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In order to obtain the thermal design parameters that have a great influence on the temperature 7 of the
spectrometer frame, the sensitivity of the thermal design parameters of a balloon-borne spectrometer system was
analyzed and calculated by the global sensitivity analysis (GSA) method based on the backpropagation neural
network (BPNN) surrogate model. Firstly, the BPNN with 12 selected thermal design parameters as input and
temperature 7 as output was well trained. Then, two kinds of variance-based GSA methods, the Sobol’ method and
the extended Fourier amplitude sensitivity test (EFAST), were used to calculate the values and ranking results of
sensitivity indices of 12 parameters based on the established BPNN. Moreover, the GSA results were verified based on
the finite element model of the balloon-borne spectrometer system built by I-DEAS/TMG (software developed by
Structural Dynamics Research Corporation for space thermal analysis), which indicates that the BPNN surrogate-
model-based GSA is reliable. Finally, the sensitivity calculation accuracy and speed of two methods, the Spearman
rank correlation coefficient formula and the GSA method based on BPNN, were compared, and the EFAST method
based on the BPNN surrogate model has been proved to have obvious advantages in the reliability and speed of
calculation results. Also, the GSA method based on a surrogate model like BPNN is of great significance in the thermal
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analysis of an optical remote sensor.
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Tox = average temperature of xth external surface of pod

Tp = temperature of the mounting surface of electrical
box

T, = average surface temperature of the internal heat
source

T, = temperature of the mounting surface of pod

T, = atmospheric temperature

\% = total variance of the model output

Vi = model output variance caused by the parameter X;

X = set of 12 thermal design parameters

X /2 = thermal conductivity of pod

X, /€, = emissivity of external surface of pod

X3/ ag = solar absorption coefficient of external surface of
pod

X4/ €, = emissivity of internal surface of pod

Xs5/R, = thermal resistance between CCD and spectrometer
frame

X¢/R, = thermal resistance between eletrical box and pod

X;7/R3 = thermal resistance at the connection of frame of
spectrometer

X /K, = thermal conductivity between spectrometer frame
and pod

Xo/K, = thermal conductivity between CCD and pod

Xi0/h = convective heat transfer coefficient of +Y, —Y sur-
face of pod

X1 /hy = convective heat transfer coefficient of +X surface
of pod

X12/h3 = convective heat transfer coefficient of —X surface
of pod

X; parameter sampling vector

X = triangular-shaped vector

Y = output of BP neural network

gy = solar absorption coefficient of the xth external sur-
face of pod

Elx = emissivity of the xth external surface of pod

£y = emissivity of xth internal surface of pod

c = Stefan-Boltzmann constant

@1x P2s = angle factors of pod to the solar radiation, the earth

and @5, albedo, and the infrared radiation of the earth

® = angular frequency

I. Introduction

ENSITIVITY analysis (SA) is a crucial step in the model building

and result communication process, which has long been a way for
system designers to understand the relative importance of parameter
inputs in determining the model output [1-3]. SA methods structure
into local sensitivity analysis (LSA) and global sensitivity analysis
(GSA), and the GSA is to study the effects of simultaneous changes in
all design parameters on the overall system, which not only considers
the effect of changes in individual parameter values on the system, but
also analyzes the influence of the coupling effect generated by the
interaction between various parameters on the system [4].

SA for thermal design parameters is of great significance for
improving the accuracy of thermal design and reducing resource waste.
In the current research of SA for thermal design parameters, the LSA
method is generally used. Han [5] performed the LSA of the contact
conduction and the position of thermostat on the basis of the estab-
lished satellite thermal model. Guo [6,7] performed LSA on optical
remote sensors in a space environment, and completed thermal design
and thermal experiments based on analysis results. In the study of GSA
for thermal design parameters, McMenamin [8] used an ANOVA-
HDMR (analysis of variance-high dimensional model representation)
GSA method to measure the effect that uncertain parameters have on
the temperature of Solar X-ray Monitor (SXM), spacecraft battery, and
charge coupled devices (CCDs). However, there are few studies on
GSA for thermal design parameters. Moreover, there are few studies on
the influence of multi-parameter coupling effect on the model output in
the existing GSA of thermal design parameters.

In order to introduce the GSA method into the thermal design
of an optical remote sensor, this paper adopted the GSA method based

on a surrogate model (metamodel) [9-11], which avoids the disad-
vantage of time-consuming when solving the sensitivity of parameters
based on finite element simulators. Based on the thermal design index
of the frame temperature T of the balloon-borne spectrometer system,
the backpropagation (BP) neural network (BPNN) was adopted to
construct the surrogate model of temperature 7 and 12 selected
thermal design parameters. In the selection of GSA method, because
variance-based methods have assessed themselves as versatile and
effective among the variety of available technologies for sensitivity
analysis of model output [12], this paper selected the classical vari-
ance-based Sobol” method and extended Fourier amplitude sensitivity
test (EFAST) to solve the first and total order effects of the parameters
to the temperature observation point. Then, the finite element thermal
simulation of a spectrometer system based on [-DEAS/TMG (soft-
ware developed by Structural Dynamics Research Corporation for
space thermal analysis) was completed to verify the correctness of the
global sensitivity calculation results of 12 parameters. In addition, the
Spearman rank correlation coefficient (SRCC) formula, as a com-
monly used method for studying the influence of parameters on model
output, was introduced in this paper to compare reliability and calcu-
lation speed with variance-based GSA methods based on a BPNN
surrogate model. The comparison results indicate that the EFAST
method based on a BPNN surrogate model has a higher advantage in
the reliability of calculation results and calculation speed, and has a
higher application value in guiding the thermal design of an optical
remote sensor and the modification of a thermal analysis model.

