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In order to obtain the thermal design parameters that have a great influence on the temperature T of the

spectrometer frame, the sensitivity of the thermal design parameters of a balloon-borne spectrometer system was

analyzed and calculated by the global sensitivity analysis (GSA) method based on the backpropagation neural

network (BPNN) surrogate model. Firstly, the BPNN with 12 selected thermal design parameters as input and

temperature T as output was well trained. Then, two kinds of variance-based GSA methods, the Sobol’method and

the extended Fourier amplitude sensitivity test (EFAST), were used to calculate the values and ranking results of

sensitivity indices of 12 parameters based on the establishedBPNN.Moreover, theGSAresults were verified based on

the finite element model of the balloon-borne spectrometer system built by I-DEAS/TMG (software developed by

Structural Dynamics Research Corporation for space thermal analysis), which indicates that the BPNN surrogate-

model-based GSA is reliable. Finally, the sensitivity calculation accuracy and speed of two methods, the Spearman

rank correlation coefficient formula and the GSAmethod based on BPNN, were compared, and the EFASTmethod

based on the BPNN surrogate model has been proved to have obvious advantages in the reliability and speed of

calculation results. Also, theGSAmethodbased on a surrogatemodel likeBPNN is of great significance in the thermal

analysis of an optical remote sensor.

Nomenclature

Ax = area of xth surface of pod
Ay = contact area between two components in the spec-

trometer system
cfr = specific heat capacity of the spectrometer frame
cm = complex coefficient
cn = specific heat capacity of thenth system components
cpo = specific heat capacity of pod

D�Y� = total variance of function Y
Di = variance of model output caused by Xi

D∼i = variance of model output caused by other parame-
ters besides parameter Xi

Ee = average infrared radiation intensity of the earth
EI = higher order EFAST sensitivity indices
Ej = first order EFAST sensitivity indices of Xi

ET
j = total order EFAST sensitivity indices of Xi

Er = average reflection intensity of the earth to the solar
radiation

Fx = angle coefficient of internal heat source to xth
internal surface of pod

Gω�s� = transformation function
hx = average convective heat transfer coefficient of the

xth surface of pod
Ky = thermal conductivity between two components in

the spectrometer system
MA, MB,
and Mp

= sample matrices

mfr = mass of the spectrometer frame
mn = mass of the nth system components
mpo = mass of pod

N = number of samples
p = number of thermal design parameters
Qcx = value of heat conducted from the internal heat

source to the xth surface of pod
Qrx = value of radiation heat transferred from the internal

heat source to the xth surface of pod
Qy = value of heat generated by one single internal heat

source in pod
Q1 = value of heat conduction between pod and electrical

box
Q2 = value of external heat absorbed by pod
Q3 = value of heat generated by all of the internal heat

source in pod
Q4 = value of aerodynamic heat absorbed by pod
Q5 = value of convective heat transfer between pod and

atmosphere environment
Q6 = value of radiation heat transfer between pod and

atmosphere environment
Q7 = value of internal energy variation of spectrometer

system
qahx = aerodynamic heat flux of xth external surface of

pod
RDZ = thermal resistance between two mounting surfaces
R1y = conduction thermal resistance of the internal com-

ponents of the spectrometer system
R2y = contact thermal resistance between two compo-

nents in the spectrometer system
S = solar constant
Si = first order Sobol’ indices of Xi

STi = total order Sobol’ indices of Xi

s = scalar variable
T = temperature of the spectrometer frame
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Tox = average temperature of xth external surface of pod
TD = temperature of the mounting surface of electrical

box
Ty = average surface temperature of the internal heat

source
TZ = temperature of the mounting surface of pod
Te = atmospheric temperature
V = total variance of the model output
Vi = model output variance caused by the parameter Xi

