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Abstract: Accurate and real-time acquisition of vehicle state parameters is key to improving the
performance of vehicle control systems. To improve the accuracy of state parameter estimation
for distributed drive electric vehicles, an unscented Kalman filter (UKF) algorithm combined with
the Huber method is proposed. In this paper, we introduce the nonlinear modified Dugoff tire
model, build a nonlinear three-degrees-of-freedom time-varying parametric vehicle dynamics model,
and extend the vehicle mass, the height of the center of gravity, and the yaw moment of inertia,
which are significantly influenced by the driving state, into the vehicle state vector. The vehicle state
parameter observer was designed using an unscented Kalman filter framework. The Huber cost
function was introduced to correct the measured noise and state covariance in real-time to improve
the robustness of the observer. The simulation verification of a double-lane change and straight-line
driving conditions at constant speed was carried out using the Simulink/Carsim platform. The
results show that observation using the Huber-based robust unscented Kalman filter (HRUKF) more
realistically reflects the vehicle state in real-time, effectively suppresses the influence of abnormal
error and noise, and obtains high observation accuracy.

Keywords: distributed drive; Huber method; unscented Kalman filter; state estimate

1. Introduction

Due to the development of vehicle intelligence in recent years, an increasing number
of active safety control systems have been widely used in vehicles, including electronic
body stability systems, electronic brake-force distribution systems, drive anti-skid systems,
and active steering systems. However, a stable and reliable control system does not only
lie in the robustness of the control algorithm, but also relies on the accurate acquisition
of key vehicle dynamic state parameters. Unlike conventional vehicles, distributed-drive
electric vehicles are driven independently by four motors, and changes in the vehicle
mass, the yaw moment of inertia, and the height of the center of gravity directly affect
the vehicle driving state; for example, changes in the vehicle mass directly affect the
vehicle’s economy and handling stability, and a change in the height of the center of
mass has a significant impact on the vehicle’s roll stability. The amount of lateral load
transfer is also affected by changes in the vehicle mass and the height of the center of
gravity, thus affecting the vehicle driving state vector, and the MAP characteristics of the
vehicle drive motor efficiency are related to the motor speed and torque. Therefore, for
the characteristics of distributed drive electric vehicles, more accurate state parameters
must be obtained, and the estimation and identification of these state parameters are
particularly important. Estimation of vehicle condition parameters is necessary, because
many condition parameters are not directly measured or obtained by sensors due to
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sensor price limitations and current technology constraints. At present, the widely studied
estimates mainly include the vehicle sideslip angle, yaw rate, longitudinal velocity, tire
force, and peak road adhesion coefficient, which do not involve the identification of the
vehicle parameters [1–3]. The accurate identification of vehicle parameters is an important
part in the design process of the vehicle active safety control system, and its accuracy and
robustness directly affect the effectiveness of the controller. The change in these parameters
affects the convergence of the controller. If the controller diverges when the vehicle is
running at high speed, it can lead to serious traffic safety accidents. Thus, the acquisition
of the vehicle’s own parameters and the improvement of the robustness of the controller
are particularly important. Huang et al. proposed an adaptive unscented Kalman filter
(UKF) to estimate the vehicle state, including state vectors such as velocity, yaw rate, and
vehicle sideslip angle [4]. Wielitzka et al. designed a joint observer of an unscented Kalman
filter to estimate the vehicle mass, vehicle sideslip angle, and yaw moment of inertia,
which effectively improved the estimation accuracy of vehicle state parameters [5]. Jiang
et al. combined recursive least squares algorithm (RLS) and KF algorithms to estimate
vehicle parameters and states, respectively, using RLS for vehicle mass, road slope, the
height of the center of gravity, and suspension stiffness, and a dual extended Kalman filter
(EKF) for vehicle load transfer and tire vertical force, effectively improving the robustness
of the observer [6]. Hong et al. estimated the center-of-mass position, the vehicle mass,
and the yaw moment of inertia based on a double Kalman filter, but did not consider
the effect of the height of the center of gravity [7]. BOADA et al. performed parameter
identification based on a double Kalman filter for road slope, tire lateral deflection stiffness,
suspension stiffness, and the height of the center of gravity [8]. The above-mentioned
paper uses a variety of methods to identify the vehicle state parameters, but it is difficult
to achieve effective estimation for systems with strong nonlinearity using these methods,
and the vehicle state vectors considered for parameter estimation are small. The vehicle’s
own parameters, including mass, yaw moment of inertia, and the height of the center of
gravity, directly affect the lateral tire forces, which in turn affect the vehicle’s lateral and
longitudinal velocity, acceleration, sideslip angle, yaw rate, and other state vectors.

The Kalman filter has successfully been applied in many fields as an optimal minimum
norm estimation. However, the standard Kalman filter is only applicable to linear systems,
and the vehicle system, as a strong nonlinear system, cannot be directly applied to the
standard Kalman filter framework. One method is to linearize the nonlinear system, such
as the extended Kalman filter (EKF); however, the EKF method can only achieve first-order
Taylor accuracy and requires solving the Jacobian matrix, which can be difficult when the
model is complex. Another method uses statistical linearization to approximate nonlinear
equations, such as the unscented transform (UT) method used by the unscented Kalman
filter, which approximates the probability density distribution for nonlinear functions
without solving the complex Jacobian matrix. In addition, the estimation accuracy can
reach the second-order accuracy of the Taylor series expansion [9,10], with advantages of
high computational accuracy and good stability. Thus, the UKF algorithm is chosen as the
basis of vehicle state parameter estimation in this paper [9,10].