II. Heat Balance Equation of Spectrometer System

A schematic diagram of the balloon-borne spectrometer system is
shown in Fig. 1.The balloon-borne spectrometer system consists of a
spectrometer, a cube pod, an electrical box, and the high-altitude
balloon platform. The spectrometer is mounted inside the pod, which
is connected to the electrical box by thermal insulation, with both pod
and electrical box mounted on the balloon platform. In order to avoid
the interference of airflow when the spectrometer system is flying, the
pod is vacuumized internally. The descriptions of the spectrometer
system are shown in Table 1.

The typical flying height of the high-altitude balloon is 20 km
above sea level. At this altitude, the surface of the pod is affected by
external heat fluxes, mainly solar flux from the sun, sunlight reflected
off of the earth (albedo), and infrared energy emitted by the earth [13].
The interior of the pod is vacuumed, and the internal heat source can
only transfer heat to the pod through thermal conduction and radia-
tion. And then, the pod radiates heat to the atmosphere through
surface convection and radiation. Under such a thermal environment,
the thermal design goal of the balloon-borne spectrometer system is
mainly for temperature T of the spectrometer frame. The lower the
temperature 7', the better the optical device and CCD working con-
ditions, and the better the imaging quality. According to the thermal
environment and temperature index of the spectrometer frame, the
schematic diagram of the thermal control of the spectrometer system
is shown in Fig. 2.

Computer

High-Altitude Balloon | [ Electrical Box and Pod |

Fig. 1 Schematic of the balloon-borne spectrometer system.
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Table1 Descriptions of spectrometer system

Items Description

Working time 8 a.m. to 2 p.m., Beijing time
Ascent phase: 1 h, level flight: 4 h, landing
phase: 1 h

Working latitude 41.7 deg north latitude

Level flight altitude/ 20 km/ - 56.5°C
Atmospheric ambient

temperature

CCD power 15W

<200 W

Maintaining —5 =+ 2°C for more than 3 h
within 5 h (Regardless of landing phase)

System heating power

Temperature index for
spectrometer frame

According to Fig. 2 and the law of conservation of energy, the heat
balance equation for the balloon-borne spectrometer system was
established as Eq. (1):
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where Q is the value of heat conduction between pod and electrical
box; Tp and T, are the temperatures of the mounting surface of the
electrical box and the pod, respectively; Rpy is the thermal resistance
between the two mounting surfaces; Q, is the value of external heat
absorbed by the pod; a,, is the solar absorption coefficient of the xth
external surface of the pod; S is the solar constant; E is the average
reflection intensity of the earth to the solar radiation; &, is the
emissivity of the xth external surface of the pod; E, is the average
infrared radiation intensity of the earth; ¢, ¢,,, and @3, are the angle
factors of the xth external surface of the pod to the solar radiation, the
earth albedo, and the infrared radiation of the earth, respectively; A, is
the area of the xth surface of the pod; Q3 is the value of heat generated
by all of the internal heat sources in the pod; Q, is the value of heat
generated by one single internal heat source in the pod; Q, is the value

I External Heat Fluxes I

Surface of Pod Absorbed Fluxes

Thermostat

Heat Capacity

Fig.2 Thermal control schematic of the spectrometer system.

of aerodynamic heat absorbed by the pod; g, is the aerodynamic
heat flux of the xth external surface of the pod; Qs is the value of
convective heat transfer between the pod and the atmosphere envi-
ronment; &, is the average convective heat transfer coefficient of
the xth surface of the pod; T is the average temperature of the xth
external surface of the pod; T, is the atmospheric temperature; Qg is
the value of radiation heat transfer between the pod and the atmos-
phere environment; Q5 is the value of internal energy variation of the
spectrometer system; m,, is the mass of the nth system components;
¢, is the specific heat capacity of the nth system components; mig,
and cy, are the mass and specific heat capacity of the spectrometer
frame, respectively; T is the temperature of the spectrometer frame;
(AT, /A7) is the temperature change rate of the nth system compo-
nents; and AT /A is the temperature change rate of the spectrom-
eter frame.

III. Parameter Selection for GSA

According to Eq. (1), parameters related to the temperature 7" of
the spectrometer frame need to be selected for GSA. According to
the heat balance equation, the expression of temperature 7 can be
obtained by inverse solution, which is a complex function of multiple
parameters and can be written as an abstract function as Eq. (2):

T= f(RDZv Asxs P1x> Poxs> P3xs €1x» Ax’ ahx» hxv Toxv Tev my, Cy, ** )
(2)
In Eq. (2), the external surface temperature of the pod 7', is also a

complex function affected by many parameters, which can be written
as follows:
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where Q. is the value of heat conducted from the internal heat source
to the xth surface of pod, R, is the conduction thermal resistance of
the internal components in the spectrometer system, R, is the contact
thermal resistance between two components in the system, K|, is the
thermal conductivity between two components, A, is the contact area
between two components in the system, Q,, is the value of radiation
heat transferred from the internal heat source to the xth surface of the
pod, T, is the average surface temperature of the internal heat source,
&, 1s the emissivity of the xth internal surface of the pod, F, is the
angle coeftficient of the internal heat source to the xth internal surface
of the pod, and ¢, and m,,, are the specific heat capacity and mass of
pod, respectively.

