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Abstract— We constructed and investigated a high-
speed broadband spectroscopic ellipsometric system with
12 polarization channels and a 2-D charge-coupled device. The
system without any mechanically moving component completes
the measurements of more than 10 000 polarization signals
at 889 data points in a wavelength range of 400–800 nm
within 150 ms, with a spectral resolution better than 1 nm.
An integrated analyzer consisting of 12 subanalyzers was
employed to obtain the light of different polarization states
simultaneously. The spectral distribution of different polarization
channels was acquired by the spectral data acquisition system
in parallel mode. Two kinds of data processing methods were
applied to analyze the light intensities of different channels
to obtain the ellipsometric information and other physical
parameters of the material over a broad spectral range.
According to the analysis of measurement results of gold and
silicon bulk, and tantalum pentoxide film, the reliability of the
proposed instrument was verified, showing application prospects
in the field where in situ spectral monitoring is required.

Index Terms— Ellipsometry, high-speed measurement, multiple
polarization channels, parallel mode, spectroscopic data acquisi-
tion.
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I. INTRODUCTION

ELLIPSOMETRY has become a mainstream technique
in the investigation of optical properties and surface

analyses [1]–[5] with the merits of high measurement sen-
sitivity, high accuracy, noncontact, and nondestructive [6].
In the industrial production and the optical-film preparation,
where the process is often in situ monitored by the optical
methods, the ellipsometry is superior to the ordinary reflection
or transmission since it extracts the intensity and the phase
change information of light simultaneously. Moreover, ellip-
sometry is also an extremely useful tool for in situ monitoring
and characterization [7]–[11]. Accordingly, the high-speed
ellipsometers, which complete the data acquisition in a short
time, are developed for the accurate measurement.

The ellipsometers using high-frequency modulation devices,
such as the liquid crystal variable retarder (LCVR) and the
photoelastic modulator (PEM), have shown significant advan-
tages to achieve high-speed measurement. The retardation of
LCVR can be either modulated at a low frequency or fixed to
enable fast spectroscopic measurements [12]–[14]. The PEM
has also shown to be effective as a dynamic retarder with
electrically tunable phase retardance based on the photoelastic
effect [15]–[17]. Compared with the ellipsometers with high-
frequency modulation devices, multichannel ellipsometers are
less sensitive to the temperature and the wavelength with a
simple and clear physical concept. Moreover, the signals are
acquired in parallel mode, which ensures that the ellipsometric
information is characterized at the same moment. In our previ-
ous work [18], an ellipsometer with an integrated analyzer was
presented on the basis of the conventional rotating-analyzer
ellipsometry (RAE) [19]–[21] and multichannel configura-
tion [22]–[25]. The ellipsometric parameters were extracted
within 1 s without any moving element, achieving a high-speed
measurement at a single wavelength. However, the incapability
of spectroscopic measurement limits greatly the application of
the instrument.

In this work, a type of ellipsometer was theoretically and
experimentally investigated to realize the fast measurement of
various materials in a broad spectral range. 12 polarization
channels were adopted to improve the precision. The disper-
sion and the data acquisition were completed by only one spec-
trometer with a 2-D charge coupled device (CCD) detector.
The CCD pixels were divided into 12 spectral belts for imag-
ing the relevant polarization channels. Subsequently, the spec-
tral ellipsometric parameters of the sample were obtained
by analyzing the intensity information. The measuring time
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turned out to be 150 ms, which was consumed mainly by the
CCD exposure time and the data processing. The ellipsometric
system achieved the high-speed measurement of more than 10
000 polarization signals at 889 wavelength points in a spec-
tral range of 400–800 nm without any mechanically moving
component, satisfying the increasing demand for rapid ellipso-
metric measurement in scientific research and industrial fields.

II. PRINCIPLE

The principle of the developed ellipsometer is mainly based
on RAE. An integrated analyzer consisting of 12 subanalyzers
with azimuths in a range of 0◦–180◦ replaces the rotating
analyzer for the measurement of different polarization states.
A light beam from the source goes through a polarizer with
a fixed azimuth at 45◦ and a sample sequentially before
entering the integrated analyzer. After eliminating the effect
of the background signal, the light intensity can be given by
Aspnes and Studna [19]

I = I0 + Ic cos 2A + Is sin 2A (1)

where I0, Ic, and Is, represent the amplitudes of dc, cosine,
and sine components, respectively, and A represents the
azimuth of subanalyzer. The ellipsometric parameters can be
acquired by applying the intensity fitting method (IFM) on
12 discrete intensities from different polarization channels,
which was described in detail in our previous work [18].