In 1964, Huber proposed a method based on minimizing the error of the paradigm, the
Huber method, to improve the robustness of the algorithm under the noise of the perturb-
ing Gaussian distribution, by minimizing the error asymptotically. This approach is more
robust than the paradigm-based estimation method [11]. L. Chang et al. introduced the
Huber method into the UKF framework to study the UKF algorithm under a non-Gaussian
probability distribution and used the Huber cost function to modify the standard UKF
measurement update equation. Numerical simulations proved the effectiveness of the
algorithm [12]. Jing Hou et al. designed a Huber-based robust cubature Kalman filter (CKF)
observer for state of charge (SOC) state observation of batteries, which enhances the robust-
ness to values of current and voltage measurements caused by abnormal operation [13]. Lu
Xiong et al. designed an algorithm for the autonomous underwater vehicle (AUV) terrain
matching problem based on the Huber method in combination with UKF, and the results
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show that the substitution of the Huber method into the UKF framework can effectively
improve the robustness of the algorithm [14]. Currently, the Huber method is often used in
the CKF framework and is widely used in battery SOC, power grid system state estimation,
combined INS/DVL navigation, and target tracking. However, it has not yet been used in
distributed drive electric vehicle (EV) state parameter estimation [15–18]. In this study, the
Huber method is introduced into the UKF vehicle state parameter estimation framework
to correct for the measured noise and state covariance in real-time, which reduces the
convergence time and improves the robustness and estimation accuracy of the algorithm.
This study used distributed drive electric vehicles as the research object. The main stages
were to consider the variation caused by the interaction of vehicle mass, height of the
center of gravity, and yaw moment of inertia; expand the above vehicle parameters into the
vehicle state vector; design an observer that can simultaneously estimate the vehicle state
and parameters; and introduce the Huber method into the UKF vehicle state parameter
estimation framework to correct the measurement noise and state covariance in real-time.
The result was to reduce the convergence time and improve the robustness and estimation
accuracy of the algorithm.

2. Nonlinear Time-Varying Parametric Vehicle Dynamics Model
2.1. Vehicle Model

The parameters of the vehicle during the driving process, including the height of the
center of mass and the moment of inertia, are affected by the driving state of the vehicle
and the vehicle load. The change of the height of the center of gravity of the vehicle is
particularly important for the vehicle’s stability control. The vehicle dynamics model
studied in this paper is shown in Figure 1. The origin of the defined vehicle coordinate
system is located at the center of gravity (CG), and the forward direction of the vehicle
is defined as the positive axis direction; the left side is the positive direction of the y-axis,
and the positive direction of the z-axis is perpendicular to the ground. It is assumed
that the pitch, vertical, and roll motions of the vehicle are ignored, and the influence of
the suspension system is ignored. Furthermore, the influence of the camber angle and
the return torque of the wheels on the dynamics of the vehicle is ignored. This is the
state parameter required for vehicle stability control. We established a three-degrees-of-
freedom dynamic model of a distributed drive electric vehicle with nonlinear time-varying
parameters including yaw, longitudinal, and lateral motion [19]. The vehicle dynamics
equations are as follows.
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Figure 1. The non-linear three-degrees-of-freedom (3-DOF) vehicle model.

The equation of the longitudinal motion is:

m(t)(
.

Vx −Vy
.
ψ) =

2

∑
i,j=1

Fxij = m(t)ax (1)



Energies 2021, 14, 750 4 of 15

2

∑
i,j=1

Fxij = Fx11 cos δ11 + Fx12 cos δ12 − Fy11 sin δ11 − Fy12 sin δ12 + Fx21 + Fx22 (2)

The equation of the lateral motion is:

m(t)(
.

Vy −Vx
.
ψ) =

2

∑
i,j=1

Fyij = m(t)ay (3)

2

∑
i,j=1

Fyij = Fx11 sin δ11 + Fx12 sin δ12 + Fy11 cos δ11 + Fy12 cos δ12 + Fy21 + Fy22 (4)

The equation of the yaw motion is:

Izz(t)
..
ψ =

2

∑
i,j=1

Mzij (5)

2
∑

i,j=1
Mzij = a(Fy11 cos δ11 + Fy12 cos δ12) + a(Fx11 sin δ11 + Fx12 sin δ12)−

w
2 (Fy11 sin δ11 − Fy12 sin δ12) +

w
2 (Fx11 cos δ11 − Fx12 cos δ12)−

b(Fy21 + Fy22) +
w
2 (Fx21 − Fx22)

(6)

where Vx, Vy are the longitudinal and lateral velocities;
.
ψ is the yaw rate of the vehicle; ax

and ay are longitudinal acceleration and lateral acceleration, respectively; Fxij and Fyij are
longitudinal and lateral forces of the four wheels, respectively, where ij is 11, 12, 21, and 22,
which represent the front left, front right, rear left, and rear right wheel, respectively. Mz
represents the yaw moment of the vehicle; m is the vehicle mass; w is the track width; a
and b are the distances from the gravity center to the front and the rear axles, respectively;
L is the wheelbase; Izz is the moment of inertia of the vehicle around the axis; and δ11 and
δ12 are the steering angles of the left and right front wheels, respectively.

