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As the feedback link of a numerical control system, the measurement accuracy of absolute angular displacement
measurements directly affects the control performance of a numerical control system. In previous research, angular
displacement measurements based on dual image sensors can achieve higher measurement performance. However,
the elimination of harmonic error by the dual image sensor is still limited. For this reason, this paper proposes
an image-type angular displacement measurement method based on self-correction error compensation of three
image sensors. First, the mathematical model of harmonic error is established, and the shortcomings of using dual
image sensors to compensate the error are analyzed. Then, a high precision angular displacement measurement
method based on three image sensors is proposed. Finally, the self-correction error compensation method of three
image sensors is applied to the angular displacement measurement system, and the measurement performance
is verified. The experimental results show that a measurement accuracy of 1.76′′ can be achieved on the circular
grating with a diameter of 96 mm. In contrast, the dual image sensor can only achieve a measurement accuracy of
2.88′′. It is concluded that the odd number of image sensors can achieve higher measurement accuracy than the
even number. This research lays a foundation for the realization of high precision image angular displacement
measurement. ©2021Optica PublishingGroup

https://doi.org/10.1364/AO.446859

1. INTRODUCTION

The development of precise displacement measurement tech-
nology is directly related to the control level of data equipment
[1,2]. To date, the most commonly used displacement mea-
surement strategies include optical grating measurements [3,4],
capacitive grating measurements [5,6], and magnetic grating
measurements [7,8]. Similar to grating displacement measure-
ment, angular displacement measurement (ADM) technology
based on image recognition algorithm is a new kind of mea-
surement technology [6,9,10]. Advantages of digital image
processing technology are high flexibility, robustness, and fault
tolerance, and it cannot be affected by the amplitude difference,
phase offset, period correction, or other factors of traditional
moiré fringe ADM. With this method, it is easier to achieve high
resolution and high precision measurements. At the same time,
due to the use of “all digital signal” processing methods, digital
operation can be added in the process of signal acquisition, so as
to improve the measurement performance [11–13]. Therefore,
image-type ADM is an important research direction for new
measurement technologies in the future.

In 2003, while researching image-type ADM, Leviton [14]
used an area scan CCD to receive grating patterns with reference
lines and binary symbols, achieving a measurement resolution

of 0.01" and an accuracy of 0.2µm. Sugiyam [15] studied abso-
lute displacement measurement technology based on area scan
detectors in 2008 and realized 14-bit angular resolution on a
circular grating with a diameter of 30 mm. In 2015, Kim [16]
realized 13-bit encoding recognition on a 41.72 mm diameter
grating with a measurement accuracy of 0.044◦ by using phase-
shift encoding and a micro-image detection system. Mu [17]
used CMOS image sensors to identify pseudo-random single
channel coding in 2019 and realized up to 20-bit coding recog-
nition. Yuan [18] proposed a robust high precision subdivision
algorithm in 2019, which realized 1.6′′ ADM accuracy on a
grating with an outer diameter of 79 mm.

According to previous research and analysis, the results
of ADM contain multiple harmonic errors. To reduce these
measurement errors, Tan [19] proposed a method of online cor-
rection of measurement signals by using a radial basis function,
Lu [20] proposed an automatic correction time measurement
dynamic reverse (TDR) method for ADMs, Watanabe [21] pro-
posed an error calibration method with five reading heads evenly
distributed around the circumference, and Probst [22] proposed
an error compensation method based on eight reading heads.
According to this research literature, in the traditional research
(mostly based on the moiré fringe measurement method), when
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multiple reading heads are used for measurement, the moiré
fringe signal synthesized by multiple reading heads needs to be
adjusted. However, for the image displacement measurement
technology, due to the full digital displacement measurement
method, there is no synthetic waveform of the analog signal.

Therefore, the reason of multi-reading head measurement in
image measurement needs to be studied. In previous research,
we proposed a self-correction error compensation algorithm
based on dual image sensors and achieved a measurement accu-
racy of 6.33′′ on a grating with an outer diameter of 38 mm [23].
However, the error compensation effect of dual image sensors
is not obvious for even harmonic errors in image-type ADM.
To further improve the accuracy of image-type ADM, this
paper proposes a self-correction error compensation method
using three image sensors to further improve the measurement
accuracy.