From Eqgs. (2) and (3), the parameters affecting the temperature T
can be obtained. In terms of selecting the parameters for GSA, the
selection criteria are firstly determined according to whether the
parameters can be changed arbitrarily in the actual spectrometer
system. Due to the limitations of the system’s optical structure, a
large number of parameters affecting the temperature 7 cannot be
changed. Then, among the parameters that can be changed, the
important parameters that have either a direct or an indirect relation-
ship with the temperature 7 should be mainly selected:

1) For the selection of adjustable parameters that directly affect the
temperature 7', the parameters related to thermal radiation and heat
conduction need to be selected due to the vacuum treatment in the
pod. In the selection of radiation parameters, only the internal surface
emissivity &, of the pod was selected due to the fixed surface
radiation characteristics of the spectrometer. In terms of the selection
of thermal conduction parameters, because CCD is the main internal
heat source, the surface of the spectrometer is the main heat sink, and
the frame temperature of the spectrometer is the main design goal, the
thermal resistance/thermal conductivity between CCD and spectrom-
eter and between spectrometer and pod were screened out for GSA,
taken as R and K.
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2) For the selection of parameters that indirectly affect the temper-
ature T', the parameters affecting the heat sink temperature of the pod
T,x were mainly selected. According to Eq. (3), Ty is affected by the
external heat fluxes, internal heat source, and surface heat dissipation
capacity of the pod. Therefore, the surface radiation parameters o,
and &, and the convective heat transfer coefficients %, of the pod
were selected first. Then, the two heat sources of CCD and the
electrical box both have influence on the pod temperature in the
way of heat conduction. Therefore, the thermal conductivity/thermal
resistance between CCD and pod and between electrical box and pod
were screened out for GSA, taken as K, and R,. In order to consider
the importance of the thermal conductivity of the pod on the temper-
ature of the spectrometer frame, GSA was also carried out for the
thermal conductivity 1 of the pod by setting the value range of 4 to
100400, taking the thermal conductivity of aluminum alloy as the
lower limit and the thermal conductivity of copper as the upper limit.
In addition, in order to verify the influence of the thermal resistance of
the spectrometer frame structure on its temperature level, thermal
resistance at the connection of the frame R; was also involved in
the GSA.

After summarizing the preceding parameters and recoding them to
X, 12 parameters for GSA are obtained, and the detailed descriptions
of 12 parameters for GSA are shown in Table 2.

In order to solve the sensitivity indices of the selected parameters,
it is necessary to establish the mathematical relationship between
the input (12 parameters) and output (temperature 7') of the model.
First, according to the three-dimensional model and thermal control
scheme of the spectrometer system, I-DEAS/TMG was used to
establish the finite element model of the balloon-borne spectrometer
system. The finite element model of the system is shown in Fig. 3.
This model has 4606 elements, 4874 nodes, and 56 thermal cou-
plings.

After the finite element model was built, the simulation results of
spectrometer-frame temperature 7 can be obtained. By adjusting
some or all of the parameters in the model, the variation of temper-
ature T can be obtained, that is, the local sensitivity of the parameters.
Figure 4 shows the change of temperature 7 when some parameters
are changed individually.

The analysis results of LSA include the partial derivative informa-
tion of temperature 7 to the selected parameter, and explain the
influence mode and degree of the parameter to temperature 7. How-
ever, in fact, the local sensitivity cannot distinguish the coupling
effect of a single parameter with other parameters at temperature 7', so
GSA is necessary for temperature 7 and 12 parameters.

Table 2  Descriptions of 12 thermal design parameters for GSA

Parameter Description Range

X, /2 Thermal conductivity of pod, W/(m - K) 100-400

X, /€1, Emissivity of external surface of pod 0.01-1

X3 /oy Solar absorption coefficient of external surface 0.01-1
of Pod

X,/€, Emissivity of internal surface of pod 0.01-1

X5/R, Thermal resistance between CCD and spectrometer  0.01-50
frame, K/W

X¢/R, Thermal resistance between electrical box and 0.01-50
pod, K/W

X;7/R; Thermal resistance at the connection of frame of 0.01-10
spectrometer, K/W

X /K, Thermal conductivity between spectrometer frame ~ 100—-1000
and pod, W/(m? - K)

X9/K, Thermal conductivity between CCD and pod, 100-1000
W/(m? - K)

Xi0/M Convection heat transfer coefficient of +Y, -Y 0.1-10
surface of pod, W/(m? - K)

X11/hy Convection heat transfer coefficient of +X 0.1-10
surface of pod, W/(m? - K)

X12/hs Convection heat transfer coefficient of —X surface 0.1-10

of pod, W/(m? - K)

High-Altitude Balloon | | Spectrometer System |

Fig. 3 Finite element model of balloon-borne spectrometer system.

IV. Variance-Based GSA for Thermal Design
Parameters

In the variance-based GSA of parameters, it is usually necessary to
sample a large number of parameters in their value space and get the
corresponding function output, and then calculate the global sensi-
tivity indices of parameters based on the sampling results. However,
due to the high time-consumption of finite element model simulation,
when the GSA method such as the Sobol’ method was directly used in
this model to calculate the convergent sensitivity indices, the calcu-
lation time cost would be enormous. In order to improve the calcu-
lation efficiency of GSA, a surrogate model (or metamodel) is often
used in the GSA of a complex model. Among many surrogate
models, an artificial neural network is often used in the calculation
of the sensitivity of parameters because of its good nonlinear fitting
ability [14,15]. Therefore, this paper selected BP neural network
(BPNN) as the surrogate model to represent the mathematical rela-
tionship between temperature 7" and 12 thermal design parameters to
replace the finite element model. Based on established BPNN, the
sensitivity calculation of 12 parameters was completed by using the
variance-based GSA methods: Sobol’ method and extended Fourier
amplitude sensitivity test (EFAST) method.

A. Establishment of BPNN

BPNN is a multilayer feedforward neural network [16]. Figure 5
shows the architecture of BPNN.

