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Abstract: Since remote sensing images are one of the main sources for people to obtain required
information, the quality of the image becomes particularly important. Nevertheless, noise often
inevitably exists in the image, and the targets are usually blurred by the acquisition of the imaging
system, resulting in the degradation of quality of the images. In this paper, a novel preprocessing
algorithm is proposed to simultaneously smooth noise and to enhance the edges, which can improve
the visual quality of remote sensing images. It consists of an improved adaptive spatial filter, which
is a weighted filter integrating functions of both noise removal and edge sharpness. Its processing
parameters are flexible and adjustable relative to different images. The experimental results confirm
that the proposed method outperforms the existing spatial algorithms both visually and quantitatively.
It can play an important role in the remote sensing field in order to achieve more information of
interested targets.

Keywords: image preprocessing; adaptive spatial filter; noise removal; edge sharpness

1. Introduction

The remote sensing image is an important source for people to achieve a variety of
useful information; thus, many airborne or aerospace imaging systems are developed to
acquire high quality remote sensing images, which are based on photoelectric detectors
with high sensitivity. The quality of the image becomes particularly important because it
affects the accurate interpretation and perception of the image. Nevertheless, noise often
inevitably exists in the image, and the targets are usually blurred to a certain extent due
to the acquisition of the imaging system, resulting in the degradation of quality of the
images [1–4]. Therefore, it makes it hard for human observers to discriminate the fine
details of the images such as edges and other features.

There are many kinds of noises interfering the imaging system, principally from the
photoelectric detectors, for example, photon shot noise, dark current noise, thermal noise,
and so on. The images acquired by the system always include noise, which affects their
final display effect [5–7]. Therefore, some image preprocessing techniques can be applied to
obtain the image data of high definition and high signal-to-noise ratio (SNR) by denoising
and edge sharpening. The high-quality images often possess more abundant information
and higher value. The expected processing effect can not only smooth the noise in the
uniform region to improve the SNR but also sharpen the edges in the target region to
achieve clearer images [8,9]. Thus, the design of the preprocessing algorithm is particularly
critical. It should not amplify the noise or obscure useful edge information.

Currently, there are many image preprocessing methods that can be generally divided
into two kinds: space domain and transform domain. The objective of any filtering methods
is to simultaneously remove noise and to retain the important features of the images. The
methods based on space domain mainly include Wiener filter, Gauss filter, bilateral filter,
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neighborhood medium filter, average filter, and so on [5,10–17]. The image grayscale
of each pixel is directly dealt with to achieve the desired effect. The transform domain
methods usually consist of discrete wavelet transform (DWT), discrete cosine transform
(DCT), and Fourier transform, etc. [5,11,18–23]. The image is first transferred into the
frequency domain by transforming, and the processing operations are carried out. Then,
the inverse transform is performed to obtain the resultant image. Some of these approaches
are quite computationally intensive. By contrast, the former is easier to be implemented
without any transforms. They can smooth the noise effectively, but most of them only
preserve the edge information of the images and are unable to enhance it. The high
frequency region of an image often plays a vital role in enhancing its visual appearance,
with respect to the edges and contrast. The classic linear unsharp masking filter (UMF) is
one of the popular sharpening techniques that is capable of magnifying the high-frequency
content, but it is highly sensitive to the noise present in the original image [15,16,24–26].
Although an algorithm combining the bilateral filter and the UMF can sharpen the edges,
presented in Reference [27], the resultant images are not satisfactory enough, producing
overshoot and undershoot artifacts.

In this work, a novel spatial preprocessing algorithm is proposed, called an improved
adaptive spatial filter (IASF). It has good capabilities of both edge sharpening and noise
smoothing, and its processing parameters are flexible and adjustable relative to different
images. It can enhance the edges in the target region without artifacts and smooth the
noise in the uniform region without reducing the useful information. Therefore, it renders
the IASF filter more appropriate for processing remote sensing images. Its performances
in edge sharpening and denoising are analyzed and compared with the commonly used
spatial algorithms. The experimental results indicate that the proposed method performs
better in both visual effect and objective data. It can play an important role in the remote
sensing field in making images clearer with higher SNR and better display effects.