To achieve shorter data processing time and higher data
accuracy, the matrix calculation method (MCM) was proposed
for determining the ellipsometric parameters. According to (1),
the light intensity from an individual subanalyzer is expressed
as

Ii = m1 + m2 · cos 2Ai + m3 · sin 2Ai (2)

where m1, m2, and m3 are the parameters introduced in data
processing. For three discrete channels, the light intensities are
expressed as

I1 = m1 + m2 · cos 2A1 + m3 · sin 2A1 (3)

I2 = m1 + m2 · cos 2A2 + m3 · sin 2A2 (4)

I3 = m1 + m2 · cos 2A3 + m3 · sin 2A3 (5)

where A1, A2, and A3 are the azimuths for three subanalyzers.
Then these three equations can be rewritten as

⎡
⎣

I1

I2

I3

⎤
⎦ =

⎡
⎣

1 cos 2A1 sin 2A1

1 cos 2A2 sin 2A2

1 cos 2A3 sin 2A3

⎤
⎦

⎡
⎣

m1

m2

m3

⎤
⎦. (6)

For simplicity, two vectors V , W , and a matrix M are
defined by

W =
⎡
⎣

I1

I2

I3

⎤
⎦, M =

⎡
⎣

1 cos 2A1 sin 2A1

1 cos 2A2 sin 2A2

1 cos 2A3 sin 2A3

⎤
⎦, V =

⎡
⎣

m1

m2

m3

⎤
⎦.

(7)

Then

W = M · V (8)

V = M−1 · W (9)

where W is the vector corresponding to the light intensity from
the integrated analyzer, and M is related to the azimuths of

Fig. 1. Schematic of the designed ellipsometric system. 1: continuous light
source. 2: spherical mirror. 3: light-collimating lens. 4: fixed polarizer. 5:
rotating stage. 6: sample rotator. 7: sample holder. 8: sample. 9: incident
window. 10: integrated analyzer. 11: fiber-coupler array. 12: optical-fiber
adapter. 13: filter. 14: spherical mirrors. 15: plane grating. 16: 2-D CCD
detector. 17: controller. 18: computer.

the subanalyzer group. To reduce the data processing time,
M can be calculated precisely in advance as experimental
parameters with the calibrated azimuths of subanalyzers. Para-
meters m1, m2, and m3 can be determined from (9). Then the
ellipsometric parameters ψ and �, which represent the angle
determined from the amplitude ratio and the phase difference
between reflected p- and s-polarizations [26], respectively,
are obtained as

tanψ = [(I0 − Ic)/(I0 + Ic)]1/2

= [(m1 − m2)/(m1 + m2)]1/2 (10)

cos� = Is/
(
I 2
0 − I 2

c

)1/2

= m3/
(
m2

1 − m2
2

)1/2
. (11)

In experiment, due to the discrepancy between the light
intensity in space from the source, the reflectance of sample,
and the transmittance of each subanalyzer, a uniform factor η
is introduced to eliminate the effect on accuracy. For an indi-
vidual subanalyzer, the light intensity should be modified as

Iir = ηi · (I0 + Ic cos 2Ai + Is sin 2Ai) = ηi · Ii (12)

where ηi represents the uniform factor, Iir is the raw light
intensity obtained by the detector, and Ii is the light intensity
used in data processing. Then

Ii = Iir/ηi . (13)

The uniform factor for each subanalyzer is determined with
the calibration method described in [18]. By applying the
same method to each single wavelength point, the spectra of
ellipsometric parameters are obtained in the working spectral
range within a short time.

III. EXPERIMENT

The schematic and the measurement setup photograph of
the developed ellipsometer are shown in Figs. 1 and 2, respec-
tively. The system consists of a light source, a rotating stage,
a spectrum acquisition system, and a computer control system.
A light beam from the continuous radiation source goes
through the polarizer with a fixed azimuth after collimation
before oblique incidence on the sample. The reflected light
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Fig. 2. (a) Photograph of the configuration of system. 1: light source. 2:
ellipsometric rotating system. 3: spectrum acquisition system. 4: computer
control system. (b) Enlarged photograph of the ellipsometric rotating system.
5: sample stage. 6: integrated analyzer. 7: fiber-coupler array.