The topological structure of BPNN consists of three layers of
neurons: input layer, hidden layer, and output layer. The input layer
and output layer have neurons that represent the input and output
variable, respectively. The hidden layer has one or more neurons to
show nonlinear relations between input and output in the systems [17].
Neurons in one layer are connected to neurons in other layers, and each
connection has a corresponding connection weight, which quantita-
tively describes the connection strength among neurons. Training of
BPNN is the process of backpropagating the errors from the output
layer toward the input layer. Backpropagation is necessary because the
hidden neurons have no target values that can be used, so these neurons
must be trained based on errors from the previous layers. The output
layer has a target value that is used to compare with the calculated
value. As the errors are backpropagated through the neurons, the
connection weights are continuously updated. Training will occur until
the errors in the weights are adequately small enough to be accepted
[18]. After adjusting the connection weights and thresholds continu-
ously to meet the training errors, BPNN can establish an accurate
nonlinear mapping relationship between input and output.

In order to establish BPNN with 12 thermal design parameters as
input and temperature 7" as output, a training set should be estab-
lished. First of all, 12 parameters need to be sampled in their respec-
tive value spaces. In order to avoid the nonuniformity of the sampled
data sets that cannot cover the entire value space of the parameters,
leading to extreme errors in BPNN prediction, this work used the
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Fig. 5 Architecture of BPNN.

Latin hypercube sampling (LHS) method to obtain the sampling of
12 parameters in their respective value space. By using the LHS
method, 12 parameters in Table 1 were sampled 200 times, forming
200 groups of data sets. And then, in order to establish the math-
ematical relationship between the 12 parameters and the temperature
T of the spectrometer frame, according to the finite element model of
the spectrometer system, the temperature 7' corresponding to each
group of parameters in the summer solstice was simulated. The
simulation parameters of the summer-solstice working condition
are shown in Table 3.

Based on the parameter settings in Table 3 and Fig. 6, the sampled
data set was substituted into the finite element model, and the
corresponding temperature 7 under summer- solstice working con-
ditions for each set of parameters was obtained. Two hundred sets of
parameters and corresponding 7' constitute the data sets for the
training of BPNN, which is shown in Table 4.

In order to obtain BPNN with high fitting accuracy and improve
the training and convergence speed of the model, this work used the
BP neural network toolbox of MATLAB [19], and the “tansig” and
“purelin” functions were used as the activation functions of the
hidden and output layers, respectively. In the training process, 80%
of the original samples in Table 2 were used for training, 10% were
used to validate the generality of the network, and the remaining 10%
were used for testing. The number of hidden layer nodes and the
learning rate were carefully chosen to overcome the overfitting and

underfitting problems, taking 15 and 0.1, respectively. After training
for 11 iterations, the mean square error of BPNN training is 2.66e-6,
which is less than the preset training goal of 1e-4, and BPNN training
was completed and the 12-5-1 network training was obtained.
Figure 7 shows the regression of BPNN training. The regression
situation of BPNN indicates that the established BPNN can abso-
lutely reflect the functional relationship between temperature 7" and

Table3 Description of the simulation parameters under the summer
solstice working condition

Item Description

Solar constant 1323 W/m?

Average external thermal fluxes of  4Z7:684.3 W/mz, +Y:426.2 W/mz,

each surface -Y:315.7 W/m?,
+X:553.1 W/m?, —=X:553.2 W /m?

System initial temperature 25°C

Atmospheric temperature and Shown in Fig. 6

pressure

CCD working time Whole process

Active heating measures Not work

Time of simulation for generating
data sets

1 h for ascent phase
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Table4 Samples of partial data sets for BPNN training

Order Xl Xz X3 X4 X5 X6 X7 Xg Xg Xl() X“ X]2 T/K
1 10648 0.11 0.03 0.14 3148 2691 429 748.11 102.67 2.85 6.82 7.63 27045
2 170.85 035 0.44 025 32.67 48.64 829 411.63 971.93 7.92 0.07 424 264.03
3 21142 074 091 089 573 131 621 699.72 948.64 888 501 0.08 263.75
4 253.93 0.08 0.88 0.41 40.64 3.86 0.75 599.73 39573 821 148 547 26851
117.18 0.01 036 0.61 8.16 3927 568 302.18 71921 627 511 491 267.64
197 16693 095 0.02 0.71 3853 29.23 248 902.88 45526 4.79 2.94 101 262.45
198 10571 0.14 0.07 0.74 654 2594 045 930.64 90.67 6.69 721 9.48 260.75
199 23641 0.02 058 088 1.08 1332 955 34459 63723 791 5.15 1091 262.25
200 10239 0.09 0.67 0.84 28.62 3558 6.62 420.05 884.5 837 9.72 391 26345
Training: R =0.9971 Validation: R = 0.95681
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Fig.7 Regression situation of established BPNN.
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12 parameters, and can be used for the GSA of parameters based on
this BPNN.

B. Sobol’ Method

The Sobol’ method [20] is a Monte Carlo method based on
variance. The main idea of sensitivity calculation by the Sobol’
method is to decompose the function f(x) into the sum of 27
incremental terms, and then obtain the sensitivity indices of each
parameter by sampling and calculating the total variance and each
partial variance of the influence of parameters on the model. In
practical engineering applications, because of the complexity of the
actual function model, it is generally impossible to calculate all
variances. Therefore, Monte Carlo integration is often used to esti-
mate the variance of the output of the model. When the sample size of
the model parameters is large enough, the calculated results nearly
approximate the analytical solution. In this work, the GSA for 12
thermal design parameters was performed by using the Sobol’
method based on Monte Carlo integration. The Sobol’ indices cal-
culation process is as follows:

1. First, abstract BPNN into the following abstract functions:

Y = f(X) “

where X = {Xj,..., X5} is the set of 12 thermal design parameters
and Y is the output of BPNN (i.e., temperature 7).