When the vehicle is turned, the longitudinal force and the lateral force of the tire are
affected by the transfer of the vertical load by the following equation:

Fz1j =
b

2L m(t)g− hg(t)
2L m(t)ax ∓

bhg(t)
Lw m(t)ay

Fz2j =
a

2L m(t)g +
hg(t)

2L m(t)ax ±
ahg(t)

Lw m(t)ay

 (7)

where hg is the height of the center of gravity, and Fz1j and Fz2j are the vertical load of the
left front wheel and the right front wheel, respectively.

The sideslip angle of the tire is calculated as follows:

α1j = δ− arctan( Vy+a
.
ψ

Vx∓w
.
ψ/2

)

α2j = −arctan( Vy−b
.
ψ

Vx±w
.
ψ/2

)

 (8)

where α1j and α2j are the sideslip angle of the front tire and the rear tires, respectively.

2.2. Tire Model

As a typical component of a ground vehicle, tires transfer the vehicle forces and
torques to the road through the tire’s grounding area, and their performance directly affects
the vehicle dynamic characteristics. In the current theoretical research, the Magic Formula
tire model and the Dugoff tire model are mainly used. However, the Dugoff tire model was
chosen in this study because the MF model requires a large number of tests to obtain the
empirical parameters. The Dugoff tire model has no peak point, and the maximum value is
smaller than the maximum value of the MF model. As the slip rate increases, the difference
between the longitudinal forces of the Dugoff tire model and the MF model increases, and
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as the tire slip angle increases, the difference between the lateral forces of the two models
also increases [20,21]. In view of the above points, the modified Dugoff tire model was
used for modeling, and can be described by:

Fxij = Cxij
tan αij

1 + λij
f (σij)φxij (9)

Fyij = Cyij
tan αij

1 + λij
f (σij)φyij (10)

σij =
µijmaxFzij(1 + λij)

2
√
(Cxijλij)

2 + (Cyij tan αij)
2

(11)

φxij = (1.15− 0.75µijmax)λ
2
ij − (1.63− 0.75µijmax)λij + 1.27 (12)

φyij = (−1.6 + µijmax) tan αij + 1.155 (13)

f (σij) =

{
σij(2− σij)

1
(σij ≤ 1)
(σij > 1)

(14)

λij =
Rωij −Vx

max(Rωij, Vx)
(15)

where Cxij and Cyij are the longitudinal and lateral stiffness of the four tires, respectively;
µijmax is the pavement peak adhesion coefficient; φxij and φyij are the longitudinal and
lateral correction coefficients of the tires, respectively; and λij is the slip rate.

3. Huber-Based Robust Unscented Kalman Filter (HRUKF)

To design a Huber-based robust unscented Kalman filter state observer, the correspond-
ing state and observation quantities were selected, the state and observation equations of
the nonlinear observer were constructed, and the Huber method was substituted into the
UKF framework. The corresponding technical flow chart is shown in Figure 2.
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3.1. System Equations and Observation Equations

Parameters such as mass, the moment of inertia, and the height of the center of
mass are susceptible to changes in force while the vehicle is in motion, which changes the
response of the vehicle dynamic system. The vehicle’s own structural parameters, including
track width and wheelbase, are not susceptible to large changes due to external influences.
In this paper, three vehicle parameters, namely, the vehicle mass m, the Yaw moment of
inertia Izz, and the height of the center of gravity hg, are extended to the vehicle state vector
using the above nonlinear time-varying vehicle dynamics model.

The state variables of the vehicle system equation are as follows:

x = (Vx, Vy,
.
ψ, m, hg, Izz)

T
(16)

Equations (1)–(16) can be combined to the obtain vehicle system model:

.
x(t) = (l1, l2, l3, l4, l5, l6)

T (17)

where:

l1 = (Fx11 cos δ11 + Fx12 cos δ12 − Fy11 sin δ11 − Fy12 sin δ12 + Fx21 + Fx22)/m(t) + Vy
.
ψ;

l2 = (Fx11 sin δ11 + Fx12 sin δ12 + Fy11 cos δ11 + Fy12 cos δ12 + Fy21 + Fy22)/m(t)−Vx
.
ψ;

l3 = (a
2
∑

j−1
(Fy1j cos δ1j + Fx1j sin δ1j)− w

2 (Fy11 sin δ11 − Fy12 sin δ12)+

w
2 (Fx11 cos δ11 − Fx12 cos δ12)− b(Fy21 + Fy22) +

w
2 (Fx21 − Fx22))/Izz(t);

(18)

l4 = 0; l5 = 0; l6 = 0.
The vehicle longitudinal and lateral acceleration and yaw rate are easily obtained by

the distributed drive electric vehicle’s own sensors, and so are used as observables:

z(t) = (ax, ay,
.
ψ)

T
(19)

The system input is:
u = (δ, ω11, ω12, ω13, ω14)

T (20)

where ωij is the angular velocity of wheel rotation, obtained from the wheel speed sensor,
and δ is the steering wheel angle. Following the establishment of initial values, the UKF
observation system was designed.

