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ABSTRACT Compressive sensing (CS) technology is introduced into space optical remote sensing image
acquisition stage, which could make wireless image sensor network node quickly and accurately obtain
images in the case of two constraints of limited battery power and expensive sensor costs. On this basis,
in order to further improve the quality of CS image reconstruction, we propose fused features and perceptual
loss encoder-decoder residual network (FFPL-EDRNet) for image reconstruction. FFPL-EDRNet consists
of a convolution layer and a reconstruction network. We train FFPL-EDRNet end-to-end, thus greatly
simplifying the pre-processing and post-processing process and eliminating the block effect of reconstructed
images. The reconstruction network is based on residual network, which introduces multi-scale feature
extraction, multi-scale feature combination and multi-level feature combination. Feature fusion integrates
low-level information with high-level information to reduce reconstruction error. The perceptual loss
function based on pretrained InceptionV3 uses the weighted mean square error to define the loss value
between the reconstructed image feature and the label image feature, which makes the reconstructed image
more semantically similar to label image. In themeasurement procedure, we use convolution to achieve block
compression measurement, so as to obtain full image measurements. For image reconstruction, we firstly use
a deconvolution layer to initially reconstruct the image and then use the residual network to refine the initial
reconstructed image. The experimental results show that: in the case of measurement rates (MRs) of 0.25,
0.10, 0.04 and 0.01, the peak signal-to-noise ratio (PSNR) = 27.502, 26.804, 24.593, 21.359 and structural
similarity (SSIM) = 0.842, 0.816, 0.720, 0.568 of the reconstructed images obtained by FFPL-EDRNet.
Therefore, Our FFPL-EDRNet could enhance the quality of image reconstruction.

INDEX TERMS Image reconstruction, compressive sensing, encoder-decoder network, fused features,
perceptual loss, residual block.

I. INTRODUCTION
Space optical remote sensing (SORS) technology has become
an indispensable part of obtaining intelligence information.
The results of SORS image processing and analysis could
be applied to many fields, such as environmental monitor-
ing, disaster prevention and mitigation, and surveying and
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mapping [1]–[4]. However, the prerequisite for image pro-
cessing and analysis is the accuracy of image acquisition. The
work of acquiring SORS images is completed by wireless
image sensor network node, whose main function depends on
battery power supply and sensor image sampling. At present,
the two main constraints that restrict image acquisition work
are limited battery power and expensive sensor costs. There-
fore, under the condition of limited battery power and expen-
sive sensor costs, it is an urgent problem to ensure the quality
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and quantity of image acquisition. The algorithm designed
by compressive sensing (CS) is an effective method to satisfy
these constraints to a large extent.

CS is an emerging technology. It firstly completes the
sample value compression while the signal is being sampled,
and then carries on the effective recovery of the signal through
the reconstruction algorithm [5], [6]. Compared with the
traditional sampling and compression techniques, the image
acquisition method based on CS has the advantages of simple
coding and good compression performance [7]. On the one
hand, since the sample value compression is achieved at the
same time as the SORS image is sampled, the number of
sensors used to obtain SORS images of the same width is
greatly reduced, thereby reducing sensor costs. On the other
hand, since compressed sampling values are used for data
transmission, the energy consumption of data transmission is
reduced, thereby reducing battery energy supply.

Research on high performance CS image reconstruc-
tion methods is a hot topic in CS field. Traditional
methods [8]–[13] to solve CS reconstruction problem are
mostly based on physical-driven approaches, such as con-
vex optimization [8], [11], greedy algorithm [12], [13], and
non-convex algorithm [9], [10]. However, these methods
commonly adopt iterative optimization strategies to solve
the problem of image signal reconstruction. This iterative
optimization algorithm is computationally expensive and
time-consuming.