2. Related Work

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

In this section, we mainly discuss the spatial filtering techniques that are the most
related to our proposed algorithm.

2.1. Wiener Filter

It is a classic approach based on statistics, which filters out the noise present in the
image and preserves the images’ details [5,12]. Its filtering principle is state as follows:

ĝ(i, j) =
σ2

n

σ2
I
× g(i, j) +

σ2
I − σ2

n

σ2
I
× g(i, j), (1)

where g(i, j) is the intensity value of pixel (i,j) and g(i, j) is the average intensity of pixels
in the M×N window centered at (i,j). σ2

n and σ2
I represent the variances of the noise and

the actual image, respectively. Its performance can be analyzed in two cases.
Case 1: “Target region.” The variance σ2

I is far greater than σ2
n , that is, σ2

I � σ2
n , and

we can obtain σ2
n

σ2
I
≈ 0 and σ2

I−σ2
n

σ2
I
≈ 1; thus, ĝ(i, j) ≈ g(i, j). This means that the filter can

preserve the edge information of the image.
Case 2: “Uniform region.” The variance σ2

I approximates σ2
n , that is, σ2

I ≈ σ2
n , and we

can obtain σ2
n

σ2
I
≈ 1 and σ2

I−σ2
n

σ2
I
≈ 0; thus, ĝ(i, j) ≈ g(i, j). This means that the filter becomes

an average filter in order to smooth the noise of the image.
Therefore, it can be concluded that the Wiener filter is an edge-preserving smoothing

filter with advantages of self-adaptation and easy-implementation. However, it only tries
to preserve the edges instead of enhancing them.
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2.2. Bilateral Filter

The de-noising bilateral filter is built based on the low-pass Gaussian algorithm, which
considers both distance between the pixels and the intensity variations of the image [10,16].
That is the domain filter and the range filter. Its working principle can be expressed
as follows:

ĝ(i, j) = ∑
k

∑
l

h(i, j; k, l)g(k, l), (2)

where ĝ(i, j) is the restored image and h(i, j; k, l) is the response at (i,j) to an impulse at
(k,l) [10]. The specific definition of h(i, j; k, l) can be expressed as follows:

h(i0, j0; i, j) =


r−1

i0,j0
exp
(
− (i−i0)

2+(j−j0)
2

2σ2
d

)
exp
(
− (g(i,j)−g(i0,j0))

2

2σ2
r

)
,

(i, j) ∈ Ωi0,j0
0, else

, (3)

where (i0, j0) is the central pixel of the window,Ωi0,j0 = {(i, j) : (i, j)∈ (i0−M,i0+M)×(j0−N, j0+N)};
σd and σr are the standard deviations of the domain and range Gaussian filters, respectively;
and ri0,j0 is the normalization factor that makes the average intensity of the whole image
unchanged. Its definition is given by the following.

ri0,j0 =
i0+M

∑
i=i0−M

j0+N

∑
j=j0−N

exp

(
− (i− i0)

2 + (j− j0)
2

2σ2
d

)
exp

(
− (g(i, j)− g(i0, j0))

2

2σ2
r

)
. (4)

The domain low-pass Gaussian filter can provide higher weight to pixels that are
spatially close to the central pixel. The range low-pass Gaussian filter can provide higher
weight to pixels that are similar to the central pixel in intensity. Thus, the performance
of the bilateral filter mainly depends on two parameters, σd and σr, when the size of the
window is fixed.

Zhang B et al. focused on the characteristics of the range filter, increasing a variable ε
to sharpen the edge information [10]. Then, the weighted factor of the range filter becomes
the following:

W ′
r = exp

(
− (g(i, j)− g(i0, j0)− ε(i0, j0))

2

2σ2
r

)
, (5)

where ε(i0, j0) represents the grayscale offset of the center pixel (i0, j0). When ε(i0, j0) = 0,
W’

r is the conventional weighted factor of the range filter. If g(i, j) is similar to the center
pixel g(i0, j0), its weighted factor will be larger. Therefore, this filter produces the result that
the grayscale of the pixel approaches g(i0, j0) to preserve the edges. When ε(i0, j0) 6= 0, the
filter will provide higher weight to pixels that are similar to (g(i0, j0) + ε(i0, j0)). Thus, this
filter makes the grayscale of the pixel approach (g(i0, j0) + ε(i0, j0)). It can be observed that
this filtering algorithm can enhance the edges, provided a reasonable ε(i0, j0) is selected.