The layout of this paper is as follows: Section 2 introduces
the principle of image-type ADM, Section 3 analyzes the error
harmonic component in ADM, Section 4 proposes the error
self-correction compensation algorithm using three image
sensors, Section 5 is the experimental verification, and Section 6
is the summary.

2. PRINCIPLE OF IMAGE ANGULAR
DISPLACEMENT MEASUREMENT

Image-type ADM uses a digital image recognition algorithm to
measure the displacement of the calibration grating. The image
sensor is used to collect the pattern on the calibration grating,
and then the displacement measurement is realized through
the digital image recognition algorithm. The measurement
principle is shown in Fig. 1.

In previous research [24], M-sequence pseudo-random
coding is used to design the single loop absolute coding grating,
and the “wide” and “narrow” coding lines are set in the calibra-
tion grating, which represent the “1” and “0” coding elements,
respectively, as shown in the coding pattern in Fig. 1. Suppose
that the circle of the calibration grating contains 2n coding lines.
By identifying n “wide” and “narrow” coding lines, the current
coding value in the image field can be obtained. By decoding
the coding value, the current absolute position can be obtained,
expressed as θc .

At the same time, to further improve the measurement res-
olution, an angular displacement subdivision algorithm has
been proposed in the early stages [11,12], and further subdivi-
sion operation is performed between the two coded lines. The
principle of the subdivision algorithm is shown in Fig. 2.

In Fig. 2, the center point of the image sensor is set at point C ,
L1 and L2 are the two coding lines on both sides of point C , and
the linear image sensor intersects with L1 and L2 at points A
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Fig. 2. Schematic of the subdivision algorithm.

and B , respectively. If the angle between L1 and L2 in circular
grating isη, then the subdivision operation is shown in Eq. (1),

θs = η ·
BC
AB

. (1)

In Eq. (1), BC and AB are lengths that the image sensor can
obtain. To realize a quantitative value of the subdivision value,
let η= 2m , so that the angular displacement subdivision oper-
ation of 2m times is realized. For the positions of points A and
B in Fig. 2, the centroid algorithm will be used for calculations.
Finally, the binary value of image-type ADM output will be
composed of decoded value θc and subdivision value θs , that is,
the measured value θ = 2mθc + θs .

3. HARMONIC ERROR ANALYSIS

According to the previous research, the main method to elimi-
nate ADM is to increase the number of reading heads, that is,
install p reading heads evenly in the circumference of the grating
code disk and take the average value of p reading values as the
measured value. Different from the moiré fringe measurement
method, the error compensation algorithm for multi-reading
head in the image-type ADM is different from that in traditional
research. The influence of the multi-reading head measurement
method on the error needs to be reanalyzed. In the image-
type ADM technology, when there are p reading heads in the
circumference, the situation is shown in Fig. 3.

A. Establishment of the Harmonic Error Model

When there is only a single image sensor (p = 1) used in image-
type ADM, the measured value θ includes the true angle value θr

and the error value e (θ), as shown in Eq. (2),

θ = θr + e (θ). (2)

According to the composition of measurement error, the error
e (θ) contains multiple times harmonic components. The error
e (θ) can be expressed in the form of a Fourier series, as shown in
Eq. (3) [25],

e (θ)=
∞∑

k=1

wk sin(kθ), (3)

where k is the harmonic number andwk is the amplitude of the
kth harmonic.
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Fig. 3. p image sensors are uniformly distributed around the
circumference of the grating.

To eliminate the harmonic error, p image sensors (reading
heads) were used and evenly distributed on the circumference of
the calibration grating. The respective measured values of the p
image sensors are taken as the mean value, as shown in Eq. (4),

E (θ)=
1

p

{
e (θ)+ e

(
θ +

2π

p

)
+ . . .+ e

[
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2π

p

]}

=
1

p
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(
θ +
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)

+ sin k
(
θ + 2 ·

2π

p

)
+ . . .