2. Afterward, an original sampling matrix N X 24 was obtained by
carrying out quasi—-Monte Carlo sampling for creating independent
samples. After splitting the original sampling matrix into two halves,
sampling matrix M, (N X 12) and resampling matrix Mp (N X 12)
were obtained, respectively, as shown in Eq. (5):

X X o Xy Xy, X, X,
Xo1 X 0 Xy X X5 o X5,
My=| . . o M=
Xy Xna o Xnp Xy Xy o Xy,
)

where X; and X/; are the normalized element in the sampling and
resampling matrix obtained by sampling 12 parameters in their
respective value spaces twice; z represents the number of groups of
sampling parameters, z € {1,2,..., N}; N is the number of samples,
N = 20,000 (the greater the value of NV, the better the convergence of
the result of parameter sensitivity calculation); i takes 1 to p to
represent p parameters from X to X ,; and p is the number of thermal
design parameters, p = 12. On the basis of sample M, and My, the
remaining 12 new sample matrices were resampled:

X1 Xl’2 Xl’p
X5 X2’2 Xz/p
M, = ) ] ) , e,

Xni Xz/vz Xl/\lp (6)
Xip Xy o Xy
Xy Xp o o Xy

Mp =

XI/VI XI/\/2 XNp

where the first column of M is from the first column of M4, and the
column p of M, is from the column p of M, whereas the remaining
entries are taken from M.

3. Thirdly, a total of 280,000 sets of parameters in 14 sample
matrices obtained by sampling were substituted into the BPNN,
and the function value Y, which is the corresponding predicted
temperature 7 to each set of parameters, was calculated.

4. Finally, the Sobol’ indices of each thermal design parameter X;
were calculated by substituting the function values obtained in step 2
into Egs. (7-12):

. 1 N
_ Z: 2
b _2N—1j:1[f (X“’Xzz’ ’XZ")

+ (X0 XD X)) | - ™

];(2) _ %i[f(levxﬁ’ ...’sz) xf(Xz/l,Xz’z, "'sz/p):I (3)
=

R 1
bi=51 ;[f(X“’XZZ’ ""XZP)

/ 2
xf(Xgl,xgz, Xy Xe X s ,xg,,)] -2

. 1 KL/,

22
Xf(Xél’X£27 ""X;(i—l)’xzi’xé(i+l)’ "”Xézv)] = fo

(10)
§; = Di/D(Y) an
St =1-D.,/D(Y) (12)

where D(Y) is the total variance of function Y, D; is the variance of
model output caused by X;, D_; is the variance of model output
caused by other parameters besides parameter X;, - - represents the
estimated value, S; are the first order Sobol’ indices of the ith
parameter, and SiT are the total order Sobol’ indices of the ith
parameter.

In the process of parameter sampling, this work used a quasi
random-number generator in MATLAB, qrandstream based on the
Sobol’ method, to construct 12 parameters’ quasi-Monte Carlo
sampling. Based on this random number generator, each parameter
sampling result is a kind of probability density distribution with
approximate uniform distribution. Figure 8 shows the probability
distribution of some parameters after 20,000 times of sampling, and
the probability distribution law of other parameters not given in Fig. 8
is consistent with that of parameters in the figure.

According to the preceding formula and sampling results, the first
and total order Sobol’ indices of the 12 thermal design parameters
were obtained by programming with the established BPNN. Table 5
shows the first and total order Sobol’ indices of 12 thermal design
parameters and the difference ST — S; between them. The value of
this difference reflects the influence of the ith parameter coupled with
other parameters on the temperature 7. The ranking results of 12
parameters’ Sobol’ indices are shown in Fig. 9.

From Table 5 and Fig. 9, it can be seen that the first and total order
Sobol’ indices of X, X3, X5, X5, and X are the largest, all of which
exceed 0.05, whereas the others’ are almost all lower than 0.05. This
result shows that the five parameters X, X3, X5, X5, and X¢ have a
greater impact on temperature 7, whereas the other parameters have a
relatively small impact. Among all 12 parameters, because the first
order Sobol’ index of X is equal to O (the result of Monte Carlo
integration is —0.0011, which is approximately 0, due to the non-
negativity of Sobol’ indices), it indicates that X has little effect on the
temperature 7" and is an insensitive parameter to temperature 7" [21].

In addition, the difference between the total order Sobol’ indices
and the first order Sobol” indices ST — S, also reflects the influence of
the coupling of a single parameter and other parameters on temper-
ature T. Comparing the ST — S; values of different parameters in
Table 5, it is obvious that the ST — S, values of Xg, which is lower
ranked in first order Sobol’ indices, are relatively larger, indicating
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Fig. 8 Probability distribution of some parameters’ sampling.

that this parameter needs to be combined with other parameters to
affect the temperature 7.

Furthermore, this study verified the convergence of Sobol’ indices
calculated with N = 20,000. By calculating the Sobol’ indices of
12 parameters under a different sampling number N for 100 times
respectively, the first and total order Sobol’ indices box diagram of 12
parameters with N = 100, 1000, 10,000, and 20,000 was obtained,
as shown in Fig. 10. It can be seen from Fig. 10 that with the increase
of sampling number N, the floating range of the Sobol’ index of each
parameter gradually decreases. When N = 20,000, the Sobol’ index
of each parameter converges to the central value with no intersection
with others’, which verifies the convergence of Sobol’ indices of 12
parameters calculated with N = 20,000. Afterward, in order to verify
the reliability of sensitivity indices calculated by the Sobol’ method
based on BPNN, further sensitivity calculation and finite element
simulation verification are needed.