2.3. UMF Filter

Unsharp mask filter (UMF), a high-pass linear filtering method, is a typical edge
enhancing algorithm with very low-cost computational structure [24–26]. The neighbor-
hood of the filtering operator is a fixed 3 × 3 matrix, as shown in Equation (6), where υ

determines the direction of the edge sharpening and belongs to the interval [0, 1]. If υ = 0,
the filter will sharpen the image in the horizontal and vertical directions, respectively. If
υ = 1, the sharpening direction changes to both diagonals. If 0 < υ < 1, the edges will be
sharpened in a superimposed direction. Although UMF can enhance the edge information
effectively, it also amplifies the noise in the image.

κ =
1

υ + 1

 −υ υ− 1 −υ
υ− 1 υ + 5 υ− 1
−υ υ− 1 −υ

. (6)
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3. Improved Adaptive Spatial Filter (IASF) for Image Sharpening and Denoising

A weighted normalization filtering algorithm was proposed for suppressing the noise
efficiently in order to further enhance the SNR and sharpen the main edge information
simultaneously. It introduces the improved range filter and combines the average filter,
called the improved adaptive spatial filter (IASF). The principle is as follows:

ĝ(i, j) = a× gr(i, j) + b× g(i, j), (7)

where gr(i, j) represents the output of the improved range filter. The parameters a and b
are the normalized weighted factors of the improved range filter and the average filter,
respectively, rendering the filter adaptable to different image data.

Therefore, the proposed method has the advantages of both filters mentioned above.
The average filter can smooth the noise effectively, and the improved range filter can
sharpen the edges of the image. Consequently, the IASF filter integrates the abilities of
both noise suppressing and edge sharpening, which meets the processing need of remote
sensing image data.

The performance of the proposed algorithm is closely related to the design of the
improved range filter and the reasonable selections of weighted factors a and b. These will
be analyzed and discussed in the following part.

3.1. Design of the Improved Range Filter

It is necessary to select a reasonable grayscale offset ε(i0, j0) for each pixel in order to
enhance the edge information, which will be analyzed in the following two cases. There is
a mean grayscale value, denoted as MEAN, in the neighborhood Ωi0,j0 .

(a) ε(i0, j0) = MEAN− g(i0, j0). The pixel g(i0, j0) moves to MEAN, resulting in a blurred
image, because each pixel tends to the average value of its neighborhood in the image,
as shown in Figure 1b.

(b) ε(i0, j0) = g(i0, j0)−MEAN. The pixel g(i0, j0) moves away from MEAN, making
each pixel tend to (g(i0, j0) + ε(i0, j0)), resulting in the sharpening effect, as shown in
Figure 1c. It can be divided into three cases. If g(i0, j0) < MEAN, that is ε(i0, j0) < 0,
the grayscale of the pixel decreases. Otherwise, if g(i0, j0) > MEAN, ε(i0, j0) > 0,
the grayscale of the pixel increases. Otherwise, if g(i0, j0) = MEAN, ε(i0, j0) = 0, it
becomes a conventional range filter.
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Figure 1. The different results of the improved range filter with different grayscale offsets. (a) Original
image; (b) ε(i0, j0) = MEAN − g(i0, j0); (c) ε(i0, j0) = g(i0, j0)−MEAN.