Deep learning (DL) has been widely used in the image
field, such as image classification [14], target detection [15],
semantic segmentation [16], image denoising [17] and image
super-resolution [18]. Recently, there have been a lot of
researches on CS image reconstruction network based on DL.
Thanks to the powerful self-learning capacity, deep neural
networks effectively avoid a large amount of calculation in
traditional iterative methods and achieves excellent recon-
struction performance.Mousavi et al. [19] used SDA network
to reconstruct compressed sampling measurements, which
is the first time that DL was used to solve the problem of
compressive reconstruction. Kulkarni et al. [20] proposed
ReconNet based on CNN, and realized the reconstruction
of compressed sensor images with a non-iterative strategy.
Lohit et al. [21] added an adversarial network on the basis of
ReconNet, and used the generative confrontation network to
further improve the quality of reconstruction. Yao et al. [22]
proposed deep residual reconstruction network (DR2-Net)
for image CS. DR2-Net replaced ReconNet with a residual
network and improved the reconstruction performance by
adding a residual network. The common disadvantage of
the above methods is that the independent reconstruction of
image blocks leads to block effect. In order to solve this prob-
lem, Du et al. [23] used a fully convolutional measurement
network (FCMN) to reconstruct the image. The convolu-
tional network reconstructed the entire image measurements,
thereby eliminating the block effect. FCMN is firstly intro-
duced to remove block effect. Mousavi and Baraniuk [24]
used the network to reconstruct CS measurements of the

entire image, and at the same time forced the weight of fully
connected layer to be set to8T . It eliminated the block effect
of the reconstructed image; Du et al. [25] proposed using
deconvolution layer (DCL) to initially reconstruct the CS of
the entire image, which also eliminated the block effect of the
reconstructed image; Mousavi et al. [26] and Zhao et al. [27]
both trained the measurement layer and reconstruction net-
work together, describe a novel encoder-decoder network
(EDNet) in order to eliminate blocking effect. Since the above
reconstruction networks simply extract features without fea-
ture fusion, and their loss function only focuses on the differ-
ence between the corresponding pixels of the reconstructed
image and label image, the quality of the reconstructed image
could be further improved.

In summary, we investigate the SORS image acquisition
method based on CS. This paper proposes FFPL-EDRNet
for SORS image CS, which further enhances the reconstruc-
tion quality. Therefore, it will lay a reliable foundation for
the following image processing and analysis. An intuitive
description of FFPL-EDRNet is illustrated in Figure 1. The
FFPL-EDRNet consists of two components: measurement
layer and reconstruction network. Our main contributions are
as follows:

1) In order to further improve the quality of CS image
reconstruction, we propose a novel encoder-decoder residual
network for image reconstruction, called FFPL-EDRNet. For
CS image reconstruction of SORS images, thismodel is better
than existing algorithms.

2) In order to simplify the image pre-processing and
post-processing process and eliminate the block effect of
reconstructed images, FFPL-EDRNet connects the measure-
ment layer and the reconstruction network for end-to-end
training. We also set the step size to be equal to the size
of the convolution kernel in the convolution operation in
measurement part, which makes the convolution operation
simulate the block compression sampling process in CS.

3) In order to accurately extract the feature informa-
tion of different scales in the initial reconstructed image,
and make full use of the detailed feature information of
the low-level and the overall feature information of the
high-level, the CanNet unit adopts multi-scale feature extrac-
tion, multi-scale feature combination and multi-level feature
combination. Feature fusion integrates low-level information
with high-level information to reduce reconstruction errors,
thereby improving the quality of image reconstruction.

4) In order to make the reconstructed image more seman-
tically similar to label image, FFPL-EDRNet uses the per-
ceptual loss function to improve reconstructed image quality.
The loss function based on pretrained InceptionV3 compares
the feature of reconstructed image with the feature of label
image, so that the reconstructed image is more similar to the
label image in semantics.

II. FFPL-EDRNet
The purpose of FFPL-EDRNet is to improve the quality of
SORS image reconstruction in CS. The overall structure of
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FIGURE 1. An intuitive description of FFPL-EDRNet.

FIGURE 2. The overall structure of FFPL-EDRNet.