Fig. 3. Schematic of the 12 subanalyzers designed in a dimension of 9.4 mm.

enters the integrated analyzer and passes through 12 channels
carrying information of different polarization states. A high-
pass filter with a wavelength-cut edge at 400 nm is employed
to block higher-order diffraction light. The plane grating is
used for dispersion to image the spectra of different channels
on the focal plane precisely. The CCD detector is connected to
a computer control system, which converts the light-intensity
information from analog to digital signals and completes the
data acquisition process. The experimental devices are firmly
fixed on the optical vibration isolation platform.

The designed integrated analyzer consists of 12 identical
subanalyzers, each of which is a Glan Thompson prism, with
a transmission window size of 1.5 mm × 1.5 mm and an
extinction ratio of 105. The 12 subanalyzers are embedded
in a plane containing 12 tiny square holes, the azimuths of
which are designed to be arranged in 0◦–180◦, as shown
in Fig. 3. After passing through the corresponding fiber-
coupling channels, light is rearranged by an optical fiber
adapter along the direction perpendicular to the incident plane
before entering the spectrum acquisition system.

Fig. 4. (a) Spectral lines of mercury lamp measured by the spectrometer.
(b) Magnified view of the well-resolved spectral line and the fitting curve at
507.3 nm.

A HORIBA-iHR fully automated imaging spectrometer was
used as the spectral measurement system. The spectrometer
employed a traditional Czerny-Turner structure, which con-
tained a long-pass filter, two spherical mirrors, a plane grating,
and a CCD detector. The grating, with a groove density
of 100 lines/mm and a blaze wavelength of 450 nm, was
used for dispersion. The horizontal dimension of CCD imaging
was 26.7 mm, with 1024 × 256 pixels in the horizontal
and the vertical directions, respectively. The position and the
angle of grating were fixed precisely to obtain the images
of 12 independent optical channels in a spectral range of
400–800 nm simultaneously.

The spectrometer was first calibrated with a mercury lamp
before application. The mercury lamp spectrum recorded by
the spectrometer is shown in Fig. 4(a). The spectrum indicates
that each peak of the mercury lamp can be resolved clearly
with no ambiguity. By fitting the spectral peak at 507.3 nm,
the full width at half maximum (FWHM) was evaluated
in Fig. 4(b). The result demonstrates that the value of spectral
resolution is 0.97 nm.

The spectral-data acquisition system collects the spectral
intensity information of the 12 polarization channels indepen-
dently. The extinction effect of subanalyzers with different
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Fig. 5. (a) Spectra of 12 polarization channels for Au bulk, measured at
an incident angle of 70◦. (b) Corresponding image pattern for the spectra
showing the distribution of light intensity for 12 optical channels.

azimuths leads to significant discrepancies in light intensity
as indicated in Fig. 5(a). The CCD pixels are divided into
12 spectral belts to image the corresponding spectrum of each
polarization channel separately. In Fig. 5(b), the 12 stripe
lines from top to bottom correspond to different polarization
channels, respectively.

Au was selected as the calibration material for the suggested
instrument, due to the great stability of optical properties in
the atmospheric environment with a low penetration depth in
the visible range. The incident angle was set to be 70◦ for
being close to the principal angle in the spectral region and
for an adequate reflection intensity. The polarizer azimuth was
calibrated with a self-developed differential spectral analysis
method [27]. The optical alignment was performed elaborately
by the method presented in [28], with a precision better than
0.01◦.

To obtain the real azimuths of 12 subanalyzers precisely,
the incident angle was set at 90◦ in calibration. The light beam
from the polarizer entered directly into the integrated analyzer
without the reflection of the sample. According to Malus’s law,
the light intensity from an individual subanalyzer is written as

Ii (P) = I0(P) · 1

2
[1 + cos 2(P − Ai)] (14)

where P and Ai represent the azimuths of polarizer and
subanalyzer, respectively. I0(P) is the intensity of light from

TABLE I

CALIBRATED AZIMUTH FOR EACH SUBANALYZER

Fig. 6. Calibration results of subanalyzers at each wavelength point in a
spectral range of 400–800 nm.

the polarizer with the azimuth of P . By rotating the precisely
calibrated polarizer, the variation of the light intensity from
each subanalyzer was obtained in parallel. The values of
subanalyzer azimuths were determined precisely by fitting the
data of light intensity into a cosine form. The calibration
results at each wavelength point in the spectral range are
exhibited in Fig. 6. The real azimuths of 12 subanalyzers are
listed in Table I.