According to the above analysis, it can be observed that the improved range filter
can reduce the transition pixels of the edges effectively and increase the gradient of the
grayscale variation in order to achieve the edge enhancement when the pixel g(i0, j0) moves
away from the MEAN. Now the proposed method sets ε(i0, j0) = g(i0, j0)−MEAN as the
grayscale offset in order to sharpen edges.
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3.2. Determination of the Weighted Factors of IASF

The weighted factors a and b are a set of certain values in each window Ωi0,j0 . In order
to determine the reasonable weighted factors, a cost function is employed to minimize the
difference between ĝ(i, j) and g(i, j) in window Ωi0,j0 :

{a∗, b∗} = arg min
{a,b}

∑
(i,j)∈Ωi0,j0

(
(a× gr(i, j) + b× g(i, j)− g(i, j))2 + εa2

)
, (8)

where ε is a regularization parameter and a positive real number. Its specific meaning is
discussed in the following part. Equation (8) is a linear ridge regression model, and its
solution can be expressed as follows. a∗ = σ2

I
σ2

I +ε

b∗ = 1− a∗ = ε
σ2

I +ε

. (9)

Therefore, taking Equation (9) into Equation (7), we can obtain the following equation.

ĝ(i, j) =
σ2

I
σ2

I + ε
× gr(i, j) +

ε

σ2
I + ε

× g(i, j). (10)

The performance of the IASF can be analyzed in two typical cases based on Equation (10).
Case 1: “Edge region.” The image data changes a lot within Ωi0,j0 , so the variance σ2

I is

far larger than ε, σ2
I � ε. Thus, we can obtain the weighted factor σ2

I
σ2

I +ε
≈ 1 and ε

σ2
I +ε
≈ 0,

resulting in ĝ(i, j) ≈ gr(i, j). This makes the IASF sharpen the edge information.
Case 2: “Uniform region.” The image variance σ2

I is far less than ε, σ2
I � ε. Thus, we

can obtain the weighted factor σ2
I

σ2
I +ε
≈ 0 and ε

σ2
I +ε
≈ 1, resulting in ĝ(i, j) ≈ g(i, j). The

IASF turns out to be an average filter for smoothing the noise.
In total, the weighted factors of the IASF can adjust itself to implement the edge

sharpening and noise suppressing simultaneously according to different images. More
specifically, the criterion of an “edge region” or a “uniform region” is determined by the
parameter ε. The regions with variance σ2

I far less than ε are smoothed, whereas those with
variance much larger than ε are enhanced. The effect of parameter ε in the IASF is similar
to the variance σ2

r in the range filter, both of which can determine whether an edge region
should be enhanced or preserved. Thus, both parameters are equivalent, so we empirically
set ε = σ2

r [13].
In order to further improve the display quality of the remote sensing images and

to enhance the edge sharpening of the image information, the grayscale offset is set to
ε(i0, j0) = kp × (g(i0, j0)−MEAN) in this method. Thus, the weighted factor of the
improved range filter becomes the following.

W ′
r = exp

(
−
(

g(i, j)− g(i0, j0)− kp × (g(i0, j0)−MEAN)
)2

2σ2
r

)
. (11)

At the same time, in order to improve the adaptability of the algorithm, we introduced
the rational parameter kr to optimize the functions of edge sharpening and denoising for
different images. Thus, the filtering algorithm can be expressed as follows.

ĝ(i, j) =
σ2

I
σ2

I + krσ2
r
× gr(i, j) +

krσ2
r

σ2
I + krσ2

r
× g(i, j). (12)

The function and selection of parameters kp and kr are described below.
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3.3. Parameter kp

The parameter kp is an adjusting factor of the grayscale offset for enhancing edge
sharpening. The higher the value is, the larger the grayscale offset, producing a more
obvious sharpening effect. However, if the parameter kp is too large, it results in grayscale
overshoot. Thus, kp should not be too large. Generally, the range of kp is 1 ≤ kp ≤ 2, which
can be adjusted according to the actual image data. The parameter kp is set to 1.5 by training
the actual images here.

3.4. Parameter kr

The parameter kr is a weighted factor for measuring the effect of noise smoothing. The
smaller the value is, the weaker the smoothing effect and the stronger the sharpening effect
and vice versa. Now, we set two different thresholds a and b to divide the parameter kr into
three segments. In order to simplify the computation, we employ three linear expressions
to represent kr here. When σ2

I < a2, kr is set to 1, indicating the edge sharpening and noise
smoothing based on the actual image. When σ2

I > b2, kr is set to 0.01, showing that the
neighborhood is mainly the edge region and performing stronger edge sharpening. In the
other cases, the parameter kr can be expressed as a linear expression. Consequently, we
have the following.

kr =


1, i f σ2

I < a2

0.01, i f σ2
I > b2

1− 0.99
b2−a2 ×

(
σ2

I − a2), i f a2 ≤ σ2
I ≤ b2

. (13)

The parameters a and b are selected in terms of the variance of images with different
features. We will set a = 1.5 and b = 8 by training the actual images here.

