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Due to complications of the off-axis three-mirror anastigmat (TMA) telescope, each optical element in the off-
axis TMA telescope is introduced with theoretical eccentricity and tilt. Moreover, the introduction of freeform
surfaces and other optical elements with complex surface features generally causes the initial alignment accuracy
of the optical path to be low. A large initial alignment error amplifies the sensitivity of the misalignment calcula-
tion accuracy to the measurement error of the Zernike coefficient, resulting in difficulty obtaining convergence
results for a computer-aided alignment algorithm. Considering the above issues, the alignment sensitivity of each
component in the optical path is analyzed in this. The large conditional number of the sensitivity matrix results
in poor algorithm robustness. Thus, an adaptive damping factor least-squares algorithm model is proposed and
derived to improve the efficiency of the classical least-squares algorithm. A method for piecewise optimization of
the damping factor is also deduced. Experiments based on a 0.6 m off-axis TMA telescope verify the effectiveness
of the algorithm. Simulation and integration experiments show that the proposed method can reduce the accuracy
requirements of the initial alignment and improve the adaptability of Zernike coefficient measurement noise.
The alignment procedure is carried out for three iterations, and the average of the five field-of-view wave aberra-
tion values is enhanced from 2.11 (RMS; A = 632.8 nm) to 0.09) (average). The improved algorithm can solve
the large initial alignment error of a nonsymmetrical off-axis reflective optical system with a freeform surface as
well as the problem of the low success rate of the misalignment value due to low Zernike coefficient measurement
accuracy. © 2021 Optical Society of America

https://doi.org/10.1364/A0.413533

1. INTRODUCTION

Space astronomical telescopes tend to be developed nowadays
with an increased aperture and field of view (FOV), so in design-
ing an optical system, it is becoming increasingly complex to

misalignment of freeform surfaces or other complex surface
components is located in a non-pupil position. Therefore, the
sensitivity matrix algorithm has greater flexibility than an algo-
rithm based on NAT. However, considering that the sensitivity
matrix algorithm simplifies the complex mathematical rela-

realize the optical survey while also achieving increased resolu- ' : e ¢ |
tionship between the misalignment and the Zernike coefficient

tion and limiting the detection depth [1-3]. The optical path of
the telescope is further complicated in the off-axis three-mirror
anastigmat (TMA) system and has evolved into a nonsymmetric
off-axis optical path with a large tilt and eccentricity between the
optical axes of each optical surface in the path [4]. The introduc-

of the wavefront to a linear relation [7], the nonlinear error of
the algorithm is large when the initial alignment procedure
introduces an excessive residual misalignment. This character-
istic has the effect that a small amount of measurement noise

tion of nonsymmetric optical surfaces, such as freeform surfaces,
creates challenges for the optical alignment [5,6]. The optical
integration steps for such telescopes generally include the initial
placement of components and the subsequent computer-aided
alignment (CAA). In solving the misalignment using the nodal
aberration theory (NAT), a sensitivity matrix algorithm based
on the numerical proxy model does not need to consider the
analytical expression in the mathematical model when the
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of the Zernike coefficient in the CAA procedure will cause the
iterative process to have difficulty converging, resulting in a low
probability of obtaining a global optimized solution [8].

Many studies on the numerical proxy model are carried
out to calculate the misalignment. The CAA experiment and
verification procedure were carried out on the ground before
the Hubble space telescope was repaired in orbit to ensure the
success of the on-orbit alignment. This work was completed by
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J. P. McGuire of the Jet Propulsion Laboratory of the California
Institute of Technology and G. F. Hartig of the Space Telescope
Science Institute [9-12]. The company REOSC-SFIM has
conducted engineering and experimental research for the
CAA technology of a high-resolution space telescope [13].
Velluet ez al. used the detection results of the Shack—Hartmann
wavefront sensor to successfully eliminate the eccentric aber-
ration caused by component displacement [14]. The CAA
technology also enabled the off-axis TMA system to be devel-
oped, from theoretical design to practical application. The Ball
company had made efforts in vain to realize the initial alignment
procedure (wave aberration reaches approximately 1 A) of its
off-axis TMA telescope on the Quick Bird satellite during the
integration steps. However, with the help of the CAA technol-
ogy, the improvement of the wave aberration from 1 A to 0.05
A (RMS; A = 632.8 nm) only took a week [15]. Yang and col-
leagues of CIOMP have applied the sensitivity matrix algorithm
to the alignment of a TMA telescope with a focal length of 6 m
[16,17]. They found that in the sensitivity matrix algorithm,
the mathematical model is greatly affected by the nonlinearity,
and the convergence speed is slow when applied to an off-axis
TMA system, with large initial misalignment. The installation
and the analysis module integrated by the well-known optical
design software Code V also use the sensitivity matrix algorithm.
However, some studies show that the software has low accuracy
when the misalignment of optical components is larger than the
design tolerance because of the remarkable nonlinear relation-
ship between the Zernike coefficient characterizing the system’s
wave aberration and the amount of misalignment. Compared
with an off-axis TMA system, a large-diameter nonsymmet-
ric off-axis optical system is difficult to integrate and align
[18,19]. Considering this issue, alignment technology based
on the NAT was proposed and practically applied. However,
a freeform surface is extremely complicated when located at a
non-pupil position of an optical system, and an algorithm for
solving the misalignment using the above NAT ideas is difficult
to construct [20]. At the same time, there is no valid report (to
our knowledge) of the use of the sensitivity matrix method in a
CAA procedure when aligning a nonsymmetric off-axis optical
system with a freeform surface.