3.2. Unscented Kalman Filter Framework

To extend the Huber method from the linear to the nonlinear case, the UKF algorithm
using the UT combined with the standard Kalman filter applied to the nonlinear vehicle
dynamics equations, the equation of state and observation for a nonlinear vehicle discrete
system are as follows:

xk+1 = f (xk) + ωk (21)

yk = h(xk+1) + vk+1 (22)

where f (·) and h(·) represent the non-linear transition function and observation function.
The contained variables are the state vector and the observation vector of the vehicle, as
shown in Section 3.1. Among these, the value ranges of state noise ωk and measurement
noise vk are ωk ∼ N(0, Qk−1) and vk ∼ N(0, Rk−1), respectively.

The sigma point set and the corresponding weights are calculated as follows:

χ0
k|k = x̂k|k (23)

χi
k|k = x̂k|k + (

√
(n + λ)Pk|k)i

(24)

χi+n
k|k = x̂k|k − (

√
(n + λ)Pk|k)i+n

(25)
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ω
(m)
0 = λ/(n + λ) (26)

ω
(c)
0 = λ/(n + λ) + (1− α2 + β) (27)

ω
(m)
i = λ/(n + λ) = ω

(c)
i (28)

where χk is the sigma point of x̂k|k; (
√
(n + λ)Pk|k)

i
is the ith column of the square root

of the matrix; λ is the scaling factor; λ = α(n + k)− n, α affects the distribution of the
sigma point around the mean value of the state, generally taking (1 ≤ α ≤ 10−4); k is the
quadratic scaling factor, which generally equals 0; β contains the x priori estimate of the
state, β = 2 is optimal for the case where the mean values of the state and the updated
estimate are Gaussian; ω

(m)
i and ω

(c)
i represent the distribution of the mean values of the

state and the updated estimate. Statistical weights were estimated for the covariance. Based
on the vehicle system derived above, the observation equations, and the principle of UT,
the unscented Kalman filter procedure is as follows [21–26]:

Initialization:
x̂0 = E[x0] (29)

P0 = E[(x0 − x̂0)(x0 − x̂0)]
T (30)

Sigma point calculation and time update:

χi
k|k = [x̂k−1, x̂k−1 +

√
(n + λ)Pk−1,

x̂k−1 −
√
(n + λ)Pk−1]

(31)

χi
k|k−1 = f (χi

k−1) (32)

x̂k|k−1 =
2n

∑
i=0

ω
(m)
i χi

k|k−1 (33)

Pk|k−1 =
2n

∑
i=0

ω
(c)
i [χi

k|k−1 − x̂k|k−1][χ
i
k|k−1 − x̂k|k−1]

T
(34)

Pk|k−1 = Pk|k−1 + Qk (35)

Zi
k|k−1 = h(χi

k|k−1) (36)

ẑk|k−1 = f (χi
k−1) (37)

Measurement update:

Pzz
k|k−1 =

2n

∑
i=0

ω
(c)
i [Zi

k|k−1 − ẑk|k−1][Z
i
k|k−1 − ẑk|k−1]

T
(38)

Pzz
k|k−1 = Pzz

k|k−1 + Rk (39)

Pxz
k|k−1 =

2n

∑
i=0

ω
(c)
i [χi

k|k−1 − x̂k|k−1][Z
i
k|k−1 − ẑk|k−1]

T
(40)

K = Pxz
k|k−1(Pzz

k|k−1)
−1 (41)

x̂k|k = x̂k|k + K(zk − ẑk|k−1) (42)

Pk|k = Pk|k−1 − K(Pzz
k|k−1)K

T (43)

where Qk and Rk are the variance of system noise and measured noise, respectively.
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3.3. HRUKF Algorithm Derivation

Based on the above UKF derivation process, by applying the Huber method to the
UKF framework, a nonlinear regression model is constructed as follows:[

yk+1
x̂k+1|k

]
=

[
h(xk+1)

xk+1

]
+

[
vk+1

δx̂k+1|k

]
(44)

where x̂k+1|k is the state prediction and its covariance is Pk+1|k; δk+1|k is the error between
the true state and the state prediction. The correlation quantity is defined as follows:

^

Sk+1 =

[
Rk+1 0

0 Pk+1|k

]
(45)

^
z k+1 =

^

S
−1/2

k+1

[
yk+1

x̂k+1|k

]
(46)

g(xk+1) =
^

S
−1/2

k+1

[
h(xk+1)

xk+1

]
(47)

^

ξ k+1 =
^

S
−1/2

k+1

[
vk+1

δx̂k+1|k

]
(48)

It can be seen from the above formula that
^

ξ k+1 is an identity matrix, and the above
equations can be integrated to obtain:

^
z k+1 = g(xk+1) +

^

ξ k+1 (49)

Define Huber cost function:

J(xk+1) =
m+n

∑
i=1

`(
^
e k+1,i) (50)