+ sin k
[
θ + (p − 1) ·

2π

p

]}

=

∞∑
k

Ek(θ),
(4)

where Ek(θ) is the error component of the kth harmonic after
taking the mean value of p image sensors. For different time
harmonic errors, the average value of the kth can be expressed as
follows:

Ek(θ)=

{
wk sin kθ, k = c p, c = 1, 2, 3, . . .
0, k 6= c p, c = 1, 2, 3, . . .

, (5)

where c is a nonzero integer. It can be seen that only
k = c p(c = 1, 2, 3, . . .) are retained in Eq. (5). Therefore,
when p image sensors (reading heads) are used in ADM, only
the harmonic errors with integral multiples of p are retained in
the resultant error Ek(θ).

B. Analysis on the Number of Reading Heads

In traditional technology, double image sensors (reading heads)
are often used to eliminate errors. However, when using dual
image sensors (reading heads), the elimination of errors has
limitations. The analysis is as follows:

According to the mathematical model of error, the two main
errors that affect the measurement of angular displacement are
the grating eccentricity error and subdivision operation error.
Since the circular grating contains 2n periodic coding lines, the
error variation frequency in each line cycle is an integer multiple
of 2n . So the mathematical model of error in Eq. (3) can be
approximately to the sum of the one-time harmonic error and
multiple 2n times harmonic errors, as shown in Eq. (6),

e (θ)≈
∞∑

k=1

wk[sin θ + sin(2nθ) . . .], (6)

where 2n is the number of coded lines in the circular grating.
The first term sinθ on the right side of the equation represents
the one-time harmonic caused by the eccentricity of the circular
grating, and the harmonic errors such as sin(2n

· θ ) are caused by
subdivision operation [as shown in Eq. (1)]. It can be seen that
in addition to the one-time harmonic caused by eccentricity, the
error is mainly affected by even harmonic errors.

The influence of the one-time harmonic error can be elim-
inated when using a dual image sensor (p = 2) in ADM.
However, according to the analysis of Eq. (2), the even harmonic
error component in the measurement result cannot be removed
by a dual image sensor.

Based on the appeal analysis, it can be concluded that:

(a) More reading heads can eliminate more harmonic errors;
(b) Odd reading heads are easier to improve the measurement

accuracy than even reading heads.

Therefore, using an odd number of sensors to achieve error
correction can eliminate the more error component in ADM.
So, we propose to use odd image sensors to eliminate the error.
Limited by the space of the measuring device, we will use three
image sensors instead of two image sensors.

4. SYNTHETIC MEASUREMENT ALGORITHM OF
THREE IMAGE SENSORS

Because of the full digital signal processing, an image-type ADM
can realize the error compensation algorithm more flexibly.
Different from traditional moiré fringe technology, the image-
type ADM needs to calculate the compensation value by the
digital algorithm. In image-type ADM, because the subdivision
algorithm of Eq. (1) is adopted, directly averaging the values
measured by three reading heads cannot eliminate the error to
the greatest extent. In addition, image-type ADM needs to first
calculate the subdivision lengths BC and AB . Therefore, it is
necessary to synthesize the subdivision lengths BC and AB .

When three image sensors (reading heads) are used, the
arrangement of the three reading heads is shown in Fig. 4(a).

In Fig. 4(a), #1, #2, and #3 are three image sensors, and the
angle between them is β = 2π/3. In the ideal state, the inter-
section points between the #1 image sensor and the coding lines
are A and B . Set point C be the center of the image, which does
not change with the movement of the grating. At this time, the
distance of the coding lines detected by the #1 image sensor is
AB . Similarly, for the #2 and #3 image sensors, the distances of
the coding lines are equal to AB . In addition, the distance OC
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Fig. 4. Measurement principle of three image sensors. (a) In the
ideal state and (b) when there is eccentricity.

between the #1 image sensor center C and the rotating spindle
center O is the same as the #2 and #3 image sensors.