The current initial positioning residual component errors
of components are mostly based on the principle of the trans-
fer of mechanical characteristics of optical components. The
transmission relationship between mechanical characteristics
and optical parameters is generally measured using the self-
collimating theodolite or laser tracker. The initial alignment
of the relative positions and the angle between optical compo-
nents is based on the above measurement results. For an optical
telescope with a scale of 5 m?, the existing method introduces a
misalignment residue with an eccentricity of 0.5-1 mm and a
tile 0of 0.05° [21]. If the relative error between the optical surface
created by optical manufacturing and the mechanical references
of the components (such as off-axis amount and position) is
considered, the above initial positioning error also increases by
1-2 times [22]. In addition, for a nonsymmetric off-axis optical
system with a freeform surface, the surface does not have the
traditional rotational symmetry center due to the introduction
of eccentricity and tilt between the optical axes of the surface
in the path by optical design [23,24]. The above factors further

Research Article

reduce the accuracy of the initial placement procedure, which
brings great difficulties to the subsequent CAA step and greatly
reduces the accuracy of the misalignment calculated by using the
traditional sensitivity matrix algorithm.

Recent studies indicate that considering the measurement
noise of the Zernike coefficient, convergent results under the
existing accuracy of the initial placement procedure for a non-
symmetric off-axis telescope are difficult to obtain by using a
misalignment solving algorithm directly based on the sensitivity
matrix. This paper addresses the above issues, analyzes the rea-
sons for the large error in the calculation of the misalignment
of a nonsymmetric off-axis optical system, and improves the
algorithm accordingly. The piecewise solution and the injection
of damping factors are proposed to keep the algorithm from
falling into a local optimal iteration error. Then the improved
algorithm is used in the alignment of a nonsymmetric off-axis
optical system with an aperture of 0.6 manda1.1° x 1.1° FOV.
The improvement in the Zernike coefficient measurement error
tolerance and the effectiveness of the algorithm are verified
through simulation and experiment.

2. INTRODUCTION OF THE NONSYSMMETRIC
OFF-AXIS TELESCOPE

A nonsymmetric off-axis reflective optical telescope with a
focal length of 6 m, an aperture of 0.6 m, and a 1.1° x 1.1°
FOV is used as an example to discuss the misalignment solving
algorithm.

The optical system is composed of a primary mirror (M1), a
second mirror (M2), and a third mirror (M3). This telescope is
designed for the verification of the key technology of the space-
based optical survey. Itis complicated due to the classical off-axis
TMA optical path intended to expand the FOV in the meridio-
nal direction and reduce aberration. The optical design rotates
and translates the optical axis of M2 and M3 relative to M1.
M3 in the non-pupil position is designed to become a freeform
surface fitted by Zernike coefficients. In accordance with the
optical design parameters, the optical path and the wavefronts of
five typical FOVsare shown in Figs. 1 and 2, respectively.

The axis eccentricity is 29.0464 mm between M1 and M3
and 8.2611 mm between M1 and M2. The tilt of the axis
between M1 and M2 is 1°. The off-axis amounts of M1, M3,
and M2 are —460, 40, and —70 mm, respectively. A local
coordinate system is established to facilitate the transfer of
the calculated misalignment to the adjustment of the optical

Third mirror
(m3)

Primary mirror
(M1)

Focal plane

Entrance
pupil

Second mirror
(m2)

Fig. 1.  Schematic of the optical path of the nonsymmetric off-axis
telescope defining the coordinates.
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Distribution of the aberrations of wavefront, coma (C7/8), and astigmatism (C5/6) in each FOV without misalignment.

components. The origin of the coordinate system is the vertex
of each optical surface relocated to the geometric center of the
components. The z-axis vector is parallel to the optical axis
direction of each surface. The x-axis vector is defined as the
meridional direction. According to the right-hand rule, the local
optical coordinate systems of M1, M2, and M3 can be deter-
mined separately: OPM, OSM, and OTM, respectively. The
misalignment is defined in this paper as the scalar deviation of
thelocal coordinate system of each optical surface from the theo-
retical value. Figure 2 shows the exit pupil aberrations and the
corresponding Fringe Zernike coefficients (hereinafter referred
to as Zernike coefficients) of five typical FOVs (without FOV 0)
when the optical system has no misalignment (C4, C5, C6, and
C7 represent Astig x, Astig y, Coma x, and Comayy, respectively).
The values are shown in Table 1 without considering the surface
profile error of the three mirrors.

Table 1. WFE (RMS) and Zernike Coefficient C4/5 and
C6/7 of Five Typical FOVs without Misalignment

Fo F1 F2 F3 F4

WEFE 0.0371  0.0575 0.0575 0.0452  0.0575
C4/5 perage -0.0281 -0.0795 0.0131 -0.0498  0.0015
C6/7 syerage 0.0320  0.0402 0.0478  0.0236  0.0170

The surface shape errors of M1, M2, and M3, measured using
the interferometer and compensators, are added to the optical
design, and the wavefront aberration of each FOV of the optical
system is fitted again. The simulation results of the C5/6 and
C7/8 terms of the Zernike coefhicient and the RMS distribution
in each FOV are shown in Fig. 3.
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Fig.3. Distribution of the aberrations of wavefront, coma (C7/8), and astigmatism (C5/6) in each FOV with the addition of surface shape errors.
(a) Distribution of the x- and y-direction astigmatism (C5/6) in each FOV with the surface shape errors of the mirrors, (b) distribution of the x- and
y-direction coma (C7/8) in each FOV with the surface shape errors of the mirrors, (c) distribution of the wavefront aberration (RMS values) in each
FOV with the surface shape errors of the mirrors.