4. Verification and Discussion

The test images are acquired by a time-delayed integration (TDI) charge-coupled
device (CCD) imaging system, which employs a kind of linear array photoelectric detector.
It can implement charge accumulations by superposition mode with advantages of high
sensitivity, high dynamic range, and low noise. The imaging system is usually composed
of TDI CCD sensor, amplifiers, video processors, digital processing circuit, and so on,
represented in Figure 2. It can realize the driving of TDI CCD, the power supply, signal
quantization, and output of the image data. The communication control system is in charge
of supervising and monitoring the imaging system. The image data can be captured and
displayed by the image acquisition system. The main technical indicators of the imaging
system are as shown in Table 1.
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Table 1. The main technical indicators of the imaging system.

Items Specifications

Spectral Range 450 nm–800 nm
Pixel Size 8.75 µm × 8.75 µm

Spatial Pixels 4096
PGA (Programmable Gain Amplifier) 0 dB–36 dB

Then, we apply the imaging system in order to acquire multiple images with different
targets and choose two of them with size of 256 pixels × 256 pixels to validate the perfor-
mance of the proposed method. Various spatial filters have been applied to the test images
for comparison.

Some performance indexes are applied for the quantitative evaluation in order to
compare the processing effects. There are two commonly used objective indexes: the mean
value µ and standard deviation (STD) σ [5,11]. Their definitions are given by the following:

µ =
1

MN

M

∑
i=1

N

∑
j=1

g(i, j), (14)

σ =

√√√√ 1
MN

M

∑
i=1

N

∑
j=1

(g(i, j)− µ)2, (15)

where g(i, j) is the intensity of pixel (i, j) and (M,N) is the size of the image region. The
mean value µ is the average of all intensities, indicating the average brightness of the
image. The STD(σ) is the deviation of intensities relative to the mean value, denoting the
distribution uniformity of the pixels.

The gray mean gradient (GMG) is employed for measuring the edge sharpening effect,
which is an image quality evaluation method based on the image gradient. Its expression
is given by the following.

GMG =
M−1

∑
i=1

N−1

∑
j=1

(g(i + 1, j)− g(i, j))2 + (g(i, j + 1)− g(i, j))2

2
. (16)

The GMG indicates the variance rate of the grayscale of the image, representing the
sharpness extent with higher sensitivity. The greater the value of GMG, the better the image
quality; that is, the edges become sharper with more information of the targets. However,
if there is a lot of noise in the image, the GMG may be bigger as well because both the
noise and the edge are presented as high frequency component. Therefore, we apply the
evaluation method by combining subjective visual effects and objective data comparisons
in order to analyze the resultant images.

The size of the neighborhood window should be appropriate and selective. If it is
too small, it cannot cover most of the edge transitions. Otherwise, if it is too big, it might
increase the computation and consume time. Considering the above factors, we chose a
7 × 7 window. The standard deviation σr of the IASF determines how selective the filter is
in choosing the pixels that are similar enough in intensity, and σr is set to two here.

Figure 3a is the raw image data of target 1 “building”, which is processed by different
spatial filters as shown in Figure 3b–g. Box A shows a uniform region while box B is an
edge region. The zoomed in images of box B for UMF, BF + UMF, and IASF are shown in
Figure 3h. The different gray level distributions of edge C are depicted in Figure 3i,j.

