail-enhanced layer.

Next, the proposed method and other methods are objec-
tively evaluated and analyzed. Quantitative comparisons of
the eight objective evaluation metrics using ten different
fusion methods on the ten infrared and visible image pairs
are shown in Figure 9.

The higher the values of these eight metrics are, the better
the quality of the fused images. As seen from the summary
of the various metrics in Figure 9, the proposed method is
one of the best in terms of metrics EN, MI, MS_SSIM,
Qabf, SCD, and SD, indicating that the proposed method
can preserve rich and effective information, provides high
contrast, and produces a good overall structural similarity
between the fused image and the source image. The proposed
method is above average in terms of metrics AG and VIF,
indicating that the proposed method can preserve most of the
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FIGURE 7. Comparison of fusion results for the source image “Kaptein” using different methods: (a) Infrared images; (b) Visible
images; (c) ConvSR; (d) GTF; (e) WLS; (f) FEIP; (g) GCF; (h) ResNet50; (i) Bayesian; (j) MDLatLRR_level1; (k) MDLatLRR _level2; (I)
MDLatLRR _level3; (m) MDLatLRR level4 and (n) the proposed method.

FIGURE 8. Comparison of fusion results of the “marching” source image using different methods: (a) Infrared images; (b) Visible
images; (c) ConvSR; (d) GTF; (e) WLS; (f) FEIP; (g) GCF; (h) ResNet50; (i) Bayesian; (j) MDLatLRR level1; (k) MDLatLRR_level2; (l)
MDLatLRR_level3; (m) MDLatLRR_level4 and (n) the proposed method.

TABLE 1. Results of the objective evaluation of cases with and without D¢, respectively.

Vel @ A | ® B | © © | @ D éﬁzﬁagg:
AG 3.563 5.178 3.030 3.907 3.474 4.728 1.577 2.172 1.085
EN 6.868 7.061 6.610 6.862 7.135 7.239 6.443 6.535 0.160
MI 13.737 14.122 13.221 13.724 | 14.271 14.478 12.886 13.069 0.320
MS_SSIM 0.924 0.928 0.973 0.972 0.942 0.945 0.917 0.948 0.009
Qabf 0.461 0.473 0.636 0.633 0.545 0.545 0.495 0.531 0.011
SCD 1.672 1.769 1.666 1.711 1.448 1.621 1.786 1.798 0.082
SD 33.003 37.778 | 34359  41.113 | 37.688  40.810 | 23.827  25.931 4.189
VIF 0.469 0.757 0.609 0.969 0.6053 1.1502 0.413 0.6656 0.361

gradient information (e.g., detail and texture) well and has
good performance in fidelity of visual information.

To accurately give the metric values of the proposed
method, we obtain the average metric values of the ten image
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pairs for each fusion method to comprehensively evaluate
the advantages and disadvantages of the proposed method.
The average values of the objective evaluation metrics for
different methods are shown in Table 2. In Table 2, each
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FIGURE 9. Quantitative comparison of eight objective evaluation metrics using ten different fusion methods on the ten infrared and visible image
pairs.

column corresponds to an objective evaluation metric, and
the values in red and in green are the highest values and
the second highest values of the average values of that metric,

respectively. The average values for the proposed method are
the highest with respect to six metrics (EN, MI, MS_SSIM,
Qabs, SCD, and SD) and the third highest with respect to
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TABLE 2. Average values of objective evaluation metrics for different methods.