X = set of 12 thermal design parameters
X1∕λ = thermal conductivity of pod
X2∕ε1x = emissivity of external surface of pod
X3∕αsx = solar absorption coefficient of external surface of

pod
X4∕ε2x = emissivity of internal surface of pod
X5∕R1 = thermal resistance between CCD and spectrometer

frame
X6∕R2 = thermal resistance between eletrical box and pod
X7∕R3 = thermal resistance at the connection of frame of

spectrometer
X8∕K1 = thermal conductivity between spectrometer frame

and pod
X9∕K2 = thermal conductivity between CCD and pod
X10∕h1 = convective heat transfer coefficient of�Y, −Y sur-

face of pod
X11∕h2 = convective heat transfer coefficient of �X surface

of pod
X12∕h3 = convective heat transfer coefficient of −X surface

of pod
xj = parameter sampling vector

x�j� = triangular-shaped vector

Y = output of BP neural network
αsx = solar absorption coefficient of the xth external sur-

face of pod
ε1x = emissivity of the xth external surface of pod
ε2x = emissivity of xth internal surface of pod
σ = Stefan–Boltzmann constant
φ1x, φ2x,
and φ3x

= angle factors of pod to the solar radiation, the earth
albedo, and the infrared radiation of the earth

ω = angular frequency

I. Introduction

S ENSITIVITYanalysis (SA) is a crucial step in themodel building
and result communication process, which has long been away for

system designers to understand the relative importance of parameter
inputs in determining the model output [1–3]. SA methods structure
into local sensitivity analysis (LSA) and global sensitivity analysis
(GSA), and theGSA is to study the effects of simultaneous changes in
all design parameters on the overall system, which not only considers
the effect of changes in individual parameter values on the system, but
also analyzes the influence of the coupling effect generated by the
interaction between various parameters on the system [4].
SA for thermal design parameters is of great significance for

improving the accuracyof thermal design and reducing resourcewaste.
In the current research of SA for thermal design parameters, the LSA
method is generally used. Han [5] performed the LSA of the contact
conduction and the position of thermostat on the basis of the estab-
lished satellite thermal model. Guo [6,7] performed LSA on optical
remote sensors in a space environment, and completed thermal design
and thermal experiments basedon analysis results. In the study ofGSA
for thermal design parameters, McMenamin [8] used an ANOVA-
HDMR (analysis of variance-high dimensional model representation)
GSA method to measure the effect that uncertain parameters have on
the temperature of Solar X-rayMonitor (SXM), spacecraft battery, and
charge coupled devices (CCDs). However, there are few studies on
GSA for thermal design parameters.Moreover, there are few studies on
the influence ofmulti-parameter coupling effect on themodel output in
the existing GSA of thermal design parameters.
In order to introduce the GSA method into the thermal design

of an optical remote sensor, this paper adopted theGSAmethod based

on a surrogate model (metamodel) [9–11], which avoids the disad-
vantage of time-consumingwhen solving the sensitivity of parameters
based on finite element simulators. Based on the thermal design index
of the frame temperature T of the balloon-borne spectrometer system,
the backpropagation (BP) neural network (BPNN) was adopted to
construct the surrogate model of temperature T and 12 selected
thermal design parameters. In the selection of GSA method, because
variance-based methods have assessed themselves as versatile and
effective among the variety of available technologies for sensitivity
analysis of model output [12], this paper selected the classical vari-
ance-basedSobol’method and extendedFourier amplitude sensitivity
test (EFAST) to solve the first and total order effects of the parameters
to the temperature observation point. Then, the finite element thermal
simulation of a spectrometer system based on I-DEAS/TMG (soft-
ware developed by Structural Dynamics Research Corporation for
space thermal analysis) was completed to verify the correctness of the
global sensitivity calculation results of 12 parameters. In addition, the
Spearman rank correlation coefficient (SRCC) formula, as a com-
monly usedmethod for studying the influence of parameters onmodel
output, was introduced in this paper to compare reliability and calcu-
lation speed with variance-based GSA methods based on a BPNN
surrogate model. The comparison results indicate that the EFAST
method based on a BPNN surrogate model has a higher advantage in
the reliability of calculation results and calculation speed, and has a
higher application value in guiding the thermal design of an optical
remote sensor and the modification of a thermal analysis model.