3. SENSITIVITY ANALYSIS OF MISALIGNMENT steps, as well as the improvement of the algorithm for solving
The alignment strategy and steps should first be determined to tbe m.lsahgn.ment vah.le. Lf.:t the three—.dl.m ensional reloc;?-
tion (including two-dimensional eccentricity and along-axis

complete the integration process of the nonsymmetric off-axis
telescope shown in Fig. 1. The misalignment sensitivity order
of each single surface and the coupling relationship between
the high-sensitivity misalignment dimensions can provide
basis for the determination of the alignment strategy and

misalignments) between the local coordinate systems of the
surfaces be represented by XD, YD, and ZD. The misalign-
ment of the three-dimensional rotation direction (including
two-dimensional tilt and one-dimensional roll direction mis-
alignment) around the axes is represented by XR, YR, and ZR.
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Fig.4. Stepsand methods for the sensitivity analysis of misalignment.D-WFE, decrease of the wave-front error.
Table 2. Threshold Ranges of Misalignment for the The simulation results in Fig. 5 show that M2 in the off-axis
Nonsymmetric Off-Axis Telescope Used in the optical system has the highest sensitivity to the x-direction
Sensitivity Analysis misalignment, and M 1’s sensitivity to the z-direction misalign-
XD YD 7D XR YR 7R ment is the second highest. M 1’s sensitivity to the misalignment
- - - in the x-tilt and y-tilt directions and M1’s sensitivity to the
ﬁ; igz irmn igz zrmn igg 22 ii:g,, ii:g,, iizg,, y-direction misalignment are also relatively high. Considering
M3 :I:O.S nm ﬂ:O. 5 mm :I:O.S mm +180"7 +£180" +180" that the misalignment sensitivity of M1 is relatively high and

The input threshold used in the misalignment sensitivity analy-

sis comes from the mean square sum of the two error sources.

One part of the error comes from the residuals of the initial

placement procedure with the current method, and another part

of the error comes from the relative error between the optical

surface of the optical components and the mechanical body.

The thresholds of misalignment are sh

own in Table 2, and the

sensitivity analysis method of misalignment is shown as a block

diagram in Fig. 4.
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the volume and mass of M1 are relatively large, adjustment
with high precision is difficult. Therefore, M1 should be used as
the alignment reference, and M2 and M3 should be aligned as
compensators to correct misalignment wavefront aberrations.
In addition to M1, M2 also has high sensitivity to the misalign-
ment in the z direction. Moreover, the misalignment sensitivity
values of the rotation of M2 around the x axis, the rotation of
M3 around the x axis, and the rotation of M2 around the y
axis are relatively high. Therefore, the coupling analysis is per-
formed on the basis of the univariate misalignment sensitivity
analysis. The coupling analysis group includes M2 ZD-XR,
M2 ZD-YR, and M2 XR-YR, as well as M2 ZD-M3 XR, M2
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Fig.5. Misalignmentsensitivities of M1, M2, and M3 in different dimensions are displayed by multiple sets of curves. (a) Sensitivity analysis of the
position errors of M1, M2, and M3, (b) sensitivity analysis of the tilt errors of M1, M2, and M3.
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Fig.6. Couplinganalysis results between dimensions with high sensitivity to misalignment are shown as surface graphs.

XR-M3 YR, and M2 YR-M3 XR. The results of the coupling
misalignment sensitivity analysis are shown in Fig. 6.

As shown in Fig. 4, the numerical relationship between the
misalignment of each freedom dimension of each optical com-
ponent and the exit pupil wavefront error (WFE; average value)
of five typical FOVs is determined. Based on this, the sequence
of the univariate of misalignment sensitivity is determined.
Two or more misalignment dimensions with high sensitivity
are combined. The coupling relationship between the coupling
misalignment and the aberration degeneration of the exit pupil
in five typical FOVs is obtained. The above numerical relation-
ship is established on the basis of the mathematical-optical
integrated simulation. The input misalignments of the simu-
lation come from the normal distribution of random numbers
corresponding to each misalignment dimension of the thresh-
olds (Table 2). Based on a Monte Carlo simulation, the average
value of the WFE degradation of the five FOVs corresponding
to the 30 range can be obtained. The Monte Carlo simulation
takes the boundary value corresponding to the 30 range as the
simulation result of the univariate and the coupling analysis.

The univariate analysis results are shown in Fig. 5. The
abscissa represents the misalignment thresholds, and the ordi-
nate is the average value of the WFE (RMS) degradation in five
typical FOVs. The misalignments entered in the simulations
come from 500 sets of randomly distributed misalignments
that are normally distributed within the thresholds of each
dimension in Table 2. The simulation algorithm calculates the
average value of the aberration degradation of each FOV, and
the misalignment—sensitivity curve is constructed on the basis of
the above calculation.

The misalignment sensitivity analysis in Figs. 5 and 6 can
guide the establishment of a CAA model of the optical sys-
tem. First, in the case where M2 is misaligned along the z axis,
when the other dimensions of M2 or M3 are misaligned, the

misalignment sensitivity of M2 along the z direction does not
change remarkably. This characteristic indicates that the cou-
pling degrees of M2’s misalignment in the z direction and other
dimensions are extremely low, which leads to a reduction in
the condition number of the sensitivity matrix. Second, when
misalignments of M2 are present in the x direction or y direc-
tion, the amount of aberration reduction in each FOV of the
system exhibits quadratic surface distribution characteristics.
In addition, a coupling between the x-direction rotation of M2
and the x-direction rotation of M3 is observed. Third, a cou-
pling between the misalignment of M3 around the x-direction
rotation and the misalignment of M2 around the y-direction
rotation is observed. These findings indicate that the condition
number of the sensitivity matrix composed of the abovemen-
tioned misalignments with a coupling relationship is better.
Finally, the coupling between the z-direction misalignment of
M2 and the eccentricity in the x direction and y direction is
weak and can be supplemented by the eccentricity in the above
two directions. The same is true for M3.

4. IMPROVEMENT OF THE ALGORITHM FOR
SOLVING THE MISALIGNMENT

Based on the analysis of the misalignment sensitivity, the clas-
sic sensitivity matrix—least-squares algorithm [25,26] can be
improved. The mathematical model of the function is based
on the Taylor function multivariate theorem. The wavefront
aberrations of the jth (j =1 —5) FOV of the optical system
can be expanded into the Zernike coefficient polynomial form.
Therefore, the 7 item Zernike coefficient of the j FOVs can be
expressed as
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W(p, 0) = C!/(A)=C/(B+ Am,)

?

G W 0 ;
=y = ZAm— C/(B) + Ry (AM).