`(τ) =

{
τ2/2, |τ| ≤ γ

γ|τ| − γ2/2, |τ| > γ
(51)

where residual vector
^
e k+1 =

^
z k+1− g(xk+1);

^
e k+1,i is the ith column of the residual vector

^
e k+1; γ is the tuning factor, generally γ = 1.345. For the smaller τ, the Huber function has
the characteristic of l2 norm, so the estimation accuracy under Gaussian noise is guaranteed;
for the larger τ, the Huber function grows slowly and can suppress the influence of outliers
and noise. The Huber cost function combines the advantages of l1 and l2 norms, and its

algorithm is more robust [16,17]. Defining
^

Θ(
^
e k+1,i) =; (

^
e k+1,i), the partial derivative of

the residual vector can be found to determine the minimum value of the above formula:

m+n

∑
i

^

Θ(
^
e k+1,i)

∂
^
e k+1,i

∂xi
= 0 (52)

Definition ϑ(
^
e k+1,i) = Θ(

^
e k+1,i)/

^
e k+1,i:

^

ϑ(
^
e k+1,i) =

 1,
sgn(

^
e k+1,i)γ/

^
e k+1,i,

∣∣∣^e k+1,i

∣∣∣ ≤ γ∣∣∣^e k+1,i

∣∣∣ > γ
(53)

Let
^

ϑ= diag[ϑ(
^
e k+1,i)], and then use

^

ϑ to recalculate the measurement information. In
this study, the weighted residual covariance matrix was recalculated based on the residual
value, and the following method was used to update the measurement information:
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S̃k+1 =
^

S
1/2

k+1
^

ϑ
−1

(
^

S
1/2

k+1)
T

(54)

where
^

Sk+1 represents the modified covariance matrix, δk+1|k is 0. The state vector corre-

sponding to S̃k+1 and
^

Sk+1 remains unchanged; at this time:

S̃x
k+1 = S̃k+1(m + 1 : m + n, m + 1 : m + n) =

^

Sk+1(m + 1 : m + n, m + 1 : m + n) = Pk+1|k
(55)

The modified measurement covariance matrix R̃k+1 is calculated as follows:

R̃k+1 = S̃k+1(1 : m, 1 : m) (56)

The derivation from UKF to HRUKF is completed by introducing the above non-linear
regression problem between the predicted state and the observations into the standard
UKF, i.e., the resulting R̃k substitution Rk into the standard UKF measurement update
process. This completes the design of the observation system.

4. Simulation Results and Analysis

To verify the feasibility and effectiveness of the HRUKF algorithm in vehicle state
observation, a Simulink–Carsim co-simulation platform for distributed driving electric
vehicle state estimation was built in the MATLAB/Simulink environment. Carsim, which is
professional vehicle dynamics software, retains the actual vehicle dynamics characteristics.
The vehicle dynamics model provided in the software contains the body, tires, suspension,
powertrain, and aerodynamic system. However, Carsim does not yet include a distributed
drive-related power source system; hence, the distributed drive system of the electric vehi-
cle was built in the form of an external interface. The HRUKF observer system was built in
MATLAB/Simulink, and Carsim interacted with Simulink through the Carsim–Sfunction
interface. In this study, the B-Class, Hatchback model in Carsim version 8.02 was selected
for simulation, and the parameters of the vehicle model used are shown in Table 1. In the
simulation experiments, the effect of the HRUKF state observer was compared with the
standard UKF observer, and the input parameters were maintained the same as those of the
vehicle model to evaluate the effect of both observers under the same working conditions.
The initial speed of the vehicle was set to 60 km/h, and the pavement adhesion coefficient
was 0.85 for asphalt pavement.

Table 1. Vehicle data.

Vehicle Parameters Variable(s) Unit Value(s)

Vehicle mass m kg 1350
Distance from c.g. to front axles a m 1.056
Distance from c.g. to rear axles b m 1.555

Front/rear track width w m 1.54
Height of center of gravity hg m 0.54

Moment of inertia around the Z axis at c.g. Izz kg ·m2 2523
Wheel Effective Radius R m 0.310

Steering ratio i − 25
Tire longitudinal stiffness Cx kN/rad 40

Tire lateral stiffness Cy kN/rad 60

4.1. Simulation of Double-Lane Change Conditions

To evaluate the observation effect of the HRUKF observer on the vehicle state parame-
ters, the steering condition was adopted as the double-lane change condition with more
intense driving; the vehicle front wheel angle is shown in Figure 3. The wheel angle and
the angular velocity of four wheels were taken as the inputs of the observer system, and
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the simulation results of the corresponding UKF algorithm and HRUKF algorithm were
compared, as shown in Figures 4 and 5.
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Figure 4. Vehicle state vector observation results under double-lane change condition. (a) longitudi-
nal observation results; (b) lateral velocity observation results; (c) side-slip angle observation results;
(d) yaw rate observation results.