FFPL-EDRNet is shown in Figure 2. In themeasurement part,
the measurement layer simulates the compressive sampling
process of the SORS camera (regardless of noise). Compared
to the predefined measurement matrix, this method is just as
easy to implement on the hardware equipment of optical sys-
tem, and the image information will not also be missed during
themeasurement process. In the recovery part, the deconvolu-
tion layer and residual network could accurately reconstruct
the compression measurements.

A. BLOCK MEASUREMENT BASED ON CONVOLUTION
The measurement layer CN (·) uses the non-overlapping slid-
ingwindow convolutionmethod tomeasure the image.We set
the step size to be equal to the size of the convolution
kernel, which is equivalent to block compression measure-
ment. And the trained convolution weight is the measurement
matrix. Particularly, MRs determines the number of convo-
lution kernels. The number of convolution kernels could be
determined with.

numkernal = MRs× n (1)

where n is the number of elements in the image block, which
is also the number of elements in the convolution kernel.

The measurement process is shown in Figure 3. The mea-
surement layer CN (·) is a convolution layer with a 20 × 20
convolution kernel, a step size of 20, and no bias value.
Therefore, the value of n in Equation (1) is 400.

It takes the 200 × 200 full image as input and outputs
10 × 10× numkernal full image measurements, where
numkernal is related to MRs, e.g., numkernal = 100, 40, 16,
and 4 corresponding toMRs= 0.25, 0.10, 0.04, and 0.01 [21],
respectively. We denote the procedure of measurement as,

Y = CN (X ,W ) = W × X (2)

where Y is the measurements of full image. X is the original
image. W is the weight matrix of the convolutional layer,
which is also the measurement matrix in CS.

We connect the measurement layer CN (·) with the recon-
struction network for end-to-end training, which makes the
whole process of CS realized through the encoder-decoder
network, thus greatly simplifying the process of image
pre-processing and post-processing. Moreover, the recon-
struction network reconstructs the complete image through
the full image measurements obtained from the measurement
layer, thereby inhibiting the block effect.
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FIGURE 3. Block measurement process based on convolution.

B. FULL IMAGE INITIAL RECONSTRUCTION BASED ON
DECONSTRUCTION
CS image reconstruction is to recover the image X from CS
measurements Y. The reconstruction process from Y to X
could be regarded as a mapping relationship, given themodel:

X = QY (3)

where Q is the reconstruction mapping matrix. Since Equa-
tion (3) is an over-determined equation, it has no exact solu-
tion. However, we could estimate a reconstruction mapping
matrix Qz, which minimizes the error between X and QzY .
We employ the deconvolution layer F f (·) to infer the

optimal mapping matrix Qz. The process of initial image
reconstruction is shown in Figure 4. The deconvolution layer
F f (·) is a deconvolution layer with a 20 × 20 convolution
kernel, a step size of 20, and no bias value. It takes the
10 × 10 × numkernal full image measurements as input and
outputs 200× 200 initial reconstructed image.

FIGURE 4. Full image initial reconstruction process based on
deconvolution.

The trained deconvolution layer F f (·) maps the full

image Y into an initial reconstructed image
∧

X . The pro-
cess of generating the initial reconstructed image could be
expressed as:

∧

X = Ff (Y ,Qf ) = Qf
× Y (4)

where Qf is the parameters for the trained deconvolution
layer.

C. REFINEMENT BASED ON DEEP RESIDUAL NETWORK
The trained deconvolution layer could only obtain an approx-
imate solution to the image X . In order to further narrow the

difference between
∧

X and X , we introduce a deep residual
network to predict the residual between two images.
Compared with the traditional deep neural network, such

as AlexNet [28], VGG [29], and GoogleNet [30], the deep
residual network [31] solves the shattering gradient problem.
Therefore, for the refinement of the initial image, we use it as
the main network to extract features.
In order to accurately extract the feature information of dif-

ferent scales in the initial reconstruction image
∧

X , the resid-
ual network uses the convolution kernel of different scales
to extract the multi-scale feature information of the

∧

X and
fuse these features. In order to make full use of the detailed
feature information of the low-level and the overall feature
information of the high-level, the residual network integrates
the features of different levels of low, medium and high.