2! T ox !

p=0 g=1 1
(1)
InEq. (1),

|A| = (x1, %2, X3+ - - %) = | B| + Am,. (2

Matrix | A| represents any condition of misalignment, which
includes the efficient degrees of freedom of misalignment of all
the optical surfaces. Matrix | B| in Eq. (2) represents the position
and the angle of each dimension of each component in the opti-
cal path under the local coordinate system in the optical design
state:

| B| = (x01, X025 %03 * * * X0n)- (3)

In each procedure, the misalignments corresponding to the
dimension are separately introduced under the local coordinate
system of each optical component. The vector AM represents
the misalignments of 7 degrees of freedom corresponding to
every alignment procedure:

AM= (Amy, Amy, Ams - - - Am,,). (4)

Ry, (A M) is the remainder term. The linear approximation of
Eq. (1) and the first-order expansion (i.e., order p = 1) are per-
formed, and the following is obtained:

W(p,6) = C/(B+ Am,) = C!(B)
Am,— | C/(B) + Ry (A
+ ; mqaxq z( )+ N. ( M)

_cl ~ ., 9Cl(B)
_Ci(B)+;Amq P (5)

Equation (5) can be transformed into a matrix form:

CH(B+ Am,) Cl(B)
C/(B+ Am,) C/(B)
acl(B) acl(B) aCl(B)
dax1 9x) T T ok, Aml
: R Amy
| ac/s) acie ac! () . |- @
dx1 ED) U GES ’
Am,

Cl-j (B) can be obtained in accordance with the optical design.

C! (B + Am,,) can be measured in each FOV by using a com-
mercial interferometer. Based on the measured values, an
overdetermined system of equations for solving the misalign-
ments (Am,) can be established. The evaluation function ()

Vol. 60, No. 8/ 10 March 2021 / Applied Optics 2133

can be defined for the system of equations. When the residual
sum of the squares of each aberration of the system is the small-
est, the wavefront aberration results of the optical system are
closest to the theoretical design value. Therefore, the matrix
form of the evaluation function and its least-squares solution
can be expressed as

Zn j , \’
n(Am,) = Z‘ ([‘Sc(;x(B)} [Am,]— AC/(B+ A) — 8{) ,
(7

Vn(Am,) =0. @8

i=1

The prerequisite for the convergence of each dimension of the
misalignments calculated using Eq. (8) is the square matrix in its
normal equation, which is nonsingular and is given by

. T .
8C/(B) 8C/(B)
. (9)
8x,, 8x,
However, according to the sensitivity analysis results in
Section 3, Eq. (8) is difficult to solve, because within the range
of misalignment (Table 2), a large nonlinearity is observed

between the wavefront aberration deterioration and the amount
of misalignment (Fig. 5). The existence of the measurement

error (5{ ) of the Zernike coefficient makes it difficult to obtain
the convergence solution of Eq. (8). The difference in the sen-
sitivity between the misalignments of various dimensions is
large (Fig. 5), resulting in a large condition number of the sen-
sitivity matrix and thus an ill-conditioned matrix. Therefore,
the misalignment solving equation constructed on this basis
falls into the local optimal solution and cannot obtain global
convergence. Finally, clear coupling characteristics are observed
between the misalignment dimensions (Fig. 6), which makes
it difficult to obtain convergent solutions that make the wave-
front aberrations return to the optical design result under some
misalignment combinations of Eq. (8).

After adding the damping factors (P, a vector quantity) to
the process of the solution result [Am,,], the evaluation function
can be improved to the form of Eq. (10) below. After adding the
vector quantity of damping factors, the equation can be pre-
vented from prematurely diverging during the iteration process,
the condition number of the equation can be improved, and the
amplification effect of the measurement noise of the Zernike
coefficient on the nonlinear equivalent error can be alleviated:

Z, j ) ) ?
n(Am)=Y" ([Si (B)} [Am,] = AC/(B+A) —6!)
i=1 X
+ PiLAm, [ Am, 1.
(10)

Equation (10) is integrated into Eq. (8) to calculate the
misalignments in each dimension. However, the simple intro-
duction of damping factors into the equations for solving the
misalignment can also lead to other problems. For example, if
the damping factor is large, the step size of the misalignment
calculated using the equations will be small, and the small mis-
alignment value calculated in each step is easily suppressed by
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Fig. 7.  Block diagram representing the algorithm of the damping
factor sequence corresponding to different misalignment intervals.

the cross talk error of the adjustment stage. This phenomenon
greatly reduces the efficiency and the success rate of the align-
ment procedure. Moreover, if the damping factor is small, the
problem of the equations falling into the local optimal solution,
arising from the measurement noise of the Zernike coefficient,
cannot be eliminated when the initial misalignment is large.
Therefore, the idea of a piecewise adaptive damping factor
is proposed to solve this issue. The calculation algorithm of the
adaptive damping factor sequence based on the singular value
decomposition (SVD) method and Monte Carlo simulation
is shown in Fig. 7. The singular value matrix without Zernike
coefficient measurement noise is obtained first, and the damp-
ing factor of the Zernike coefficient without measurement
noise is obtained simultaneously. In the second step, the values
A/10, A/15, A/20, A/25...)1/100 [8; in Equation (7)] are
used as the thresholds of the measurement noise of the Zernike
coefficient, and the measurement noise is normally distributed

Singular value
decomposition (SVD)
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in the simulation. An exhaustive iterative algorithm is used to
build loops (green line). The calculation result of the misalign-
ment of a single iteration is no less than one-third of the total
misalignment (based on the analysis results of the misalign-
ment sensitivity), which is used as the evaluation standard for
determining whether the damping factor is appropriate in the
loop algorithm. The combined sequence of damping factors
corresponding to different Zernike coefficient measurement
noise thresholds and initial alignment errors can be calculated.

Based on the algorithm shown in Fig. 7, an improved least-
squares algorithm for the piecewise adaptive damping factor
injection is proposed. The block diagram of the misalignment
calculation algorithm based on the segmented injection of the
damping factor sequence is shown in Fig. 8. The algorithm
and steps for solving equations based on the damping factor
sequence are shown in this figure. The key idea of the adaptive
search algorithm for damping factors is to segment the mis-
alignment threshold interval on the basis of the analysis results
of the misalignment sensitivity. Under different subintervals
and Zernike coefficient measurement noise conditions, a series
of damping factors that maximize the convergence efficiency
of Eq. (9) is determined. Thus, a damping factor sequence
corresponding to the segmented misalignment intervals is
obtained and is used for the alignment procedure. Misalignment
intervals are based on reduction in the wavefront aberrations of
each FOV.