It can be seen from the observations of longitudinal and lateral velocity, yaw rate,
and sideslip angle that HRUKF can closely approximate the true value of the state output
by Carsim, and HRUKF does not show large deviations in the entire double-lane change
simulation. In the observations of lateral velocity, yaw, and vehicle sideslip angle, a discrete
increase in the error occurred at 0–1 s. HRUKF suppressed the influence of this error, and
the algorithm showed good robustness. The measurement noise of the UKF algorithm is
initially set at a fixed value and cannot be updated in real-time, so the traditional UKF is less
resistant to noise than the HRUKF algorithm. The reason for the error of the lateral velocity
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and the vehicle sideslip angle compared with Carsim is that the vehicle mathematical
model is simplified compared with the simulated dynamics model, ignoring the influence
of the suspension on the vehicle motion state and not considering the influence of the
roll on the whole vehicle. Furthermore, the vehicle steering angle is larger under the
high-speed operating conditions of the double-lane change, and there is load transfer, and
the suspension has an important role in resisting load transfer. Therefore, the simplified
model leads to the error of simulation results, and the accuracy of tire modeling also has
an impact on the result.
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Figure 5. Observation results of vehicle parameters under double-lane change condition. (a) vehicle
mass observation results; (b) height of the center of gravity observation results; (c) yaw moment of
inertial observation results.

According to the observation results in Figure 5, in the mass observation, the HRUKF
algorithm converges to a steady-state in about 0.5 s and can estimate the true mass of the
vehicle. By comparison, the UKF algorithm gradually deviates, with a mass error of about
3 kg at the end of the double-lane change condition. In Figure 5, the percentage error of
the UKF algorithm in the observation of mass center height is about 280%, which does not
reflect the real vehicle condition; by comparison, the HRUKF algorithm controls the error
to about 10%, which better reflects the mass center height of the vehicle. Both the UKF and
HRUKF algorithms can better observe the variation of inertia in the transverse pendulum
rotation, and the HRUKF algorithm is closer to the true value than the UKF algorithm. To
further evaluate the estimation effect of the two algorithms, the root mean square error
(RMSE) was used for quantitative analysis, and was calculated as follows:

RMSEk(i) =

√√√√ 1
M

M

∑
l=1

(x(l)k (i)− x̂(l)k|k(i))
2

(57)
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The calculated RMSE indicators under the double-lane change condition are shown in
Table 2.

Table 2. Root mean square error (RMSE) index for double-lane change conditions.

RMSE

Parameters UKF HRUKF

Yaw rate 0.0024 0.0017
Longitudinal velocity 0.3132 0.1092

Lateral velocity 0.0296 0.0297
Vehicle sideslip angle 0.0018 0.0018

Vehicle mass 2.7951 0.4677
Yaw moment of inertia 0.0411 0.0037

Height of the center of gravity 0.3868 0.0500

4.2. Simulation of Straight-Line Driving Condition at Constant Speed Condition

To further evaluate the observation effect of the HRUKF observer when the vehicle is
driven under multiple working conditions, a 60 km/h uniform velocity driving condition
was used for evaluation, with the front wheel angle constant at 0. The HRUKF and UKF
algorithms are compared with the real value of the Carsim output, and the corresponding
simulation results are shown in Figures 6 and 7.
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Figure 6. Observation results of vehicle parameters under the straight-line driving condition at
constant speed condition. (a) longitudinal velocity observation results; (b) lateral velocity observation
results; (c) side-slip angle observation results; (d) yaw rate observation results.
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Figure 7. Observation results of vehicle parameters under the straight-line driving condition at constant
speed. (a) vehicle mass observation results; (b) height of the center of gravity observation results;
(c) yaw moment of inertial observation results.

As shown in Figure 6, both the UKF and HRUKF algorithms experienced errors
relative to the real value of the Carsim output at the beginning of the simulation in the
straight-line driving condition at constant speed. However, the HRUKF had a smaller
error than the UKF and converged quickly to the real value of the Carsim output in about
2.5 s, whereas the UKF algorithm converged to a certain error relative to the real value.
Thus, the HRUKF algorithm can better reflect the real longitudinal speed of the vehicle
under this working condition. The observation results of lateral velocity, vehicle sideslip
angle, and yaw rate show that the three values of Carsim output are constant at 0 because
of the uniform linear driving condition. The UKF and HRUKF incurred errors due to
the influence of observation noise, and the UKF algorithm generated more errors than
the HRUKF algorithm in the first 0–1 s of operation. The maximum error was more than
200%, and the HRUKF observer showed better robustness because the Huber cost function
suppresses the errors generated by noise.

As shown in Figure 7, the vehicle mass observation result of the UKF algorithm
gradually shifts the real value under the uniform linear driving condition. By comparison,
the HRUKF algorithm converges to near the real value in about 0.5 s, and the absolute error
value is about 0.5 kg, which is the same as that under the double-lane change condition.
In addition, the height of the center of gravity and the yaw moment inertia observations
show that the HRUKF algorithm still suppresses the outliers better with the same initial
values, whereas the UKF algorithm is affected by the outlier divergence. This is particularly
obvious in the height of the center of gravity observations. The results show that the Huber
cost function can suppress the errors well, and HRUKF has better robustness. Similarly,



Energies 2021, 14, 750 14 of 15

to quantitatively analyze the estimation effects of the two algorithms, the RMSE indicator
was used for evaluation, and the results are shown in Table 3.

Table 3. RMSE index for straight-line driving condition at constant speed.