II. Heat Balance Equation of Spectrometer System

A schematic diagram of the balloon-borne spectrometer system is
shown in Fig. 1.The balloon-borne spectrometer system consists of a
spectrometer, a cube pod, an electrical box, and the high-altitude
balloon platform. The spectrometer is mounted inside the pod, which
is connected to the electrical box by thermal insulation, with both pod
and electrical box mounted on the balloon platform. In order to avoid
the interference of airflowwhen the spectrometer system is flying, the
pod is vacuumized internally. The descriptions of the spectrometer
system are shown in Table 1.
The typical flying height of the high-altitude balloon is 20 km

above sea level. At this altitude, the surface of the pod is affected by
external heat fluxes,mainly solar flux from the sun, sunlight reflected
off of the earth (albedo), and infrared energy emitted by the earth [13].
The interior of the pod is vacuumed, and the internal heat source can
only transfer heat to the pod through thermal conduction and radia-
tion. And then, the pod radiates heat to the atmosphere through
surface convection and radiation. Under such a thermal environment,
the thermal design goal of the balloon-borne spectrometer system is
mainly for temperature T of the spectrometer frame. The lower the
temperature T, the better the optical device and CCD working con-
ditions, and the better the imaging quality. According to the thermal
environment and temperature index of the spectrometer frame, the
schematic diagram of the thermal control of the spectrometer system
is shown in Fig. 2.

Fig. 1 Schematic of the balloon-borne spectrometer system.
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According to Fig. 2 and the law of conservation of energy, the heat

balance equation for the balloon-borne spectrometer system was

established as Eq. (1):

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

Q1 �Q2 �Q3 �Q4 � Q5 �Q6 �Q7

Q1 �
TD − TZ

RDZ

Q2 �
P�αsxSφ1x � αsxErφ2x � ε1xEeφ3x�Ax

Q3 �
P

Qy

Q4 �
P

qahxAx

Q5 �
P

hxAx�Tox − Te�
Q6 �

P
ε1xσAx�T4

ox − T4
e�

Q7 � m1c1
ΔT1

Δτ
� · · · �mfrcfr

ΔT
Δτ

� · · · �mncn
ΔTn

Δτ

(1)

whereQ1 is the value of heat conduction between pod and electrical

box; TD and TZ are the temperatures of the mounting surface of the

electrical box and the pod, respectively;RDZ is the thermal resistance

between the two mounting surfaces; Q2 is the value of external heat

absorbed by the pod; αsx is the solar absorption coefficient of the xth
external surface of the pod; S is the solar constant; Er is the average

reflection intensity of the earth to the solar radiation; ε1x is the

emissivity of the xth external surface of the pod; Ee is the average

infrared radiation intensity of the earth;φ1x,φ2x, andφ3x are the angle

factors of the xth external surface of the pod to the solar radiation, the
earth albedo, and the infrared radiation of the earth, respectively;Ax is

the area of the xth surface of the pod;Q3 is the value of heat generated

by all of the internal heat sources in the pod; Qy is the value of heat

generated by one single internal heat source in the pod;Q4 is the value

of aerodynamic heat absorbed by the pod; qahx is the aerodynamic
heat flux of the xth external surface of the pod; Q5 is the value of
convective heat transfer between the pod and the atmosphere envi-
ronment; hx is the average convective heat transfer coefficient of
the xth surface of the pod; Tox is the average temperature of the xth
external surface of the pod; Te is the atmospheric temperature;Q6 is
the value of radiation heat transfer between the pod and the atmos-
phere environment;Q7 is the value of internal energy variation of the
spectrometer system; mn is the mass of the nth system components;
cn is the specific heat capacity of the nth system components; mfr

and cfr are the mass and specific heat capacity of the spectrometer
frame, respectively; T is the temperature of the spectrometer frame;
�ΔTn∕Δτ� is the temperature change rate of the nth system compo-
nents; and ΔT∕Δτ is the temperature change rate of the spectrom-
eter frame.