In the alignment experiment, when the distribution interval
of the random noise of the Zernike coefficient measurement is
tested, different damping factors can be injected into the algo-
rithm in accordance with the value of the misalignment solved
previously to quickly obtain convergent calculation results at
different misalignment intervals. The 0.6 m nonsymmetric

Generate random number group (Gaussian
distribution) representing measurement noise
of the Zernike coefficient

‘ Generate

misalignment in

Sensitivity|
matrix

effective dimensions

with the given

Optical design model and the low- order
threshold - P 9

Zernike coefficient

WFE in typical FOVs

et
Compare the obtained value with

the injected value of g
or more than the threshold

number of iterations

Statistical analyses of the

!

DLSM Algorithm (PO0) [ Re-inject |
to solving misalignmem<—| Inject
‘ Damping factor: Generate a
Calculate an over- sequence integer subinterval of
determined system of distribute in the damping
equations of [1,+°<]&[0,1] factor

misalignment in
different dimensions

iterations |

number of I‘/ Comparison of the number of
\ iterations with given threshold

Compare the WFE in
typical FOVs with the
compensation result

No
. Search in a subinterval within | |
previous damping factor

Output the sequence of damping factors (Pn)
corresponding with threshold value of misalignment

Fig. 8.

ment intervals.

Functional block diagram expressing the adaptive analysis algorithm of the damping factors sequence corresponding to different misalign-
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Table 3. Singular Value Matrix and Damping Factor Sequence Corresponding to Different Zernike Coefficient
Measurement Noise Values and Different Misalignment Thresholds (A = 632.8 nm)

Initial Noise of Zernike Damping
Misalignment Coefficient Singular Value Matrix (Diagonal Matrix) Factor
SMXD/ #40.5 mm 0 0.035 0.036 0.139 0.139 3.776 4.999 1.854 1.263 0.512 0.109 0.05
SMYD/ =+0.05° A/10 0.035 0.036 0.138 0.138 0.537 0.272 0.053 0.036 0.014 0.003 0.61
SMZD A/20 0.035 0.036 0.138 0.138 1.285 0.759 0.157 0.105 0.042 0.009 0.35
SMXR/ A/40 0.035 0.036 0.139 0.139 2.490 2.007 0.476 0.320 0.128 0.003 0.21
SMYR A/60 0.035 0.036 0.139 0.139 3.107 3.084 0.841 0.566 0.228 0.048 0.15
SMXD/ #40.1 mm 0 0.035 0.036 0.138 0.138 3.773 5.000 1.854 1.263 0.512 0.109 0.05
SMYD/ :I:0.0ldeg A/10 0.035 0.036 0.138 0.138 0.736 0.387 0.077 0.051 0.021 0.004 0.55
SMZD A/20 0.035 0.036 0.138 0.139 1.588 1.005 0.213 0.142 0.006 0.012 0.32
SMXR/ A/40 0.035 0.036 0.139 0.139 3.107 3.084 0.841 0.566 0.228 0.048 0.15
SMYR A/60 0.035 0.036 0.139 0.139 3.776 5.000 1.854 1.263 0.512 0.109 0.12
off-axis telescope is used as an example of the damping factor Table 4. Misalignment Threshold Range for the

sequence calculation. The misalignment of each dimension,
listed in Table 2, is used as the initial alignment condition.
The singular matrix is calculated when the measured noise of
the Zernike coefficient is A /10, A/20, A/40, 1/60. The cor-
responding damping factor of the first iteration is shown in
Table 3. SMXD represents the eccentricity of M2 in the x direc-
tion, SMYD represents the eccentricity of M2 in the y direction,
SMZD represents the defocus of M2 in the z direction, SMAR
represents the tilt of M2 around the x axis, and SMBR represents
the tilt of M2 around the y axis.

5. SIMULATION EXPERIMENT

A nonsymmetric off-axis system with a diameter of 0.6 m
(Fig. 1) is used as the calculation example for the simulation
experiments to verify the abovementioned misalignment calcu-
lation model. The alignment reference during the integration
process is M1. The stability error of M1 is ignored during the
alignment procedure.

Through the initial alignment step, the initial conditions of
M2 and M3 have position and angle errors in the local coordi-
nate system (Table 4). The Monte Carlo simulation is carried
out within the misalignment thresholds given in Table 4. A total
of 300 sets of normally distributed random numbers are gen-
erated within the misalignment thresholds of each dimension
of M2 and M3, representing 300 random misalignment condi-
tions in the five dimensions of the two mirrors separately. After
each simulation program is injected, the wavefront aberrations
of the five characteristic FOVs and the corresponding first nine
Zernike coefficients are extracted. The A/20 (normal distribu-
tion) measurement noise is randomly added to the extracted
Zernike coefficients. Each parameter is injected into Eq. (10)
separately. After several simulation iterations, the convergence
results of the misalignment in each effective dimension and the
corresponding wavefront aberrations (average) can be obtained.
The results of the simulated alignment are shown in Fig. 9.

Figure 9(a) shows the misalignment correction results for
M2 and M3. The abscissa is the randomly generated misalign-
ment of the normal distribution, and the ordinate represents
the misalignment of M2 and M3 obtained using the improved
algorithm. The red scatterplot indicates the regression of the
misalignment obtained using the adaptive damping factor
least-squares algorithm model (DLSM). The blue scatterplot

Optical Components Introduced in the Simulation
Experiment Setup

XD YD 7D XR YR
M2 4+0.5mm £0.5mm #+0.5mm =£360" +360”
M3 4+0.3mm £0.3mm #0.3mm £360" +360”

represents the results obtained by the classical least-squares
algorithm model (LSM).