Compared with the raw image Figure 3a, Figure 3b–d became blurred, and some
details are lost from visual effects. From Figure 3i, it can be observed that the average
filter (AF) makes the image the most blurred, increases the transition pixels, and reduces
the slope of grayscale variation. The Wiener filter (WF) obtains similar results relative
to the average filter, and the results of the bilateral filter (BF) becomes a little blurred,
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which is similar to the original. We can observe that the edge sharpening effect is realized
in Figure 3e–g, but in terms of Figure 3h, the UMF obviously amplifies the noise in the
image, resulting in visually less pleasing enhanced effects. For the combined algorithm of
BF + UMF, it achieves a slightly better result than UMF due to the noise suppression by BF,
but there is still some noise remaining in the image. However, the IASF implements the
edge sharpening without noise amplification, producing a better visual effect, as shown in
Figure 3g,h.
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Figure 3. The raw image data of target 1 and its processed resultant images by different filters: (a) original data; (b) Wiener filter
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distributions of edge C for (a–d); (j) gray level distributions of edge C for (e–g).

The grayscale variations of the three filters for edge C are described in Figure 3j. The
UMF, sensitive to the noise, produces large overshoot and undershoot in grayscale, causing
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the undesired artifacts, although the slope of the edge increases. The BF + UMF method
can restrain the overshoot to a certain extent, but the processed result is still unsatisfactory.
Distinct from UMF, the IASF is not sensitive to the noise, and it can adjust the grayscale of
edges in the spatial domain to increase the slope without generating overshoot. Thus, the
IASF can enhance the edge information effectively to improve the overall appearance of
the image.

Then, we can analyze the image data of target 1 processed by different algorithms
to realize the objective data comparison, as shown in Table 2. The average intensity of
each filter is nearly the same as the original. The STDs for the red box A and B are
calculated, representing the uniform region and the edge region, respectively, with the size
of 25 pixels × 25 pixels, and the GMGs for box B are also displayed.

Table 2. The comparison results for image data of target 1.

Objects Average
Intensity

STD GMG
Characteristics

Box A Box B Box B

Original
data 27.380 0.2962 27.2403 404 -

WF 27.342 0.1192 26.4826 178 Edge preserving and
noise smoothing

BF 27.373 0.1316 27.2237 290 Edge preserving and
noise smoothing

AF 27.376 0.1192 25.4278 174 Noise smoothing

UMF 27.380 1.0646 28.4076 3529 Edge sharpening

BF + UMF 27.374 0.3918 28.3763 1997 Edge sharpening

IASF 27.393 0.1192 29.1190 569 Edge sharpening and
noise smoothing

It can be observed that the WF, the AF, and the IASF have the same STD results when
processing the uniform region A, which is better than the BF. Therefore, this indicates that
IASF has good capability for noise smoothing. From the calculation results of GMG for the
edge region B, we can observe that the WF, BF, and AF have smaller values than the original
image, indicating that they have less information of the targets and only perform edge
preservation, while the UMF, BF + UMF and IASF performs larger edge preservation. Thus,
the three filters can enhance the edges in order to obtain more information. We can draw the
same conclusion from the STD results. However, the UMF and BF + UMF also amplifies the
noise at the same time, resulting in a less pleasing appearance. Since IASF is not sensitive
to noise, it can achieve an ideal enhancing effect without artifacts. Consequently, the IASF
can simultaneously achieve good performance in edge sharpening and noise smoothing.
The filtering characteristics of each algorithm are summarized in Table 2.

We then change to another image to further validate the proposed method. Figure 4a
is the raw image data of target 2 “beach” and its resultant processed images by different
spatial filters, as shown in (b) to (g). Box D shows a uniform region while box E is an
edge region. The zoomed in images of box E for UMF, BF + UMF, and IASF are shown
in Figure 4h. The gray level distributions of edge F are depicted in Figure 4i,j.
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Figure 4. The raw image data of target 2 and its processed resultant images by different filters: (a) original data; (b) WF; (c) AF;
(d) BF; (e) UMF; (f) BF + UMF; (g) IASF; (h) zoomed in images of box B; (i) gray level distributions of edge C for (a–d); (j) gray level
distributions of edge C for (e–g).

It can be observed that, compared with the raw image Figure 4a, Figure 4b–d be-
come blurred while Figure 4e–g become clearer with their edges enhanced. In terms
of Figure 4h, since UMF is sensitive to the noise, it has a poor visual appearance. The
BF + UMF obtained a slightly better result than UMF, but some noise still remained in
the image. The IASF sharpens the edge information effectively without obvious noise,
achieving a better visual appearance. From Figure 4i, we know that AF has the lowest
slope of grayscale variation, resulting in the most blurred image. WF obtained a similar
result relative to AF, while BF obtained a little blurred image, similar to the original.