III. Parameter Selection for GSA

According to Eq. (1), parameters related to the temperature T of
the spectrometer frame need to be selected for GSA. According to
the heat balance equation, the expression of temperature T can be
obtained by inverse solution, which is a complex function of multiple
parameters and can be written as an abstract function as Eq. (2):

T � f�RDZ;αsx;φ1x;φ2x;φ3x; ε1x; Ax; qahx; hx; Tox; Te;mn; cn; · · · �
(2)

In Eq. (2), the external surface temperature of the pod Tox is also a
complex function affected bymany parameters, which can bewritten
as follows:

Tox �
X QcxP

R1y �
P

R2y �
P

1
KyAy

�
X ��������������������������

Ty −
Qrx

ε2xσFx

4

s

�Q1 �Q2 �Q4 −Q5 −Q6

cpompo

(3)

whereQcx is the value of heat conducted from the internal heat source
to the xth surface of pod, R1y is the conduction thermal resistance of

the internal components in the spectrometer system,R2y is the contact

thermal resistance between two components in the system, Ky is the

thermal conductivity between two components,Ay is the contact area

between two components in the system,Qrx is the value of radiation
heat transferred from the internal heat source to the xth surface of the
pod, Ty is the average surface temperature of the internal heat source,

ε2x is the emissivity of the xth internal surface of the pod, Fx is the
angle coefficient of the internal heat source to the xth internal surface
of the pod, and cpo andmpo are the specific heat capacity and mass of

pod, respectively.
From Eqs. (2) and (3), the parameters affecting the temperature T

can be obtained. In terms of selecting the parameters for GSA, the
selection criteria are firstly determined according to whether the
parameters can be changed arbitrarily in the actual spectrometer
system. Due to the limitations of the system’s optical structure, a
large number of parameters affecting the temperature T cannot be
changed. Then, among the parameters that can be changed, the
important parameters that have either a direct or an indirect relation-
ship with the temperature T should be mainly selected:
1) For the selection of adjustable parameters that directly affect the

temperature T, the parameters related to thermal radiation and heat
conduction need to be selected due to the vacuum treatment in the
pod. In the selection of radiation parameters, only the internal surface
emissivity ε2x of the pod was selected due to the fixed surface
radiation characteristics of the spectrometer. In terms of the selection
of thermal conduction parameters, because CCD is the main internal
heat source, the surface of the spectrometer is the main heat sink, and
the frame temperature of the spectrometer is themain design goal, the
thermal resistance/thermal conductivity betweenCCDand spectrom-
eter and between spectrometer and pod were screened out for GSA,
taken as R1 and K1.

Table 1 Descriptions of spectrometer system

Items Description

Working time 8 a.m. to 2 p.m., Beijing time
Ascent phase: 1 h, level flight: 4 h, landing

phase: 1 h
Working latitude 41.7 deg north latitude
Level flight altitude/
Atmospheric ambient
temperature

20 km∕ − 56.5°C

CCD power 15 W
System heating power ≤200 W

Temperature index for
spectrometer frame

Maintaining −5� 2°C for more than 3 h
within 5 h (Regardless of landing phase)

Fig. 2 Thermal control schematic of the spectrometer system.
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2) For the selection of parameters that indirectly affect the temper-
ature T, the parameters affecting the heat sink temperature of the pod
Tox were mainly selected. According to Eq. (3), Tox is affected by the
external heat fluxes, internal heat source, and surface heat dissipation
capacity of the pod. Therefore, the surface radiation parameters αsx
and ε1x and the convective heat transfer coefficients hx of the pod
were selected first. Then, the two heat sources of CCD and the
electrical box both have influence on the pod temperature in the
way of heat conduction. Therefore, the thermal conductivity/thermal
resistance between CCD and pod and between electrical box and pod
were screened out for GSA, taken as K2 and R2. In order to consider
the importance of the thermal conductivity of the pod on the temper-
ature of the spectrometer frame, GSA was also carried out for the
thermal conductivity λ of the pod by setting the value range of λ to
100–400, taking the thermal conductivity of aluminum alloy as the
lower limit and the thermal conductivity of copper as the upper limit.
In addition, in order to verify the influence of the thermal resistance of
the spectrometer frame structure on its temperature level, thermal
resistance at the connection of the frame R3 was also involved in
the GSA.