Metrics

Methods AG EN MI MS_SSIM Qabt SCD SD VIF

ConvSR 3.245 6.344 12.688 0.906 0.535 1.54 25.441 0.364

GTF 3.292 6.667 13.333 0.822 0.42 0.929 30.079 0.266

WLS 4.448 6.675 13.351 0.938 0.51 1.693 34.01 0.575

FEIP 3.812 6.826 13.652 0.885 0.4 1.616 38.865 0.564

GCF 4.002 6.668 13.336 0.928 0.511 1.693 34.791 0.49

RestNet50 2.454 6.326 12.652 0.888 0.385 1.52 25.244 0.331

Bayesian 2.761 6.331 12.661 0.866 0.447 1.499 27.961 0.26

MDLatLRR_levell 2.673 6.311 12.623 0.903 0.454 1.536 24.861 0.352

MDLatLRR_level2 4.142 6.543 13.087 0.952 0.547 1.612 29.132 0.594

MDLatLRR level3 6.115 6.833 13.666 0.923 0.493 1.613 35.517 1.043

MDLatLRR level4 8.198 7.065 14.129 0.838 0.334 1.55 42.634 1.668

Ours 4.633 7.182 14.363 0.953 0.548 1.720 44.537 0.844

TABLE 3. Average time consumption of different methods when fusing two images of size 256 x 256 pixels.

Methods ConvSR GTF WLS FEIP GCF RestNet Bayesian ]\]/{Dllgstelf}{ ]\}/{Dlléjf;; ]\ngI; 321“:? ]\]ngI;?/LIIA}t{ Ours
Time(s) 40.156 0.495 0.493 0.052 116.514 1.071 0.204 7.697 18.758 29.371 40.131 36.094

two metrics (AG and VIF). Among them, the highest value
and the second highest value of AG and VIF appear in the
decomposition three layers and the decomposition four layers
in the MDLatLRR method, respectively. As we know from
the earlier analysis, an increase in the number of decomposi-
tion levels results in enhanced salient features. The detailed
information becomes clearer, but the artifacts become more
obvious. As the number of decomposition levels increases
to three levels and four levels, the MS_SSIM, Qapf, and
SCD indicators decrease, among which MS_SSIM and Qgpr
have reached poor values. The proposed method performs
remarkably well in terms of the average values of the eight
objective metrics.

In summary, the objective evaluation results are generally
consistent with the subjective evaluation results, and the pro-
posed method has advantages in the richness of informa-
tion, sharpness and fidelity of images, showing good fusion
performance.

D. COMPUTATIONAL EFFICIENCY ANALYSIS
The computational efficiency of the algorithm is generally
evaluated by the time complexity. Therefore, we calculated
the average running time of different methods when fus-
ing image pairs of size 256 x 256 pixels with 10 fusion
operations. All experiments were performed under the same
conditions. The results of the running time are shown in
Table 3.

According to Table 3, the GTF, FEIP, RestNet50 and
Bayesian methods show better calculation efficiency than
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other fusion methods, but the fusion performance is not
the most satisfactory. The running times of GCF, ConvSR,
MDLatLRR and the proposed method are relatively long.
Among them, the GCF method is the most time consum-
ing. The ConvSR method is based on the improvement in
the sparse representation algorithm; thus, the algorithm effi-
ciency is relatively low. The running time of the MDLatLRR
method is closely related to the decomposition level. As the
number of decomposition levels increases, the running time
of the algorithm becomes increasingly longer. The proposed
method is based on latent low-rank decomposition. It is
acceptable that the proposed method produces superior fused
images at the cost of more running time than other fusion
methods.

V. CONCLUSION

In this paper, an infrared and visible image fusion method
based on LatLRR nested with RGIF is proposed. The method
uses LatLLRR with a denoising capability as an image decom-
position tool to obtain low-rank sublayers and saliency sub-
layers. The low-rank sublayers are decomposed at multiple
scales using RGIF to acquire the detail-enhanced layer. The
IVSM-GIF algorithm and an algorithm for adaptive weight-
ing of regional energy features based on Laplacian pyra-
mid decomposition are used to fuse the low-rank sublayers
and the saliency sublayers. The fusion performance of the
proposed method is comprehensively evaluated using both
a subjective evaluation method and an objective evaluation
method containing eight evaluation metrics. The contribution
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of the detail-enhanced layer to the proposed method is ver-
ified first, followed by a comparative analysis with other
state-of-the-art methods. The experimental results show that
the proposed method outperforms other representative fusion
methods in terms of visual quality and objective evaluation,
as demonstrated by achieving the highest average values in
six objective evaluation metrics (EN, MI, MS_SSIM, Q,pf,
SCD, SD). The fused image obtained by the proposed method
not only preserves the important information of the source
image but also has high sharpness.
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