The grayscale variations of the three filters for edge F are depicted in Figure 4j. Sim-
ilarly to Figure 3j, the UMF produces large overshoot and undershoot, resulting in the
undesired artifacts. Although the overshoot can be suppressed to a certain extent by BF,
the BF + UMF method still cannot obtain a more pleasing result. Nevertheless, the IASF
can adjust the grayscale of edges in spatial domain to increase the slope without producing
artifacts through the reasonable selection of parameters kp and kr. Thus, the IASF can
sharpen the edges effectively to improve the overall appearance of the image.

The objective data comparison results for the image data of target 2 are shown in
Table 3. The average intensity of each filter is nearly the same as the original one. The STDs
for the red boxes D and E are calculated, each with a size of 25 pixels × 25 pixels, and the
GMGs for box E are also displayed.
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Table 3. The comparison results for image data of target 2.

Objects Average
Intensity

STD GMG
Characteristics

Box D Box E Box E

Original
data 26.481 0.3840 12.0352 3362 -

WF 26.452 0.1772 11.4541 2902 Edge preserving and
noise smoothing

BF 26.482 0.1833 11.9934 3376 Edge preserving and
noise smoothing

AF 26.482 0.1772 9.9147 1716 Noise smoothing

UMF 26.483 1.2751 13.5684 7884 Edge sharpening

BF + UMF 26.483 0.5311 13.5174 7583 Edge sharpening

IASF 26.496 0.1776 13.8026 5904 Edge sharpening and
noise smoothing

It can be observed that IASF has nearly the same STD result with WF and AF when
processing the uniform region D, better than the BF. Thus, the IASF has a good capability
for noise smoothing. From the calculation results of GMG and STD for the edge region E,
we can observe that the UMF, BF + UMF, and IASF have higher values than the original one,
indicating that the three filters can enhance the edges to obtain more information. However,
the UMF and BF + UMF also amplify the noise, resulting in less pleasing effects. The IASF
can achieve an ideal enhancing effect without artifacts since it is not sensitive to noise.

Figure 5a is the raw image data of target 3 “town” and its processed resultant images by
different spatial filters, as shown in (b) to (g). The box G shows a uniform region while the
box H is an edge region. The zoomed in images of the box H for UMF, BF + UMF, and IASF
are shown in Figure 5h. The gray level distributions of edge I are depicted in Figure 5i,j.
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Figure 5. The raw image data of target 3 and its processed resultant images by different filters: (a) original data; (b) WF; (c) AF;
(d) BF; (e) UMF; (f) BF + UMF; (g) IASF; (h) zoomed in images of box H; (i) gray level distributions of edge I for (a–d); (j) gray level
distributions of edge I for (e–g).

A similar conclusion can be drawn that, compared with the raw image Figure 5a,
Figure 5b–d become blurred while Figure 5e–g become clearer with their edges enhanced.
The UMF and the BF + UMF are sensitive to noise, which produces large overshoot and
undershoot, resulting in poor visual appearances. However, the IASF can adjust the
grayscale of edges in the spatial domain in order to sharpen edge information effectively
without obvious noise, achieving better visual appearance.

The objective data comparison results for the image data of target 3 are shown in
Table 4. It can be observed that IASF has nearly the same STD result with WF and AF when
processing the uniform region G and is better than the BF, indicating a good capability for
noise smoothing. According to the calculation results of GMG and STD for edge region
H, we can observe that UMF, BF + UMF, and IASF can enhance the edge information with
higher value. The IASF can achieve an ideal enhancing effect while UMF and BF + UMF
simultaneously amplify noise. Consequently, the IASF can simultaneously achieve good
performance in edge sharpening and noise smoothing.

Table 4. The comparison results for image data of target 3.