After summarizing the preceding parameters and recoding them to

Xi, 12 parameters for GSA are obtained, and the detailed descriptions

of 12 parameters for GSA are shown in Table 2.

In order to solve the sensitivity indices of the selected parameters,

it is necessary to establish the mathematical relationship between

the input (12 parameters) and output (temperature T) of the model.

First, according to the three-dimensional model and thermal control

scheme of the spectrometer system, I-DEAS/TMG was used to

establish the finite element model of the balloon-borne spectrometer

system. The finite element model of the system is shown in Fig. 3.

This model has 4606 elements, 4874 nodes, and 56 thermal cou-

plings.

After the finite element model was built, the simulation results of

spectrometer-frame temperature T can be obtained. By adjusting

some or all of the parameters in the model, the variation of temper-

atureT can be obtained, that is, the local sensitivity of the parameters.

Figure 4 shows the change of temperature T when some parameters

are changed individually.

The analysis results of LSA include the partial derivative informa-

tion of temperature T to the selected parameter, and explain the

influence mode and degree of the parameter to temperature T. How-
ever, in fact, the local sensitivity cannot distinguish the coupling

effect of a single parameterwith other parameters at temperatureT, so
GSA is necessary for temperature T and 12 parameters.

IV. Variance-Based GSA for Thermal Design
Parameters

In the variance-based GSA of parameters, it is usually necessary to

sample a large number of parameters in their value space and get the

corresponding function output, and then calculate the global sensi-
tivity indices of parameters based on the sampling results. However,

due to the high time-consumption of finite elementmodel simulation,

when theGSAmethod such as the Sobol’methodwas directly used in

this model to calculate the convergent sensitivity indices, the calcu-

lation time cost would be enormous. In order to improve the calcu-

lation efficiency of GSA, a surrogate model (or metamodel) is often
used in the GSA of a complex model. Among many surrogate

models, an artificial neural network is often used in the calculation

of the sensitivity of parameters because of its good nonlinear fitting

ability [14,15]. Therefore, this paper selected BP neural network

(BPNN) as the surrogate model to represent the mathematical rela-

tionship between temperature T and 12 thermal design parameters to
replace the finite element model. Based on established BPNN, the

sensitivity calculation of 12 parameters was completed by using the

variance-based GSA methods: Sobol’ method and extended Fourier

amplitude sensitivity test (EFAST) method.

A. Establishment of BPNN

BPNN is a multilayer feedforward neural network [16]. Figure 5

shows the architecture of BPNN.
The topological structure of BPNN consists of three layers of

neurons: input layer, hidden layer, and output layer. The input layer

and output layer have neurons that represent the input and output
variable, respectively. The hidden layer has one or more neurons to

show nonlinear relations between input and output in the systems [17].

Neurons in one layer are connected to neurons in other layers, and each

connection has a corresponding connection weight, which quantita-

tively describes the connection strength among neurons. Training of

BPNN is the process of backpropagating the errors from the output
layer toward the input layer. Backpropagation is necessary because the

hidden neurons have no target values that can be used, so these neurons

must be trained based on errors from the previous layers. The output

layer has a target value that is used to compare with the calculated

value. As the errors are backpropagated through the neurons, the
connectionweights are continuously updated.Trainingwill occur until

the errors in the weights are adequately small enough to be accepted

[18]. After adjusting the connection weights and thresholds continu-

ously to meet the training errors, BPNN can establish an accurate

nonlinear mapping relationship between input and output.
In order to establish BPNN with 12 thermal design parameters as