As shown in Figure 2, deep residual network consists of
three CanNet units. Each CanNet unit adopts multi-scale
feature extraction, multi-scale feature combination andmulti-
level feature combination. In order to ensure that the gener-
ated feature map size is 200 × 200, we add corresponding
padding to each layer of the residual network. We further add
batch normalization [32] and ReLU layer to each convolution
layer of each unit except the last convolution layer. The
structure and paraments of CanNet unit in Table 1, where
CONV stands for convolution layer, BN stands for batch
standardization, and ReLU stands for activation function. The
C1 layer is three convolutional layers connected in parallel.
The sizes of the convolution kernels of the three convolution
layers are 3 × 3, 5 × 5, and 7 × 7, respectively, and the
numbers of the convolution kernels of the three convolution
layers are 64, 64, and 64, respectively. The C2-C5 layers have
the same structure, and they are all convolutional layers with
a convolution kernel size of 3 × 3 and a convolution kernel
number of 64. The C6 layer generates 1 featuremapwith 3×3
kernel. The output of C6 layer in the third CanNet unit is the
output of the reconstruction network.

TABLE 1. Structure and paraments of CanNet unit.

Specifically, the deep residual network F r (·) uses
∧

X as

input to generate a predicted residual
∧

D
.
The process of gen-

erating the initial reconstructed image could be expressed as,
∧

D = Fr(
∧

X,Qr) = Qr
×
∧

X (5)

where Qr is the parameters of deep residual network.
The reconstruction part takes CS measurement Y as input,

firstly obtains initial reconstructed image
∧

X , and then adds

it to the predicted residual
∧

D to get the final reconstructed
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image
∧∧

X , i.e.,
∧∧

X =
∧

X +
∧

D (6)

We use Equation (2), Equation (4) and Equation (5) to

replace the Y,
∧

X and
∧

D. Therefore, the final reconstructed

image
∧∧

X of FFPL-EDRNet could be obtained, which could
be expressed as:
∧∧

X =Ff (CN(X,W ),Qf )+Fr(Ff (CN(X,W ),Qf ),Qr) (7)

D. FFPL-EDRNet LOSS FUNCTION
The loss function of the traditional CS image reconstruc-
tion methods is Pixel-wise loss function, such as mean
square error (MSE) and mean absolute error (MAE). Since
Pixel-wise loss function only pays attention to the difference
between the corresponding pixels of the reconstructed image
and label image, it leads to blurred details of the reconstructed
image. However, the perceptual loss function compares the
feature of reconstructed image passing through CNN with
the feature of label image passing through CNN, making
the reconstructed image more semantically similar to label
image.

FIGURE 5. The error back propagation process of FFPL-EDRNet using the
pretrained InceptionV3.

Since the pretrained InceptionV3 has excellent perfor-
mance in feature extraction, we use it to define the loss
function [25]. Figure 5 shows the error back propagation
process of FFPL-EDRNet using the perceptual loss func-
tion based on pretrained InceptionV3. Firstly, the pretrained
InceptionV3 extracts the features of the reconstructed image
and label image. Secondly, we use the weighted mean square
error (WMSE) to define the error between features. Finally,
the best reconstructed image could be obtained by adjusting
the network parameters according to the error.

The loss function could be determined with.

lossInceptionV3(
∧∧

X ,X) =
1
N

N∑
j=1

W j

×(Inceptionj(
∧∧

X −Inceptionj(X))
2

(8)

where Inceptionj(X ) is the feature map of the j-th layer with

the label image X , and Inceptionj(
∧

X ) is the feature map of

the j-th layer with the reconstructed image
∧

X . Here j refers to
conv2d_18, conv2d_25, conv2d_39, conv2d_49, conv2d_59,
conv2d_69, conv2d_73, conv2d_83 and conv2d_93 layer.
Wj is the weighted value of the above convolution layers. N is
the number of convolution layers, here N refers to 9.