When there is eccentricity, the center of the calibration
grating will deviate from the center of rotation [as shown in
Fig. 4(b)]. The calibration grating center O ′ deviates from the
rotation axis center O. The offset generated in the transverse
direction is a , and the offset in the longitudinal direction is b.
The length BC collected by the image sensor becomes B ′C ′,
and AB becomes A′B ′. Then, the two length values obtained
during the subdivision operation in #1 image sensor are

A′B ′|#1 =
OC − b

OC
AB, (7)

B ′C ′|#1 =
OC − b

OC
BC − a , (8)

where AB and BC are the lengths collected from the #1 sensor
in the ideal state, and A′B ′ and B ′C ′ are the lengths after the
change in Fig. 4(b).

According to the coordinate transformation, when there is
eccentricity in Fig. 4(b), the two lengths obtained by #2 image
sensor are as follows:

A′B ′|#2 =
OC − (b cos β − a sin β)

OC
AB, (9)

B ′C ′|#2 =
OC − (b cos β − a sin β)

OC
BC

− (acosβ−bsinβ)+12. (10)

In Eq. (10), 12 represents the deviation of measurement
value between #2 sensor and #1 sensor, and 12 is a constant
value.

Similarly, for the #3 image sensor, the collected lengths are

A′B ′|#3 =
OC − (b cos β + a sin β)

OC
AB, (11)

B ′C ′|#3 =
OC − (b cos β + a sin β)

OC
BC

− (acosβ + bsinβ)+13. (12)

In Eq. (12),13 represents the offset between the values calcu-
lated by #3 sensor and #1 sensor, and13 is also a constant value.

To remove the influence of a and b in the equation, add
Eqs. (9) and (11), and also add Eqs. (10) and (12), and the
results will be as follows:

A′B ′|#2 + A′B ′|#3 =
2OC − 2b cos β

OC
AB, (13)

B ′C ′|#2 + B ′C ′|#3 =
2OC − 2b cos β

OC
BC

− 2acosβ +12 +13. (14)

Since the angle between image sensors is β = 2π/3, there
is cos β =−1/2. Then Eqs. (13) and (7) can be added, and
Eqs. (14) and (8) can be added too. Then, a composite variable
can be obtained as follows:

A′B ′|#1 + A′B ′|#2 + A′B ′|#3 = 3AB, (15)

B ′C ′|#1 + B ′C ′|#2 + B ′C ′|#3 = 3BC + (12 +13). (16)

Next, bring the above formula into Eq. (1), where the error
compensation algorithm can be realized, as shown in Eq. (17).

θ ′s = η
B ′C ′|#1 + B ′C ′|#2 + B ′C ′|#3

A′B ′|#1 + A′B ′|#2 + A′B ′|#3

= η
BC
AB
+1, (17)

where 1= (12 +13)/3AB . By default, the value of 1 is a
constant.

It can be seen that only the lengths of ideal state AB and
BC are included in Eq. (17). In addition, the decoding values
obtained by three image sensors are set as θc |#1, θc |#2, θc |#3,
respectively. Then, the decoding value after error compensation
of three image sensors is as follows:

θ ′c =
θc |#1 + θc |#2 + θc |#3

3
. (18)

Finally, the ADM value after error compensation is as follows:

θ ′ = η · θ ′c + θ
′

s , (19)
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where θ ′ is the measurement result of three image sensors after
self-corrected error compensation.

5. EXPERIMENTS

A. Experimental Device Design

To verify the performance of the ADM with three image sensors,
an experimental ADM device was designed with three image
sensors, as shown in Figs. 5(a) and 5(b). The calibration grating
designed in the experiment is shown in Fig. 5(c).

In Fig. 5(c), the diameter of the grating disk is 96 mm. There
are 2n

= 512 (9-bit) coding lines in the circumference of the
grating. Three parallel light sources are used to irradiate the cal-
ibration grating, and the patterns on the grating are mapped to
three image sensors to realize the acquisition of the 9-bit coded
line.

The measuring circuit of three image sensors is shown in
Fig. 6.