Figure 10 shows the corrected results of the wavefront aber-
rations of five FOVs after alignment. The ordinate represents
the average wavefront aberrations of each FOV (A = 632.8 nm),
and the abscissa represents the number of simulations. The red
scatterplot indicates the average value of the wavefront aberra-
tions in the case of the 10-dimensional random misalignments
of M2 and M3 after they were corrected using the DLSM. The
green scatterplot indicates the average value of the wavefront
aberrations of the five characteristic FOVs after being corrected
using the LSM with the same order of Zernike coefficient
measurement noise.

Figure 11 shows the number of iterations corresponding to
the case of using a single damping factor with the Zernike coef-
ficient measurement noise (represented by the red scatterplot,
Z = 0). The ordinate represents the wavefront aberrations, and
the abscissa represents the number of iterations. The scatterplots
in other colors indicate the number of iterations for differ-
ent damping factors. The correction results of the wavefront
aberrations are shown in the ordinate.

The simulation results [Fig. 9(a)] show that the Zernike
coefficient measurement noise has an increased effect on the
accuracy and the convergence of the least-squares algorithm due
to the high sensitivity of M2 (Fig. 5). Compared with the LSM,
the piecewise DLSM is less disturbed by the Zernike coefficient
measurement error. The simulation results in Fig. 9 show that
the solution results obtained using the DLSM algorithm have
high convergence. The simulation results in Fig. 9(b) reflect
the physical basis of the misalignment calculation model, that
is, through mutual compensation between the positions and
the angles of the optical components. The system wavefront
aberrations are corrected to the design result. The simulation
results in Fig. 9(b) show the significant difference between the
sensitivity of M3 and that of M2. The two-dimensional eccen-
tricity and the misalignment along the axis of M3 can still be
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Fig.9. Simulation results for the misalignment correction in each efficient dimension of M2 and M3. (a) Misalignment correction results of M2,
(b) misalignment correction results of M3. SMXD represents the eccentricity of M2 in the x direction, SMYD represents the eccentricity of M2 in
the y direction, SMZD represents the defocus of M2 in the z direction, SMAR represents the tilt of M2 around the x axis, and SMBR represents the
tilt of M2 around the y axis. TMXD represents the eccentricity of M3 in the x direction, TMYD represents the eccentricity of M3 in the y direc-
tion, TMZD represents the defocus of M3 in the z direction, TMAR represents the tilt of M3 around the x axis, and TMBR represents the tilt of M3
around the y axis.

compensated by M2. Therefore, the residual misalignments that obtain a convergent solution under similar noise and initial con-
need to be corrected for M3 that are calculated using the DLSM ditions. The system wavefront aberrations are still sensitive to
are extremely small. However, the classical LSM cannot easily the two-dimensional tilt misalignments of M3 (corresponding



Research Article

2
© LSM
= « DLSM
N !
315 . -
s . * oo
T T az Y -
S
)
S
Ve
[
[@)]
©
[0)]
>
<
O e . "
0 100 200 300

Simulated number (unit)

Fig. 10.  Correction results for the wavefront aberration of each
FOV (average value) after compensation adjustment.

14
2120t e ..,
8 . . .....00-
IL1
-08
(o] LI
2] . * .
= 0.6 .
o .
% .
E0.4 . . R
g ’ e g3
<02 ) i . ] s .
....:l.'nto‘
0 i
0 5 10 15

Alignment number (unit)

Fig.11. Simulation results for the relationship between the number
ofiterative adjustments and the efficiency of the alignment.

interferometer

W

Vol. 60, No. 8/ 10 March 2021 / Applied Optics 2137

to the simulation results in Fig. 5). When the two-dimensional
misalignments exceed a certain range, completely compen-
sating through the correction of M2 is difficult. Compared
with the least-squares algorithm, the convergence of the tilt
misalignment of M3 that is calculated using the DLSM is
also relatively high. Figure 10 shows that the wavefront aber-
rations in the square FOV are effectively corrected using the
improved algorithm under most circumstances. The average
value of the wavefront aberrations can be corrected to 1. /12 from
approximately 24 (RMS; A = 632.8 nm). Figure 11 shows that
compared with the classical least-squares algorithm, the model
that includes injecting different damping factors into different
misalignment intervals results in different correction effects.
With the injection of a series of appropriate damping factors, the
efficiency and accuracy of the solution of the misalignment can
be evaluated.

In summary, compared with the classical algorithm of least
squares, the improved algorithm solves the misalignments of
each efficient dimension of M2 and M3 with high accuracy
and a high success rate. Figures 10 and 11 show that in most
cases, the misalignment can be accurately resolved and can help
compensate the wavefront aberration over the whole FOV.

6. ALIGNMENT EXPERIMENT

The 0.6 m nonsymmetric off-axis telescope is used in integra-
tion and alignment experiments to verify the above simulation
results and algorithms. The experimentsite is shown in Fig. 12.
M1 is connected to a fixed bracket as an alignment ref-
erence. M3 and M2 are both fixed on multidimensional
adjustment stages. A PI P-850 Hexapod adjustment stage is
used for adjustment and positioning to improve the adjust-
ment resolution and positioning accuracy of M2. A calibration
device is used to adjust the consistency of the motion coor-
dinate system of the adjustment stage and the local optical
coordinate system of M2 and M3. The experiment uses a flat
mirror with a diameter () of 700 mm and a surface accuracy
of A/50 (RMS; A =632.8 nm). The experiment also uses a
4D AccuFiz interferometer to measure the system’s exit pupil
aberrations. The experiment uses a Leica 6100 autocollimating
theodolite to determine the testing FOV. The experimen-
tal optical path is a typical collimated interference optical

primary mirror

third mirror

collimating
theodolite

Fig.12. Installation and alignment experiment site of the 0.6 m off-axis reflection optical system.
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path. The initial rough positioning step uses multi-CGH experiment site and the composition of the experimental optical
(computer-generated hologram) for the direct transmission path.

optical reference, which improves the initial positioning Before the CAA procedure begins, the Zernike coefficient
accuracy of the off-axis system. Figure 12 shows the CAA measurement noise of the laboratory needs to be obtained.