input and temperature T as output, a training set should be estab-

lished. First of all, 12 parameters need to be sampled in their respec-

tive value spaces. In order to avoid the nonuniformity of the sampled

data sets that cannot cover the entire value space of the parameters,

leading to extreme errors in BPNN prediction, this work used the

Table 2 Descriptions of 12 thermal design parameters for GSA

Parameter Description Range

X1∕λ Thermal conductivity of pod,W∕�m ⋅ K� 100–400

X2∕ε1x Emissivity of external surface of pod 0.01–1

X3∕αsx Solar absorption coefficient of external surface
of Pod

0.01–1

X4∕ε2x Emissivity of internal surface of pod 0.01–1

X5∕R1 Thermal resistance between CCD and spectrometer
frame, K∕W

0.01–50

X6∕R2 Thermal resistance between electrical box and
pod, K∕W

0.01–50

X7∕R3 Thermal resistance at the connection of frame of
spectrometer, K∕W

0.01–10

X8∕K1 Thermal conductivity between spectrometer frame
and pod,W∕�m2 ⋅ K�

100–1000

X9∕K2 Thermal conductivity between CCD and pod,

W∕�m2 ⋅ K�
100–1000

X10∕h1 Convection heat transfer coefficient of�Y;−Y
surface of pod,W∕�m2 ⋅ K�

0.1–10

X11∕h2 Convection heat transfer coefficient of�X
surface of pod,W∕�m2 ⋅ K�

0.1–10

X12∕h3 Convection heat transfer coefficient of −X surface

of pod,W∕�m2 ⋅ K�
0.1–10

Fig. 3 Finite element model of balloon-borne spectrometer system.
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Latin hypercube sampling (LHS) method to obtain the sampling of
12 parameters in their respective value space. By using the LHS
method, 12 parameters in Table 1 were sampled 200 times, forming
200 groups of data sets. And then, in order to establish the math-
ematical relationship between the 12 parameters and the temperature
T of the spectrometer frame, according to the finite element model of
the spectrometer system, the temperature T corresponding to each
group of parameters in the summer solstice was simulated. The
simulation parameters of the summer-solstice working condition
are shown in Table 3.
Based on the parameter settings in Table 3 and Fig. 6, the sampled

data set was substituted into the finite element model, and the
corresponding temperature T under summer- solstice working con-
ditions for each set of parameters was obtained. Two hundred sets of
parameters and corresponding T constitute the data sets for the
training of BPNN, which is shown in Table 4.
In order to obtain BPNN with high fitting accuracy and improve

the training and convergence speed of the model, this work used the
BP neural network toolbox of MATLAB [19], and the “tansig” and
“purelin” functions were used as the activation functions of the
hidden and output layers, respectively. In the training process, 80%
of the original samples in Table 2 were used for training, 10% were
used to validate the generality of the network, and the remaining 10%
were used for testing. The number of hidden layer nodes and the
learning rate were carefully chosen to overcome the overfitting and

underfitting problems, taking 15 and 0.1, respectively. After training

for 11 iterations, the mean square error of BPNN training is 2.66e-6,

which is less than the preset training goal of 1e-4, and BPNN training

was completed and the 12-5-1 network training was obtained.

Figure 7 shows the regression of BPNN training. The regression

situation of BPNN indicates that the established BPNN can abso-

lutely reflect the functional relationship between temperature T and

Fig. 4 Local sensitivity of some parameters.

Fig. 5 Architecture of BPNN.

Table 3 Description of the simulation parameters under the summer
solstice working condition

Item Description

Solar constant 1323 W∕m2

Average external thermal fluxes of
each surface

�Z: 684.3 W∕m2;�Y: 426.2 W∕m2;
−Y: 315.7 W∕m2,

�X: 553.1 W∕m2;−X: 553.2W∕m2

System initial temperature 25°C

Atmospheric temperature and
pressure

Shown in Fig. 6

CCD working time Whole process
Active heating measures Not work
Time of simulation for generating
data sets

1 h for ascent phase
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a) Atmospheric temperature b) Atmospheric pressure
Time, h Time, h

Fig. 6 Curve of atmospheric temperature and pressure.