RMSE

Parameters UKF HRUKF

Yaw rate 0.0023 0.0016
Longitudinal velocity 0.3130 0.1090

Lateral velocity 0.0019 0.0007
Vehicle sideslip angle 0.0001 0.0004

Vehicle mass 2.8115 0.5057
Yaw moment of inertia 0.0451 0.0037

Height of the center of gravity 0.4343 0.0513

According to the above indexes, the Huber-based robust unscented Kalman filter can
well observe the state vector and the parameters of the vehicle mass, the height of the
center of gravity, and the yaw moment inertia during the vehicle driving process under
double-lane change and uniform velocity driving conditions.

5. Conclusions

To improve the accuracy and robustness of state observation for distributed drive
electric vehicles with time-varying parameters, a robust unscented Kalman filter state
observer based on the Huber method is proposed in this paper. The UKF algorithm
is used to estimate all vehicle state parameters, and the Huber method is introduced
to simultaneously correct for the measurement noise covariance to reduce the effect of
noise uncertainty. A co-simulation using MATLAB/Simulink and Carsim was used to
validate the observer for the double-lane change and straight-line driving conditions at
constant speed. The HRUKF algorithm provides a good approximation of the true value
of the Carsim output for longitudinal, lateral velocity, and yaw rate observations. In the
observation of vehicle parameters, HRUKF quickly converges to near the true value of
Carsim, and the absolute error is smaller than that of the conventional UKF algorithm.
The Huber cost function can suppress the influence of outliers and noise in the case of
large errors and is consistent with the UKF observations in the case of small errors, i.e.,
the algorithm has good robustness in both operating conditions. The results show that
the HRUKF algorithm is capable of estimating vehicle state vectors and parameters, and
effectively reduces the influence of anomaly errors and noise, providing more reliable
observation information for vehicle stability control systems.

Therefore, future research will involve building a hardware-in-the-loop vehicle state
observation simulation platform to study the effect of the method on state parameter esti-
mation for vehicle models with more degrees of freedom, and to further verify the practical
effect of the algorithm through hardware-in-the-loop simulation and real vehicle tests.

Author Contributions: W.W. conceived this paper, designed the experiments, and analyzed the
data; J.F. revised the paper and provided some valuable suggestions; B.S. did the investigation;
X.L. has done support in software. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 61663042.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2021, 14, 750 15 of 15

References
1. Chen, J.; Jia, G.; Yang, C. UKF-based adaptive variable structure observer for vehicle sideslip with dynamic correction. IET Control

Theory Appl. 2016, 10, 1641–1652. [CrossRef]
2. Jin, X.J.; Yin, G. Estimation of lateral tire–road forces and sideslip angle for electric vehicles using interacting multiple model filter

approach. J. Frankl. Inst. 2015, 352, 686–707. [CrossRef]
3. Wang, S.; Yu, Q.; Zhao, X. Vehicle sideslip angle estimation based on SVD-UPF algorithm. J. Intell. Fuzzy Syst. 2019, 37, 1–11.

[CrossRef]
4. Huang, B.; Wu, S.; Fu, X. State estimation of four-wheel independent drive electric vehicle based on adaptive unscented Kalman

filter. Int. J. Electr. Hybrid Veh. 2017, 9, 151. [CrossRef]
5. Wielitzka, M.; Dagen, M.; Ortmaier, T. Joint unscented Kalman filter for state and parameter estimation in vehicle dynamics. In

Proceedings of the 2015 IEEE Conference on Control Applications (CCA), Sydney, NSW, Australia, 21–23 September 2015; pp.
1945–1950.

6. Jiang, K.; Victorino, A.C.; Charara, A. Adaptive Estimation of Vehicle Dynamics through RLS and Kalman Filter Approaches. In
Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems—(ITSC 2015), Gran Canaria,
Spain, 15–18 September 2015.

7. Hong, S.; Lee, C.; Borrelli, F. A Novel Approach for Vehicle Inertial Parameter Identification Using a Dual Kalman Filter.
IEEE Trans. Intell. Transp. Syst. 2015, 16, 151–161. [CrossRef]

8. Boada, B.L.; Garcia-Pozuelo, D.; Boada, M.J.L. A Constrained Dual Kalman Filter Based on pdf Truncation for Estimation of
Vehicle Parameters and Road Bank Angle: Analysis and Experimental Validation. IEEE Trans. Intell. Transp. Syst. 2017, 18,
1006–1016. [CrossRef]

9. Seung, J.H.; Atiya, A.F.; Parlos, A.G. Identification of unknown parameter value for precise flow control of Coupled Tank using
Robust Unscented Kalman filter. Int. J. Precis. Eng. Manuf. 2017, 18, 31–38. [CrossRef]

10. Biase, F.D.; Lenzo, B.; Timpone, F. Vehicle Sideslip Angle Estimation for a Heavy-Duty Vehicle via Extended Kalman Filter Using
a Rational Tyre Model. IEEE Access 2020, 8, 142120–142130. [CrossRef]

11. Huber, P.J. Robust Estimation of a Location Parameter. Ann. Math. Stats 1964, 35, 73–101. [CrossRef]
12. Chang, L.; Hu, B.; Chang, G. Huber-based novel robust unscented Kalman filter. IET Sci. Meas. Technol. 2012, 6, 502–509.