E. CS PROCEDURE
The flowchart of FFPL-EDRNet is shown in Figure 6.
Given an image, We firstly use the measurement layer to
directly perform non-overlapping sliding window convolu-
tion measurements on the image to obtain the full image
measurements. Then, the deconvolution layer takes the CS
measurements as input and outputs the initial reconstructed
image, which is finally processed with residual network to
refine the input image. We take the CS of SORS image as an
example.

FIGURE 6. Flow chart of FFPL-EDRNet.

III. FFPL-EDRNet TRAINING
A. DATASET
The SpaceNet dataset [33] is a collection of SORS images
provided by DigitalGlobe commercial satellite company.
It contains some label information that could be used for
machine learning research. Table 2 shows the number of
samples in the training set, verification set and test set in
this paper. We use 1500 images from SpaceNet dataset for
training, 200 images from SpaceNet dataset for verifying
and 400 images from SpaceNet dataset for testing. Specially,
the validation set is run after each epoch to calculate the
loss value of validation data during the training process.
The number of iterations corresponding to the minimum loss
value of the validation set is the optimal number of training
of the network.

Figure 7 lists some of the dataset images used in this paper.

B. TRAINING ENVIRONMENT
DL requires a relatively high experimental environment,
so the environment in Table 3 is adopted for FFPL-EDRNet
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TABLE 2. Dataset partitioning.

FIGURE 7. Part of the SpaceNet SORS dataset.

TABLE 3. Experimental environment.

training. Specially, we use GeForce RTX 3070, which could
greatly speed up training.

C. TRAINING PARAMETERS
In this paper, FFPL-EDRNet adopts the end-to-end train-
ing method, while the original image is used as both the
input image and label image, i.e., (X ,X ) as input-output
pair for FFPL-EDRNet training. The training procedure of
FFPL-EDRNet consists of measurement layer CN (·), decon-
volution layer F f (·) and deep residual network F r (·), respec-
tively. Table 4 shows the parameter setting for FFPL-EDRNet
training. Specially, considering the constraints of GPU mem-
ory 8G, we set batch size to 5. Note that, the training pro-
cess could obtain the optimal parameters W, Qf and Qr ,
respectively.

TABLE 4. Training parameters.

IV. FFPL-EDRNet EXPERIMENTS
In this section, we conduct a series of experiments to test the
performance of the proposed method.

A. EVALUATION METRICS
We utilize two objective quantitative indicators: PSNR [34]
and SSIM [35] for evaluation. The calculation methods
of PSNR and SSIM are shown in Equation (9) and (10)
respectively.

PSNR(X,
∧∧

X ) = 20× lg(
255√

MSE(X,
∧∧

X )

) (9)

where X is the original image,
∧∧

X is the reconstruction image,

MSE(X,
∧∧
X ) is the mean square error between the original

image and the reconstruction image. PSNR could effectively
reflect the similarity between the corresponding pixels of
two images. The larger the value, the higher the similarity
between the corresponding pixels of the image.

SSIM(X,
∧∧
X ) =

(2µXµ∧∧
X
+ C1)(2σ

X
∧∧

X
+ C2)

(µ2
X + µ

2
∧∧

X
+ C1)(σ 2

X + σ
2
∧∧

X
+ C2)

(10)

where X is the original image,
∧∧
X is the reconstruction image,

µX and µ∧∧
X

are the mean values of the original image X and

the reconstruction image
∧∧
X , σX and σ∧∧

X
are the variances

of the original image X and the reconstruction image
∧∧
X ,

σ
X

∧∧
X

is the covariance of the original image X and the

reconstruction image
∧∧
X . SSIM could effectively reflect the

structural similarity between two images. The value range
is −1 to 1. The larger the value, the higher the structural
similarity between the image.