C. Extended Fourier Amplitude Sensitivity Test

The extended Fourier amplitude sensitivity test (EFAST) is
another GSA method based on variance [22]. This method is based

Table 5 Sobol’ indices of 12
thermal design parameters

Parameter  S; st sT-s,
X 0 0.0103 0.0103
X, 0.0668 0.0836 0.0168
X3 0.2018 0.2506 0.0488
X4 0.0027 0.0244 0.0217
X5 0.0769 0.0988 0.0219
X6 0.0516 0.0823 0.0307
X5 0.0016 0.0121 0.0105
X3 0.0044 0.0561 0.0517
X9 0.0090 0.0185 0.0095
X0 0.4440 0.4981 0.0541
Xy 0.0258 0.0532 0.0274
X 0.0024 0.0155 0.0131
Sum 0.887 1.2035 0.3165

on the Fourier amplitude sensitivity test (FAST) method and Sobol’
method, and computationally efficient when calculating the sensitiv-
ity indices of parameters compared with the Sobol’ method. In this
section, the sensitivity indices of parameters calculated by the EFAST
method was used to verify the calculation results of the Sobol’
method. The sensitivity indices’ calculation principle of 12 parame-
ters based on the EFAST method is as follows [23]:

L. Firstly, transform the parameter sampling vector x; into a
triangular-shaped vector based on the map G, (s) as:

. on+1
X@2j-1)» Js——
7((x) = ¥ = n+1 j=1l2.n
Xow+i-pr J> 75
(13)
1
G, (s) = —arccos(cos(2rws)) (14)
V3

where s is a scalar variable varying over the range —, 7, ® is angular
frequency, and G, (s) is the transformation map. The triangular-
shaped vector satisfies the following conditions:

.. _n+l .o nt
X[ < X[j+1] if J =< T, X[ > X[j+1] if ] > T (15)

2. Secondly, expand y = f(x) as periodic function z(y), and the
complex coefficients of the discrete Fourier transform of z(y) can be
written as:

e =Y (@)L, = e m =0, £1, 42, £[n/2]

k=1

(16)

where c,, is the complex coefficient of z(y). Moreover, the estimate
of the first order EFAST sensitivity index is given by:
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Table 6 EFAST sensitivity indices of 12 thermal
design parameters

Parameter E; E] E] —E;
X 0 0.0094 0.0094
X, 0.0706 0.0818 0.0112
X3 0.1989 0.2544 0.0555
X4 0.0013 0.0314 0.0301
X5 0.0712 0.0935 0.0223
Xe 0.0489 0.0807 0.0318
X5 0.0003 0.0132 0.0129
X3 0.0035 0.0572 0.0537
Xq 0.0077 0.0156 0.0079
Xy 0.4217 0.4792 0.0575
X, 0.0219 0.0496 0.0277
X 0.0009 0.0207 0.0198
Sum 0.8469 1.1867 0.3398

I — Z[rg:l |Cm|2 + |C—m|2 _ %:1 |Cm|2

E; =
! Z%#() |Cm|2 Z%;&() |Cm|2

a7

3. Thirdly, for calculating the higher order EFAST sensitivity
indices E;, on the premise that the parameter group I (I =
{x1,...,xz},€ >2) and the nonlinear correlated sets of angular
frequencies @ (w;, @,, ..., ®;) of each column vector are given, the
estimate for E; can also use the complex coefficients c,, of a discrete
Fourier transform to express:

- Zmeﬁ, |Cm |2

E,=——F1—— 18
A ST (19
m#0

where QI = {:I:mlwl ﬂ:mzwzi :i:meUf,mf (S {],2, ,M}}
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4. Then the total order EFAST sensitivity indices can be obtained
by adding the EFAST sensitivity indices from first order to 11th
order:

Ef =) Ei+ > Ex+ D Eut.. (19

JEI J.kel, j<k J.k,Iel, j<k<l

From the preceding equations, it is necessary to form triangular-
shaped periodic sampling of X; in the range of (0, 1) to calculate the
EFAST sensitivity indices of X;. Figure 11 shows the periodic
sampling results of X; and X, in the range of (0, 1).

Because BPNN was trained with normalized parameters, the sam-
pling results of X; can be directly substituted into BPNN to calculate
the EFAST sensitivity indices of 12 parameters, and EFAST sensitivity
indices calculation results are shown in Table 6 and Fig. 12.

It can be seen from Table 6 and Fig. 12 that the sensitivity indices
ranking results of 12 parameters calculated by the EFAST method are
consistent with the results calculated by the Sobol’ method, except
for the total order sensitivity indices of X¢ and X;,, caused by
calculation bias of Sobol’ sensitivity indices. Also, the absolute error
of the sensitivity indices of the corresponding parameters calculated
by two methods is not more than 0.023, which shows the consistency
of the calculation principle of the two variance-based GSA methods.
Furthermore, in order to verify the reliability of the results of GSA
based on the BPNN surrogate model, the results should be transferred
back into conclusions on the thermal analysis model of the spectrom-
eter system.

V. Verification of GSA Results

According to the total order sensitivity indices ranking results of 12
parameters calculated by the Sobol’ method and EFAST method, by
adjusting the value of sensitive and insensitive parameters in the finite
element model of the spectrometer system respectively, the change
amount and change rate of temperature 7 of the spectrometer frame
under different conditions can be obtained, which can be used to
verify the correctness of GSA results based on the BPNN surrogate
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Fig. 12 First and total order EFAST indices of 12 parameters.
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model. In this paper, satisfying the temperature index for the spec-
trometer frame under a summer solstice working condition was used
as the criterion to adjust the parameter value, and the cooling rate of
frame temperature T was used as the comparative index to verify the
reliability of GSA results.