Objects Average
Intensity

STD GMG
Characteristics

Box G Box H Box H

Original
data 49.203 1.4519 11.5198 3739 -

WF 49.146 1.2012 8.8813 1461 Edge preserving and
noise smoothing

BF 49.195 1.2712 11.4804 3679 Edge preserving and
noise smoothing

AF 49.204 1.2012 8.5635 1368 Noise smoothing

UMF 49.204 3.0548 13.5877 14,331 Edge sharpening

BF + UMF 49.197 1.7705 13.5777 13,740 Edge sharpening

IASF 49.297 1.2381 13.1734 6712 Edge sharpening and
noise smoothing

The information entropy of image data is employed for evaluating the effect of edge
sharpening, as shown in Table 5. We can observe that the information entropy results of the
three filters increase in different degrees. However, UMF and BF + UMF not only sharpen
the edges but also amplify the noise, resulting in higher values. The IASF is not sensitive to
noise; thus, it can achieve better enhancing results.
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Table 5. The comparison results of entropy for three different images.

Objects Image of Target 1 Image of Target 2 Image of Target 3

Original data 4.0284 4.0663 4.8235
UMF 5.1530 5.2249 6.1282

BF + UMF 4.9597 5.0437 6.0132
IASF 4.8783 4.9323 5.8709

In summary, the performance of the proposed preprocessing algorithm is verified
and analyzed based on three different target images, and its related properties are de-
scribed quantitatively from Table 2 to Table 5. We can perceive that the IASF has excellent
capabilities in both edge sharpening and noise smoothing.

The two parameters kp and kr are key factors affecting the filtering performance. The
parameter kp determines the output of gr(i, j) in formula (12), which can sharpen the edges
of the image. If kp is too big (that is, the grayscale offset is too large), the IASF may result
in a drastic sharpening effect, and the image appears over-sharpened. If kp is smaller
than 1, the sharpening effect is weakened, unable to meet the preprocessing purpose.
The parameter kr is complementary with kp, which determines the normalized weighted
factors of gr(i, j) and g(i, j). If we increase kr, the weight of gr(i, j) decreases and that of
g(i, j) increases, indicating that the sharpening effect is weaker and the smoothing effect
is stronger. Therefore, we should select reasonable parameters for kp and kr in order to
achieve the desired results according to the specific image data.

The IASF is not sensitive to noise. It can adjust the grayscale of the local pixels for
transforming the histogram of the image. If we set kp = 0, the improved range filter changes
to a conventional range filter. Then, the IASF becomes a low-pass filtering algorithm due
to the range filter, and the average filter possesses low-pass characteristics. In particular, if
we further set kr = 0, the proposed algorithm eventually turns out to be the range filter.

The value ranges of kp and kr are greater than or equal to 0. The filtering effect will be
different according to different parameter values, and it is summarized in Table 6.

Table 6. Different filtering effects with different parameter values.

The Value of
Parameter kp

The Value of
Parameter kr

Filtering Effect Note

kp = 0 kr ≥ 0 Low-pass, edge preserving, and noise
smoothing

The bigger the value kr, the stronger noise
smoothing

1 > kp > 0

kr = 0 Weak edge enhancing -

kr > 0 Weak edge enhancing and noise smoothing The bigger the value kr, the stronger noise
smoothingkr �

σ2
I

σ2
r

Noise smoothing

kp ≥ 1

kr = 0 Edge enhancing -

kr > 0 Edge enhancing and noise smoothing The bigger the value kr, the stronger noise
smoothingkr �

σ2
I

σ2
r

Noise smoothing

5. Conclusions

According to the preprocessing requirements of the remote sensing images, a novel
spatial algorithm is proposed for simultaneously smoothing noise and for enhancing the
edges. The weighted normalization filtering algorithm integrates the improved range
filter and the average filter, and its processing parameters are flexible and adjustable
relative to different images. We compared our algorithm with other commonly used spatial
filters such as the Wiener filter, bilateral filter, average filter, UMF, and the combination
of bilateral filter followed by UMF. The experimental results clearly indicate that our
algorithm performs better than the filters mentioned previously, both in terms of subjective
as well as quantitative analysis. The proposed algorithm exhibits excellent performances of
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both edge sharpness and noise removal. It can play an important role in the remote sensing
field for achieving clearer images with higher SNR.
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