B. COMPARATIVE EXPERIMENTS WITH OTHER
STATE-OF-THE-ART IMAGE RECONSTRUCTUIN NETWORKS
We compare FFPL-EDRNet with other state-of-the-art
image reconstruction networks on the dataset and experi-
mental environment described in this paper. We compare
FFPL-EDRNet with DR2-Net [22], FCMN [23], EDNet [26],
DCL+CanNet [25]. Table 5-8 shows the PSNR and SSIM
value of six SORS reconstructed images in the test set from
them. It could be seen from the mean in Table 5-8, Our
FFPL-EDRNet outperforms them at high MRs. For instance,
at MRs = 0.25, the FFPL-EDRNet outperforms DR2-Net,
FCMN, EDNet, and DCL+CanNet by 1.211 dB, 1.166 dB,
1.081dB and 0.918 dB respectively on PSNR, outperforms
DR2-Net, FCMN, EDNet, and DCL+CanNet by 0.021,
0.059, 0.02 and 0.052 respectively on SSIM. FFPL-EDRNet
is also better than them at low MRs. For example, for the
cases that MRs = 0.04 and 0.01, the PSNR and SSIM values
of the FFPL-EDRNet are also higher than DR2-Net, FCMN,
EDNet, and DCL+CanNet. The appendix shows the recon-
structed image diagrams of different CS image reconstruction
algorithms.

V. FFPL-EDRNET DISCUSSION
A. LEARN OR PREDEFINED MEASUREMENT MATRIX
In this subsection, we compare the characteristics of the
learned measurement matrix (LMM) and predefined mea-
surement matrix (PMM) in the time domain and frequency
domain. As shown in Figure 8, (a) is the time domain and
frequency domain of LMM, (b) is the time domain and fre-
quency domain of PMM. They were compared at four MRs.

Comparing the time domain of LMM and PMM,
we observe that LMM has obvious structural information
while PMM is irregular. Compared with the frequency
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TABLE 5. PSNR (dB) and SSIM at MR 25%.

TABLE 6. PSNR (dB) and SSIM at MR 10%.

TABLE 7. PSNR (dB) and SSIM at MR 4%.

TABLE 8. PSNR (dB) and SSIM at MR 1%.

domain, the information captured by the LMM is more con-
centrated in the low frequency, which means that the LMM
could capture more energy from the original image. Accord-
ing to the time-domain and frequency-domain diagrams,
LMM could improve the quality of the later reconstructed
image.

B. ABLATION STUDIES BETWEEN DEEP RESIDUAL
NETWORK AND LOSS FUNCTION
In this subsection, we conduct ablation studies to confirm
the performance of deep residual network and loss func-
tion. We define the network connecting the measurement
layer CN (·) and the deconvolution layer F f (·) as baseline
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FIGURE 8. The time domain and frequency domain of the measurement matrix.

TABLE 9. Average PSNR (dB) and average SSIM OF THE reconstructed images in the test set.

network. We define the network connecting baseline net-
work and deep residual network as baseline-deep residual
network.

We build four types of CS image reconstruction networks,
which are: baseline network that uses MSE as loss function,
baseline network that uses pretrained InceptionV3 as loss
function, baseline-deep residual network that uses MSE as
loss function and baseline-deep residual network that uses
pretrained InceptionV3 as loss function.

Designed to ensure the accuracy of results, we take the
average PSNR and average SSIM of the reconstructed image
in the test set. Table 9 shows the average PSNR and average
SSIM for the four network models at four MRs.

We firstly analyze the impact of pretrained Incep-
tionV3 loss function on the performance of CS image recon-
struction network. It could be seen from the results in Table 9,
in the case of MRs of 0.25, 0.10, 0.04 and 0.01, the baseline
network using pretrained InceptionV3 as the loss function
outperforms baseline network usingMSE as the loss function
by 1.153 dB, 1.078 dB, 1.109 and 1.194 dB respectively
on PSNR, outperforms baseline network using MSE as the
loss function by 0.076, 0.072, 0.060 and 0.062 respectively

on SSIM. This shows that the pretrained InceptionV3 loss
function could improve the performance of the CS image
reconstruction network.