-
b4 ~’.~~:
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FOV3.RMS =0.134 A FOV5, RMS = 0.100 A FOV4, RMS = 0.095 A
(©)

Fig.13. Measurement results for the wavefront aberrations in six FOVs after three iterative alignments (A = 632.8 nm). (a) Measurement results
after the initial alignment, (b) measurement results after the first iterative alignment, (c) measurement results after the second iterative alignment.
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Fig. 14.  Iterative convergence of the RMS and the Zernike coefficients in six typical FOVs with the number of alignment iterations.

(a) Convergent tendency in FOV 1, (b) convergent tendency in FOV 0, (c) convergent tendency in FOV 2, (d) convergent tendency in FOV 3,

(e) convergent tendency in FOV 5, (f) convergent tendency in FOV 4.

Table 5. Relationship between the Measurement
Error of Different Zernike Coefficients and the
Misalignment Condition and Corresponding Damping
Factor Sequence

Noise of Zernike Damping Factor Sequence
Coefficient (Misalignment Condition)

(A =632.8 nm) PO (2)) P1(1A) P2(0.51) P3(0.1))
0.05A1 0.35 0.30 0.22 0.13
0.02A 0.19 0.16 0.11 0.08

There are two main sources of measurement noise of the Zernike
coefficient. The first is the laboratory temperature gradient
distribution and random errors caused by airflow. The other is
the error caused by the dense fringes collected in the initial CAA
stage, and the Zernike coefficient calculation error is introduced
here. The fluctuation value of the wavefront aberration and its
Zernike coefficientin asingle FOV over a period of time are used
to evaluate the measurement error of the Zernike coefficient.
The standard deviation value of the multiple Zernike coefficient
measurement results is taken as the measurement error. After
the Zernike coefficient measurement error is injected into the
simulation algorithm, a set of damping factor sequences can be
obtained, as shown in Table 5. In any iteration of the alignment,
the damping factor sequence is sequentially introduced, and
the misalignment of each dimension of M2 and M3 can be
calculated.

After the rough positioning, the initial wavefront aberrations
of the system are measured in six typical FOVs (with FOV 0), as
shown in Fig. 13(a). After three alignment iterations, we have
the measurement results of the wavefront aberrations of the six
FOVsshown in Figs. 13(b) and 13(c).

Figure 14 shows the convergence of the RMS and the 4/5th
and 6/7th Zernike coefficients of six typical FOVs during the
three adjustment iterations (C4, C5, C6, and C7 represent the
Fringe Zernike coefficients Astig x, Astig y, Coma x, and Coma
y, respectively).

The experimental results in Figs. 13 and 14 show that after
three adjustment iterations, the system wavefront aberrations
of an approximately 1.1° x 1.1° square FOV is corrected to
the optical design residual level (including surface shape error).
With the use of the piecewise DLSM, the success rate of the
misalignment improves. The algorithm can be used to obtain
the convergence results of the misalignment under the condi-
tions of high initial positioning error and Zernike coefficient
measurement uncertainty. Moreover, the number of iterations
decreases, and the efficiency of the alignment increases.

Remarkably, the repeating error of the Zernike coefficient
as measured with the interferometer is about 0.051 — 0.02X1
(A = 632.8 nm) during the experiment. It is observed that the
measurement noise of the Zernike coefficient is not constant
during the experiment. When the misalignment is large under
initial conditions, the interference fringe density and the mea-
surement uncertainty of the Zernike coefficient are large. With
the correction of the wavefront aberration of each FOV, the
measurement noise of the Zernike coefficient is also reduced.
Therefore, the damping factor sequence obtained using the
search algorithm should be combined with the measurement
error of the Zernike coefficient under different operating condi-
tions and optimized in sections. In this way, the efficiency of the
alignment procedure can be further improved.
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7. CONCLUSIONS

In this paper, an improved CAA for a nonsymmetric off-axis
reflective optical system with freeform surfaces was investigated.
Such optical systems generally have a large initial position-
ing error, resulting in high measurement noise of the Zernike
coefhicient in the initial alignment step. This phenomenon
makes convergence difficult with a conventional LSM. A single-
damping-factor algorithm results in low CAA efficiency and
the small adjustment being suppressed by the cross talk of the
adjustment stage. A method for improving the algorithm for
solving the misalignment was proposed. The conclusions of our
work have been shown.

Through coupling analysis of the misalignment sensitivity,
the search intervals of the damping factor group were obtained.
Combined with Monte Carlo simulation analysis, a piecewise
damping factors search algorithm was established.

Based on different misalignment thresholds, an adaptive
DLSM was introduced. The research showed that the improved
algorithm both reduces the sensitivity of the equations to the
measurement noise of the Zernike coefficient and expands the
range of the initial positioning error threshold.

The simulation and the alignment experiments verified the
feasibility and the effectiveness of the above algorithm. The
proposed method can be applied to the CAA procedure of
nonsymmetric off-axis reflective optical systems. Considering
the issues discovered during the experiment, a way to further
optimize the search algorithm was provided.

Funding. National Natural Science Foundation of China (61875190,
12003033).

Disclosures. Theauthors declare no conflicts of interest.

REFERENCES

1. M. L. Lampton, M. J. Sholl, and M. E. Levi, “Off-axis telescopes for
dark energy investigations,” Proc. SPIE 7731, 77311G (2010).

2. M. D. Lallo, “Experience with the Hubble Space Telescope: twenty
years of an archetype,” Opt. Eng. 51,011011 (2012).

3. D. Piérot, “Development and performances 3.5 m SiC telescope
for the Herschel mission,” in Volume of International Symposium
on Optronics in Defense and Security (OPTRO), Paris, France, 4
February 2010.

4. H. P. Stahl, M. Postman, W. R. Arnold, Sr., R. C. Hopkins, L. Hornsby,
G. E. Mosier, and B. A. Pasquale, “ATLAST-8 mission concept study
for 8-meter monolithic UV/optical space telescope,” Proc. SPIE
7731,77312N (2010).