Fig. 5. Experimental device diagram. (a) Experimental device and
(b) inner of the device.

Fig. 6. Three sensor circuit.

Fig. 7. Image collection.

The angle between two adjacent image sensors is β = 120◦.
The resolution of the image sensor is 1× 320 pixels, and the
pixel size is 25.4µm. The grating pattern collected by one image
sensor is shown in Fig. 7.

In Fig. 7, the effective code recognition is {0,1,0,1,1,1,1,0,0}.
Through the subdivision algorithm, an angular displacement
subdivision of 2m

= 216 fold is realized between the adjacent
coding lines. Finally, the designed experimental device can
achieve 9+ 16= 25-bit ADM.

B. Precision Experiment

The accuracy of the three image sensor experimental device is
tested by using the regular 17 polyhedrons. During the test, the
17 polyhedrons are coaxially installed on the rotating shaft of the
experimental device, and the autocollimator is used to calibrate
the errors of the 17 polyhedrons. A total of 17 points are tested,
as shown in Fig. 8.

By using 17 polyhedrons, the error values are shown in
Table 1. After calculation, the standard deviation of the error
value in Table 1 is 1.76′′.

C. Precision Comparison Experiment

To realize the precision contrast experiment, we also used the
double image sensor to design the ADM circuit. At this time,
double image sensor means p = 2. The angle between two
adjacent image sensors isβ = 180◦, as shown in Fig. 9.

We use 17 polyhedrons to calibrate the error of the double
image sensor, and the error values are shown in Table 2. After

Fig. 8. Error detection test.
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Table 1. Error When Using Three Sensors

No. Errors (′′) No. Errors (′′)

1 0 10 −0.3
2 4.0 11 3.4
3 3.3 12 4.4
4 −0.9 13 1.3
5 3.4 14 2.1
6 1.4 15 3.4
7 1.8 16 0.1
8 2.3 17 3.8
9 4.4

Fig. 9. Double sensor circuit for comparison.

calculation, the standard deviation of the error value in Table 2 is
2.88′′.

By comparing with the error curve of three image sensors, the
comparison of error curves is shown in Fig. 10.

In Fig. 10, the red curve is the error with three image sen-
sors, and the blue curve is the error with dual image sensors.
The mean square deviations of the three image sensors are
σp=3 = 1.76′′, and the mean square deviations of the double
image sensors are only σp=2 = 2.88′′. It can be seen that the
error accuracy of three image sensors can effectively improve the
measurement accuracy.

Table 2. Error When Using Double Sensors

No. Errors (′′) No. Errors (′′)

1 0 10 −1.6
2 0.9 11 2.3
3 −4.5 12 1.3
4 2.8 13 1.4
5 3.2 14 3.4
6 −0.4 15 −4.1
7 −3.6 16 −3.2
8 −4.4 17 −4.2
9 −0.1

Fig. 10. Error curve.

6. CONCLUSION

Imaging-type ADM can achieve high performance measure-
ment more easily than traditional moiré fringe, so it has become
an important research content of new ADM. Based on previous
research, this paper analyzes the influence of harmonic error
components on the measurement results. Through the analysis,
it can be concluded that (a) more reading heads can eliminate
more harmonic errors and (b) odd reading heads make it easier
to improve the measurement accuracy than even reading heads.

A method of high precision ADM based on three image
sensors was proposed. To verify the proposed algorithm, an
experimental device was designed for measurement. The
diameter of the designed calibration grating was 96 mm, and
the self-correction error compensation algorithm of three
image sensors was used to realize the measurement accuracy of
1.76′′. Compared with dual image sensors, the accuracy of the
proposed method was improved from 2.88′′ to 1.76′′.

Compared with previous studies, our experiment achieved
a measurement accuracy of 1.76′′ in the miniaturized displace-
ment measurement device. This index has great advantages
in both miniaturized volume and measurement accuracy.
Therefore, the experimental results show that an odd number
of image sensors can more easily achieve high precision ADMs
than an even number of image sensors. The research results of
this paper lay a foundation for the realization of high precision
ADMs.
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