IV. RESULTS AND DISCUSSION

In the measurement, the light intensities from 12 channels
at an incident angle of 70◦ were fit into cosine form at each
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Fig. 7. (a) Comparison between 12 raw data of light intensity and fitting
curves at three typical wavelengths in the spectral range. (b) Dielectric
functions of the Au bulk sample measured with the developed ellipsometer
in this work and the V-VASE (J. A. Woollam), with the differences shown in
the inset.

wavelength point in the spectral range by applying the IFM.
The light intensities of 12 channels and their fitting curves are
coincident at three typical wavelengths of 450.57, 601.35, and
751.61 nm [Fig. 7(a)].

The dielectric function of Au was calculated subsequently
from ellipsometric parameters. The reliability of the result
was confirmed by the measured one with the vertical-variable
angle spectroscopic ellipsometer (V-VASE) (J. A. Woollam).
The comparison of the two results shows good agreement as
shown in Fig. 7(b), where ε1 and ε2 represent the real and
the imaginary parts of dielectric function ε, respectively. The
measurement process for 889 wavelength data points in a range
of 400–800 nm was completed within 5 s.

Another data processing method MCM was applied to
analyze the spectral intensities of multiple channels. The
12 polarization channels were divided into different groups to
obtain the ellipsometric parameters according to (2)–(11). The
exposure time of CCD was set to be 100 ms in experiment.
The analysis program was self-compiled in MATLAB 2016a,

Fig. 8. Measured dielectric functions at an incident angle of 70◦ of the
(a) Au and (b) Si bulk samples, compared with those with the V-VASE (J. A.
Woollam), with the differences shown in the insets.

TABLE II

COMPARISON OF THE MEASURING TIME AND THE MEASURED

WAVELENGTH POINTS BETWEEN THIS WORK AND OTHER
SELF-ESTABLISHED ELLIPSOMETERS

with a recorded data processing time of 50 ms. Consequently,
the total measurement time of all 889 data points in the spectral
range by MCM was 150 ms. The measurement time can be
reduced significantly by employing a light source of stronger
intensity, a higher-sensitivity CCD, and a higher-performance
computer. The properties of two data analysis methods are
given in Table II, compared with that of the ellipsometric
measurement methods proposed previously by our group.

Au and Si bulk samples were employed to confirm the
reliability and the accuracy of the suggested ellipsometer. The
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Fig. 9. Ellipsometric parameters of tantalum-pentoxide film prepared on
a glass substrate, measured at an incident angle of 70◦ in the 400–800 nm
wavelength range with the suggested ellipsometer. (a) Before and (b) after
heating.

measurements were performed at an incident angle of 70◦.
The dielectric functions were obtained by applying the MCM
to the spectral data after eliminating the uniform factors. Our
experimental results and those with the V-VASE reveal good
agreement (Fig. 8).

The ellipsometric parameters of tantalum-pentoxide film
prepared on a glass substrate were obtained before and after
heating, as shown in Fig. 9(a) and (b), respectively. The
peaks of curves can be clearly distinguished in the spectra.
The sample annealed at 400 ◦C for 3 h showed more peaks
in the spectral range, with a smaller distance between adja-
cent peak positions. This implied that the compressive stress
increased in the heated sample, resulting in a thicker or denser
film [30]. Consequently, the enhanced refractive index induced
the increase of the total optical path, leading to the change of
peaks in the spectral range.

V. CONCLUSION

In summary, a high-performance spectroscopic ellipsometer
with 12 polarization channels has been constructed and studied
in this work. The system employed an integrated analyzer

composed of 12 subanalyzers to realize different polarization
channels. A spectrometer with a 2-D CCD detector was
used for dispersion and data acquisition in parallel without
a mechanically moving component. More than 10 000 polar-
ization signals at 889 wavelength points were obtained simul-
taneously within 150 ms in a spectral range of 400–800 nm,
with a resolution better than 1 nm. The measured dielectric
functions of Au and Si bulk samples agreed with those
measured with V-VASE (J. A. Woollam), which confirmed
the reliability of the developed ellipsometer. Apart from the
RAE, the designed configuration with an integrated polarizing
element and a spectrometer is also appliable for other rotating-
element ellipsometers. This proposed high-speed broadband
spectroscopic ellipsometer presents good application prospects
in industrial and scientific research fields where real-time
spectral measurement with high precision is required.
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