Then, we analyze the impact of deep residual network
on the performance of CS image reconstruction network.
It could be seen from the results in Table 9, in the case of
MRs of 0.25, 0.10, 0.04 and 0.01, the baseline-deep resid-
ual network using MSE as loss function outperforms base-
line using MSE as loss function by 6.424 dB, 6.058 dB,
5.675 and 4.907 dB respectively on PSNR, outperforms base-
line using MSE as loss function by 0.272, 0.284, 0.292 and
0.246 respectively on SSIM. This shows that the deep
residual network could also improve the performance of
CS image reconstruction network. And compared with pre-
trained InceptionV3 loss function, deep residual network
improves CS image reconstruction network even more. How-
ever, it is not necessary to add too many CanNet units into
the FFPL-EDRNet. Therefore, we add three CanNet units
in FFPL-EDRNet. i.e., the deep residual network consists of
three CanNet units.

Finally, we analyze the impact of the combination of deep
residual network and pretrained InceptionV3 loss function on
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FIGURE 9. Comparison of loss function of MSE, MAE and WMSE to FFPL-EDRNet.

TABLE 10. Time complexity (in seconds) for reconstructing a single 200× 200 image on GPU (GTX3070).

the performance of CS image reconstruction network. It could
be seen from the results in Table 9, in the case ofMRs of 0.25,
0.10, 0.04 and 0.01, the baseline-deep residual network using
pretrained InceptionV3 as loss function outperforms the other
three CS image reconstruction networks. This shows that the
combination of deep residual network and pretrained Incep-
tionV3 loss function could greatly improve the performance
of CS image reconstruction network.

C. PERCEPTUAL LOSS FUNCTION OR PIXEL-WISE LOSS
FUNCTION
In this subsection, we compare the effects of Perceptual loss
function and Pixel-wise loss function on the quality of recon-
struction. It could be seen from the reconstructed images
in Figure 9. The reconstructed images of FFPL-EDRNet have
no block effect.

As shown in Figure 9, MSE andMAE using the Pixel-wise
loss function will cause the reconstructed image to be
smoother, i.e., the details are lost. However, the reconstructed

image with perceptual loss function solves this problem, and
makes the reconstructed image more semantically similar to
label image.

D. TIME COMPLEXITY
As the time complexity is an important factor in image
reconstruction, we analyze the time complexity of FFPL-
EDRNet. We compare it with DR2-Net, FCMN, EDNet,
DCL+CanNet, baseline network, baseline network-1CanNet
and baseline network-2CanNet. The experimental results are
summarized in Table 10 and Table 11.

Firstly, we show the time complexity of FFPL-EDRNet
with different structures. From Table 10, we could observe
that the time complexity has a linear relationship with the
depth of network, i.e., deeper FFPL-EDRNet requires more
running time. Among the four networks, baseline network
contains only two convolutional layers, thus shows the fastest
speed. The baseline network-3CanNet (FFPL-EDRNet) con-
tains 20 convolutional layers, and has the longest running
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TABLE 11. Average PSNR (dB) and average SSIM of the reconstructed images in the test set.

FIGURE 10. Comparison of robustness of DR2-Net, FCMN, EDNet, DCL+CanNet and FFPL-EDRNet to Gaussian noise.

time. However, the increase in reconstruct time is at the
millisecond level, which does not affect the real-time perfor-
mance of image reconstruction.

Then, we compare themwithDR2-Net, FCMN, EDNet and
DCL+CanNet. ComparedwithDR2-Net, FCMN, EDNet and
DCL+CanNet, the baseline network spends the least time
to complete a basic image reconstruction. Therefore, when
running time is a very important consideration, Fast image
reconstruction using the baseline network is a good choice.
From Tables 10-11, we could observe that FFPL-EDRNet

with structure baseline network-1CanNet not only runs the
fastest but also has the highest image reconstruction quality
than DR2-Net, FCMN, EDNet and DCL+CanNet.

E. ROBUST TO NOISE
In order to show the robustness of FFPL-EDRNet to noise,
we study the effect of image reconstruction in the presence
ofmeasurement noise.We firstly add standardGaussian noise
to the CS measurement of the test set, σ = 0.01, 0.05, 0.1,
0.25, and 0.5 [22], which σ is the standard deviation of
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FIGURE 11. SORS images reconstruction results from DR2 -Net, FCMN, EDNet, DCL+CanNet and
FFPL-EDRNet: (a) Test image A, (b) Test image B.
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Gaussian noise. Secondly, DR2-Net, FCMN, EDNet,
DCL+CanNet and FFPL-EDRNet trained under noiseless
CSmeasurement takes the noisy CSmeasurement as the input
and finally outputs the reconstructed image.