According to the temperature index of the frame temperature in
Table 1 and the parameters of the summer solstice working condition
in Table 3, in order to achieve the proposed thermal design index, it is
necessary to improve the cooling capacity of the spectrometer system
and reduce the impact of internal and external heat sources on
temperature 7. Table 7 shows the thermal control measures designed
for 12 thermal design parameters and the optimal value of each
parameter to meet the thermal design index.

In this paper, the thermal control measures numbered 2, 4, 5, and 9
and the thermal control measures numbered 1, 3, 6, 7, and 8 in Table 7
were taken as two groups to compare the cooling rate of temperature
T by TMG finite element simulation. Numbers 2, 4, 5, and 9 are the
thermal control measures corresponding to the parameters with
higher sensitivity indices ranking, which are called “sensitive group”;
1,3,6,7, and 8 are the thermal control measures corresponding to the
parameters with lower sensitivity indices ranking, which are called
“insensitive group.” At the same time, the simulation results of taking
all thermal control measures in Table 7 are referred to as “reference
group.” By substituting the different values of 12 parameters in 3
cases into the finite element model of the balloon-borne spectrometer
system, the accuracy of the GSA results can be verified by comparing
the cooling rate of temperature 7" and the satisfaction of the thermal

Table7 Thermal control measures and corresponding parameters of
spectrometer system

Number Thermal control measures Parameters
1 Using aluminum alloy as pod’s X, =150 W/(m - K)
material
2 Spraying S781 white paint on all X, =0.86,X; = 0.18
external surfaces of pod
3 Blackening internal surface of X, =08
pod
4 Adding thermal insulation pad X5 =50 K/W
between CCD and frame of
spectrometer
5 Adding thermal insulation pad Xe =50 K/W
between electrical box and pod
6 Dry contact at the connection of X; =10 K/W
frame of spectrometer
7 Filling thermal conductive filler Xg = 1000 W/(m? - K)
between spectrometer frame and
surface of pod
8 Connecting CCD and surface of Xo = 1000 W/(m? - K)
pod with heat-conducting X0 = 8.5 W/(m? - K)
aluminum block
9 Improving the surface roughness X, = X, = 7.5 W/(m? - K)
of pod
Table 8 Values of each parameter in three cases
Parameters Sensitive group  Insensitive group  Reference group
X;/(W/m-K) 150 150 150
X, 0.86 0.4 0.86
X5 0.18 0.4 0.18
Xy 0.2 0.8 0.8
Xs/K/W 50 5 50
Xs/K/W 50 5 50
X, /K/W 10 10 10
Xg/W/(m? - K) 100 1000 1000
Xo/W/(m? - K) 100 1000 1000
X10/W/(m? - K) 8.5 3 8.5
X1/W/(m? - K) 7.5 3 7.5
X2/W/(m? - K) 7.5 3 7.5

40
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30 | Insensitive Group
25 —— Reference Group

20
15

Frame temperature/'C

Flight time/ hour

Fig. 13 Temperature curve of spectrometer frame in three cases.

design index in three cases. Table 8 shows the values of each
parameter in three cases.

According to the working-condition parameters in Table 3, after
adjusting the simulation time to 5 h and setting the active thermal
control measures working for the whole process, the parameter
values in Table 8§ were substituted into the finite element model,
and the time-dependent curves of the frame temperature 7 of three
groups were obtained, as shown in Fig. 13.

It can be seen from Fig. 13 that the cooling rate of temperature 7" of
the sensitive group (mean value 0.43°C/ min) is higher than that of
the insensitive group (mean value 0.23°C/ min). In addition, under
the condition of adopting the thermal control measures of the sensi-
tive group, the simulated frame temperature 7 meets the thermal
design index of maintaining —5 = 2°C for more than 3 h, reaching
3.4 h, whereas the thermal control measures of the sensitive group
cannot meet the thermal control index, and the time of maintaining
the temperature level is not more than 1 h. The comparison results
demonstrate that the influence of parameters in the sensitive group on
the temperature T is greater than that of parameters in the insensitive
group, which indicates the correctness of GSA results based on the
BPNN surrogate model. Furthermore, the cooling rate of temperature
T of the reference group (mean value 0.89°C/ min) is higher than that
of the sensitive group, which is caused by the effect of the parameter
in the insensitive group and the joint coupling effect of 12 parameters
on temperature 7. The thermal control measures of the reference
group can better meet the proposed thermal design index. However,
from the perspective of resource saving, the thermal control measures
of the sensitive group can meet the temperature index more economi-
cally and with more energy saving.

After GSA results were verified, this paper also introduced the
Spearman rank correlation coefficient (SRCC) formula [24], which is
often used in thermal analysis model modification, to calculate the
monotonic goodness-of-fit of 12 parameters to the temperature 7' to
express the influence of each parameter on 7. Different from the
sensitivity indices of the Sobol” or EFAST method, the SRCC for-
mula can only calculate the correlation degree between parameters
and temperature 7. Although the calculation results can reflect the
influence of parameters on model output to some extent, it does not
belong to the sensitivity category in mathematical sense. However,
due to the fast calculation speed of SRCC, it is widely used in the
rough modification of a thermal analysis model to find the most
important parameters that affect the output of the model. According
to the data set in Table 4, the monotonic goodness-of-fit values of 12
parameters were calculated by using the SRCC formula, and the
results were compared with the total order sensitivity indices calcu-
lated by the Sobol’ and EFAST methods. The comparison results are
shown in Fig. 14.