5. K. Fuerschbach, J. P. Rolland, and K. P. Thompson, “Theory of aber-
ration fields for general optical systems with freeform surfaces,” Opt.
Express 22, 26585-26606 (2014).

6. K. Fuerschbach, J. P. Rolland, and K. P. Thompson, “Extending
nodal aberration theory to include mount-induced aberrations with
application to freeform surfaces,” Opt. Express 20, 20139-20155
(2012).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Research Article

. X. Zhao, W. Jiao, Z. Liao, Y. Wang, and J. Chen, “Study on computer-

aided alignment method of a three-mirror off-axis aspherical optical
system,” Proc. SPIE 7656, 76566M (2010).

. S. Kim, H.-S. Yang, Y.-W. Lee, and S.-W. Kim, “Merit function regres-

sion method for efficient alignment control of two-mirror optical sys-
tems,” Opt. Express 15, 5059-5068 (2007).

. J. P. McGuire, Jr. and R. P. Korechoff, “Optical alignment and test of

Wide-Field/Planetary Camera-Il,” Proc. SPIE 1996, 159-174 (1993).
G. F. Hartig, J. H. Crocker, and H. C. Ford, “On-orbit alignment of the
spectrograph channels of the corrective optics space telescope axial
replacement (COSTAR),” Proc. SPIE 298, 1181-1191 (1994).

R. Jedrzejewski, G. F. Hartig, and P. Jakobsen, “On-orbit alignment of
the FOC channel of COSTAR,” Proc. SPIE 2198, 1192-1201 (1994).
M. L. Kaplan, K. |. MacFeely, R. B. Slusher, and R. F. Cahill, “COSTAR
Phase Il alignment description,” Proc. SPIE 1996, 227-236 (1993).

R. Geyl, “Design and fabrication of a three mirror flat field anastigmat
for high resolution earth observation,” Proc. SPIE 2210, 739-749
(1994).

M.-T. Velluet, M. Sechaud, V. Michau, and P.-Y. Madec, “Automatical
alignment system for telescopes,” Proc. SPIE 2210, 747-751 (1994).
J. W. Figoski, “The Quick Bird telescope: the reality of large,
high-quality, commercial space optics,” Proc. SPIE 3379, 22-30
(1999).

B. Zhang, X. Zhang, C. Wang, and C. Han, “Computer-aided align-
ment of the complex optical system,” Proc. SPIE 4231, 67-72
(2000).

X. Yang, X. Zhang, and C. Han, “Alignment of a three-mirror off-axis
aspherical optical system by using gradual aberration optimization,”
Acta Opt. Sinica 24, 115-120 (2004).

K. P. Thompson, “Description of the third-order optical aberrations of
near-circular pupil optical systems without symmetry,” J. Opt. Soc.
Am. A 22, 1389-1401 (2005).

K. P. Thompson, “Multinodal fifth-order optical aberrations of optical
systems without rotational symmetry: spherical aberration,” J. Opt.
Soc. Am. A 26, 1090-1100 (2009).

K. Fuerschbach, J. P. Rolland, and K. P. Thompson, “Nodal aberra-
tion theory applied to freeform surfaces,” in Classical Optics (Optical
Society of America, 2014), paper ITh2A.5.

B. Eegholm, S. Wake, Z. Denny, P. Dogoda, D. Poulios, B. Coyle,
P. Mule, J. Hagopian, P. Thompson, L. Ramos-lzquierdo, and B.
Blair, “Global ecosystem dynamics investigation (GEDI) instrument
alignment and test (Invited Paper),” Proc. SPIE 11103, 1110308
(2019).

P. Coulter, R. G. Ohl, P. N. Blake, B. J. Bos, W. L. Eichhorn, J. S. Gum,
T. J. Hadjimichael, J. G. Hagopian, J. E. Hayden, S. E. Hetherington,
D. A. Kubalak, K. F. Mclean, J. McMann, K. W. Redman, H. P.
Sampler, G. W. Wenzel, and J. L. Young, “A toolbox of metrology-
based techniques for optical system alignment (Invited Paper),” Proc.
SPIE 9951, 995108 (2016).

K. Fuerschbach, G. E. Davis, K. P. Thompson, and J. P. Rolland,
“Assembly of a freeform off-axis optical system employing three
@-polynomial Zernike mirrors,” Opt. Lett. 39, 2896-2899 (2014).

C. Wang, X. Zhang, L. Wang, J. Zhang, and J. Zhang, “Adjustment of
three-mirror off-axis freeform system,” Acta Opt. Sinica 33, 1208001
(2013).

D. Gong, H. Wang, and T. Tian, “Computer-aided alignment of off-
axis three-mirror imaging spectrometer system,” Proc. SPIE 8910,
89100Z (2013).

M. P. Rimmer, “A computer aided optical alignment method,” Proc.
SPIE 1271, 363-368 (1990).


https://doi.org/10.1117/12.856500
https://doi.org/10.1117/1.OE.51.1.011011
https://doi.org/10.1117/12.856256
https://doi.org/10.1364/OE.22.026585
https://doi.org/10.1364/OE.22.026585
https://doi.org/10.1364/OE.20.020139
https://doi.org/10.1117/12.865582
https://doi.org/10.1364/OE.15.005059
https://doi.org/10.1117/12.160410
https://doi.org/10.1117/12.176804
https://doi.org/10.1117/12.176805
https://doi.org/10.1117/12.188135
https://doi.org/10.1117/12.188136
https://doi.org/10.1117/12.402830
https://doi.org/10.1364/JOSAA.22.001389
https://doi.org/10.1364/JOSAA.22.001389
https://doi.org/10.1364/JOSAA.26.001090
https://doi.org/10.1364/JOSAA.26.001090
https://doi.org/10.1117/12.2532471
https://doi.org/10.1364/OL.39.002896
https://doi.org/10.3788/AOS201333.1208001
https://doi.org/10.1117/12.2033021
https://doi.org/10.1117/12.402841
https://doi.org/10.1117/12.402841