Designed to ensure the accuracy of results, we take the
average PSNR of the reconstructed image in the test set. The
results are summarized in Figure 10.

According to the comparative results in Figure 10, the qual-
ity of the reconstructed image decreases with the introduction
of noise. However, the FFPL-EDRNet outperforms DR2-Net,
FCMN, EDNet, and DCL+CanNet for the σ = 0.01, 0.05,
0.1,0.25, 0.5 at four MRs.

From section IV, we get that the image reconstruction
performance of FFPL-EDRNet is better than other image
reconstruction algorithms. In this section, we have dis-
cussed five aspects of FFPL-EDRNet, these five aspects are
learn or predefined measurement matrix, ablation studies
between deep residual network and loss function, percep-
tual loss function or pixel-wise loss function, time com-
plexity, and robust to noise. Section VA proves that LMM
could improve the quality of the later reconstructed image.
Section VB proves that both deep residual network and pre-
trained InceptionV3 loss function could improve the perfor-
mance of CS image reconstruction network, it is worth noting
that the deep residual network improves the reconstruction
performance more. Section VC proves that the pretrained
InceptionV3 loss function is better than the Pixel-wise loss
function in the improvement of reconstruction performance.
Section VD proves FFPL-EDRNet with structure baseline
network-1CanNet not only runs the fastest but also has the
highest image reconstruction quality than DR2-Net, FCMN,
EDNet and DCL+CanNet. Section VE proves the quality of
the reconstructed image decreases with the introduction of
noise, but the FFPL-EDRNet outperforms DR2-Net, FCMN,
EDNet, and DCL+CanNet under the influence of noise.

VI. CONCLUSION
After the introduction of CS technology in the data acqui-
sition phase of SORS images, in order to further improve
the quality of SORS image reconstruction, we propose
FFPL-EDRNet. The network simulates the image acquisi-
tion process of the SORS camera based on CS, and fur-
ther enhances the reconstruction quality. The structure of
FFPL-EDRNet is composed of a convolution measurement
layer and reconstruction network. In the measurement pro-
cedure, the learned measurement layer directly performs
non-overlapping sliding window convolution measurement
on the image to obtain the full image measurements. For
the measurement reconstruction, the reconstruction network
firstly uses the trained deconvolution layer to obtain the
initial reconstructed image and then trained deep residual
networks refine the initial result by predicting the residual
between the initial reconstruction and label image. Experi-
ment results shown that in the case of MRs of 0.25, 0.10,
0.04 and 0.01, our FFPL-EDRNet has excellent performance
compared with state-of-the-art reconstruction network,

with PSNR = 27.502dB, 26.804 dB, 24.593 dB, 21.359 dB
and SSIM = 0.842, 0.816, 0.720, 0.568. Moreover, there
is no block effect in the reconstructed images. Therefore,
Our FFPL-EDRNet could enhance the quality of image
reconstruction.

APPENDIX A
RECONSTRUCTED IMAGES DISPLAY OF FIVE CS IMAGE
RECONSTRUCTION ALGORITHMS
In this section, we show the reconstruction results of two
images randomly selected from the test set under five dif-
ferent image reconstruction algorithms. Figure 11(a) shows
the reconstruction effect of test image A under five image
reconstruction algorithms. Figure 11(b) shows the recon-
struction effect of test image B under five image reconstruc-
tion algorithms.

It could be seen from the reconstructed images
in Figure 11. The reconstructed images of FFPL-EDRNet
have no block effect. Moreover, in the case of MRs of 0.25,
0.10, 0.04 and 0.01, our FFPL-EDRNet has the best per-
formance compared with DR2-Net, FCMN, EDNet and
DCL+CanNet.
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