In order to make a more intuitive comparison, the results of the
SRCC formula were squared to make the results of the three methods in
the same scales. From the comparison results in Fig. 14, it can be seen
that the ranking results of parameters’ monotonic goodness-of-fit
calculated by the SRCC formula are inconsistent with 12 parameters’
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sensitivity indices ranking results of the Sobol’ and EFAST method,
except for Xy and X53. Morover, the gap of the results calculated by the
three methods is actually caused by the nonmonotonic part of the
model. The comparison results firstly indicate that the monotonic
goodness-of-fit of the sensitive parameters calculated by the SRCC
formula can be used to express the influence of parameters on the
model output. Secondly, the SRCC formula cannot calculate the
influence of parameters on the nonlinear part of the model (higher
order response), making it unable to distinguish the actual sensitivity
indices of parameters with low sensitivity. Finally, the monotonic
goodness-of-fit calculated by the SRCC formula does not include
the influence of multiparameter coupling on the model output, and
the calculation error of the SRCC formula is large when calculating the
actual influence of 12 parameters on temperature 7. Therefore, the
SRCC formula is not suitable for other parameter SA tasks except the
case where only the parameters that have the most important influence
on the model output need to be studied. In addition, the time spent by
the three methods in calculating the sensitivity of parameters was
compared, and the comparison results are shown in Table 9.

The data given in Table 9 shows that the Sobol’ method takes the
longest time, 3440.238 s, to calculate the global sensitivity indices of
12 parameters, and the time is mainly spent on calculation of param-
eter sensitivity indices. This is because a large number of parameter
samples are needed to ensure the convergence of calculation results
when the Sobol’ method is used to calculate the sensitivity indices of
parameters. In this paper, 280,000 sets of sampling data were used for
the calculation of Sobol’ sensitivity indices of 12 parameters, result-
ing in the limited calculation speed of the Sobol’ method. Different
from the Sobol’ method, the EFAST method can obtain the conver-
gent parameter sensitivity indices without a large number of param-
eter sampling. Therefore, the calculation time of the EFAST method
to calculate the first and total order EFAST indices of 12 parameters in
this paper is only 70.94 s, much shorter than Sobol’s. Additionally,
because of the simple calculation principle and few computational
procedures, the calculation speed of the monotonic goodness-of-fit of
12 parameters by using the SRCC formula is the fastest, with only
3.002 s needed. However, in terms of the reliability of the calculation
results, the calculation results of the EFAST method are more reliable
than those of SRCC, so that calculation time of 70.94 s is acceptable.

Furthermore, this paper also compared the time of simulation
between the BPNN metamodel and finite element model. The results
indicate that the average single simulation time of the finite element
model is 423.6 s, whereas the time of the BPNN metamodelis 0.0122 s,
which is much lower than that of the finite element model. In this study,

Table 9 Comparison of three methods in calculating time

Process Sobol’ EFAST SRCC

Data preprocessing 1.998s  1.998s 1.998s
Training of surrogate model 12.583s 12.583s None
Calculation of Parameter sensitivity 3425.657s 56.359s 1.004s
indices

Total time cost

3440.238s  70.94s 3.002s

the calculation of Sobol’ indices called BPNN for 280,000 times,
which took 3425 s, whereas the finite element model only simulated
200 times, taking more than 23 h. Therefore, the speed advantage of
GSA based on the metamodel is obvious. In addition, in this paper, the
computing speed of GSA based on the BPNN surrogate model is also
limited by the computing resources (Intel Core 15-4200 CPU, 12 GB
RAM), which leads to the longer calculation time of sensitivity indices.
With the further improvement of computing resources, the calculation
time of GSA will be further shortened, further promoting the applica-
tion of GSA in thermal analysis tasks.

VI. Conclusions

In the current research of GSA for thermal design parameters of an
optical remote sensor, it is difficult to directly establish the display
function between target temperature and parameters, which limits
the application of various GSA methods. In this paper, the variance-
based GSA methods, Sobol’ method and EFAST method, based
on the BPNN surrogate model, were introduced to calculate the first
and total order sensitivity indices of 12 parameters to the temperature
T of the spectrometer frame, to study the influence of parameters on
temperature 7' in a balloon-borne spectrometer system. Then, based
on the ranking results of sensitivity indices of 12 parameters, the
thermal control measures are designed for sensitive parameters and
insensitive parameters respectively, and the cooling rate and satisfac-
tion of the temperature index of temperature 7' under the two con-
ditions are obtained by finite element simulation in I-DEAS/TMG.
The simulation results indicate that the cooling rate of the sensitive
group is higher than that of the insensitive group, and thermal control
measures of the sensitive group meet the requirements of maintaining
temperature 7" at —5 % 2°C for more than 3 h, whereas the thermal
control measures of the insensitive group cannot meet the index,
which shows the correctness and reliability of GSA results based
on BPNN. At the end of this paper, the monotonic goodness-of-fit
of 12 parameters calculated by the SRCC formula, which is com-
monly used in thermal analysis model modification, was compared
with sensitivity indices calculated by the Sobol’ method and EFAST
method. The comparison results show that although the calculation
speed of the SRCC formula is fastest among the three methods, the
calculation results of this formula do not belong to the category
of sensitivity indices and they lack reliability. Different from this,
the EFAST method based on BPNN has greater advantages in the
reliability of calculation results and in the speed of the computation
process, which is conducive to the promotion of surrogate-based
GSA in thermal analysis tasks. Moreover, the influence of a BPNN
training error on the calculation results of sensitivity indices is beyond
the scope of this paper and will be studied in a consecutive paper.
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