[CrossRef]
13. Hou, J.; He, H.; Yang, Y.; Gao, T.; Zhang, Y. A Variational Bayesian and Huber-Based Robust Square Root Cubature Kalman Filter

for Lithium-Ion Battery State of Charge Estimation. Energies 2019, 12, 1717. [CrossRef]
14. Xiong, L.; Shen, J.; Bi, X. A Huber based Unscented Kalman Filter Terrain Matching Algorithm for Underwater Autonomous

Vehicle. In Proceedings of the 3rd International Conference on Computer Science and Application Engineering, Sanya, China,
22–24 October 2019.

15. Wang, S.; Zhang, W.; Yin, C. Huber-based Unscented Kalman Filters with the q-gradient. IET Sci. Meas. Technol. 2017, 11, 380–387.
[CrossRef]

16. Liu, H.; Hu, F.; Su, J. Comparisons on Kalman-Filter-Based Dynamic State Estimation Algorithms of Power Systems. IEEE Access
2020, 1, 99. [CrossRef]

17. Li, Y.; Hou, L.; Yang, Y. Huber’s M-Estimation-Based Cubature Kalman Filter for an INS/DVL Integrated System. Math. Probl. Eng.
2020, 2020, 1060672.

18. Yu, A.; Liu, Y.; Zhu, J. An Improved Dual Unscented Kalman Filter for State and Parameter Estimation. Asian J. Control 2015, 18,
1427–1440. [CrossRef]

19. Liu, Y.H.; Li, T.; Yang, Y.Y. Estimation of tire-road friction coefficient based on combined APF-IEKF and iteration algorithm.
Mech. Syst. Signal Process. 2017, 88, 25–35. [CrossRef]

20. Li, K.; Luo, Y.; Chen, H. State Estimation and Identification of Advanced Electric Vehicles; China Machine Press: Beijing, China, 2019;
pp. 28–30.

21. Dakhlallah, J.; Imine, H.; Sellami, Y. Heavy vehicle state estimation and rollover risk evaluation using Kalman Filter and Sliding
Mode Observer. In Proceedings of the 2007 European Control Conference (ECC), Kos, Greece, 2–5 July 2007.

22. Liu, X.; Deng, X.; He, Y.; Zheng, X.; Zeng, G. A Dynamic State-of-Charge Estimation Method for Electric Vehicle Lithium-Ion
Batteries. Energies 2020, 13, 121. [CrossRef]

23. Gao, Z.; Chen, S.; Zhao, Y.; Nan, J. Height Adjustment of Vehicles Based on a Static Equilibrium Position State Observation
Algorithm. Energies 2018, 11, 455. [CrossRef]

24. Zahid, T.; Li, W. A Comparative Study Based on the Least Square Parameter Identification Method for State of Charge Estimation
of a LiFePO4 Battery Pack Using Three Model-Based Algorithms for Electric Vehicles. Energies 2016, 9, 720. [CrossRef]

25. Wang, Z.; Wu, J.; Zhang, L. Vehicle sideslip angle estimation for a four-wheel-independent-drive electric vehicle based on a
hybrid estimator and a moving polynomial Kalman smoother. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2018, 233, 125–140.
[CrossRef]

26. Zhao, J.; Mili, L. Robust Unscented Kalman Filter for Power System Dynamic State Estimation with Unknown Noise Statistics.
IEEE Trans. Smart Grid 2019, 10, 1215–1224. [CrossRef]

http://doi.org/10.1049/iet-cta.2015.1030
http://doi.org/10.1016/j.jfranklin.2014.05.008
http://doi.org/10.3233/JIFS-179290
http://doi.org/10.1504/IJEHV.2017.085348
http://doi.org/10.1109/TITS.2014.2329305
http://doi.org/10.1109/TITS.2016.2594217
http://doi.org/10.1007/s12541-017-0004-9
http://doi.org/10.1109/ACCESS.2020.3012770
http://doi.org/10.1214/aoms/1177703732
http://doi.org/10.1049/iet-smt.2011.0169
http://doi.org/10.3390/en12091717
http://doi.org/10.1049/iet-smt.2016.0308
http://doi.org/10.1109/ACCESS.2020.2979735
http://doi.org/10.1002/asjc.1229
http://doi.org/10.1016/j.ymssp.2016.07.024
http://doi.org/10.3390/en13010121
http://doi.org/10.3390/en11020455
http://doi.org/10.3390/en9090720
http://doi.org/10.1177/1464419318770923
http://doi.org/10.1109/TSG.2017.2761452

	Introduction 
	Nonlinear Time-Varying Parametric Vehicle Dynamics Model 
	Vehicle Model 
	Tire Model 

	Huber-Based Robust Unscented Kalman Filter (HRUKF) 
	System Equations and Observation Equations 
	Unscented Kalman Filter Framework 
	HRUKF Algorithm Derivation 

	Simulation Results and Analysis 
	Simulation of Double-Lane Change Conditions 
	Simulation of Straight-Line Driving Condition at Constant Speed Condition 

	Conclusions 
	References