Table 4 Samples of partial data sets for BPNN training

Order X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 T∕K

1 106.48 0.11 0.03 0.14 31.48 26.91 4.29 748.11 102.67 2.85 6.82 7.63 270.45
2 170.85 0.35 0.44 0.25 32.67 48.64 8.29 411.63 971.93 7.92 0.07 4.24 264.03
3 211.42 0.74 0.91 0.89 5.73 1.31 6.21 699.72 948.64 8.88 5.01 0.08 263.75
4 253.93 0.08 0.88 0.41 40.64 3.86 0.75 599.73 395.73 8.21 1.48 5.47 268.51

117.18 0.01 0.36 0.61 8.16 39.27 5.68 302.18 719.21 6.27 5.11 4.91 267.64
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

197 166.93 0.95 0.02 0.71 38.53 29.23 2.48 902.88 455.26 4.79 2.94 1.01 262.45
198 105.71 0.14 0.07 0.74 6.54 25.94 0.45 930.64 90.67 6.69 7.21 9.48 260.75
199 236.41 0.02 0.58 0.88 1.08 13.32 9.55 344.59 637.23 7.91 5.15 10.91 262.25
200 102.39 0.09 0.67 0.84 28.62 35.58 6.62 420.05 884.5 8.37 9.72 3.91 263.45

Fig. 7 Regression situation of established BPNN.
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12 parameters, and can be used for the GSA of parameters based on
this BPNN.

B. Sobol’ Method

The Sobol’ method [20] is a Monte Carlo method based on
variance. The main idea of sensitivity calculation by the Sobol’
method is to decompose the function f�x� into the sum of 2p

incremental terms, and then obtain the sensitivity indices of each
parameter by sampling and calculating the total variance and each
partial variance of the influence of parameters on the model. In
practical engineering applications, because of the complexity of the
actual function model, it is generally impossible to calculate all
variances. Therefore, Monte Carlo integration is often used to esti-
mate the variance of the output of themodel.When the sample size of
the model parameters is large enough, the calculated results nearly
approximate the analytical solution. In this work, the GSA for 12
thermal design parameters was performed by using the Sobol’
method based on Monte Carlo integration. The Sobol’ indices cal-
culation process is as follows:
1. First, abstract BPNN into the following abstract functions:

Y � f�X� (4)

where X � fX1; : : : ; X12g is the set of 12 thermal design parameters
and Y is the output of BPNN (i.e., temperature T).
2. Afterward, an original sampling matrixN × 24was obtained by

carrying out quasi–Monte Carlo sampling for creating independent
samples. After splitting the original sampling matrix into two halves,
sampling matrix MA (N × 12) and resampling matrix MB (N × 12)
were obtained, respectively, as shown in Eq. (5):

MA �

2
6666664

X11 X12 · · · X1p

X21 X22 · · · X2p

..

. ..
. ..

.

XN1 XN2 · · · XNp

3
7777775
; MB �

2
6666664

X 0
11 X 0

12 · · · X 0
1p

X 0
21 X 0

22 · · · X 0
2p

..

. ..
. ..

.

X 0
N1 X 0

N2 · · · X 0
Np

3
7777775
(5)

where Xzi and X 0
zi are the normalized element in the sampling and

resampling matrix obtained by sampling 12 parameters in their
respective value spaces twice; z represents the number of groups of
sampling parameters, z ∈ f1; 2; : : : ; Ng;N is the number of samples,
N � 20;000 (the greater the value ofN, the better the convergence of
the result of parameter sensitivity calculation); i takes 1 to p to
representp parameters fromX1 toXp; andp is the number of thermal

design parameters, p � 12. On the basis of sampleMA andMB, the
remaining 12 new sample matrices were resampled:

M1 �

2
666664

X11 X 0
12 · · · X 0

1p

X21 X 0
22 · · · X 0

2p

..

. ..
. ..

.

XN1 X 0
N2 · · · X 0

Np

3
777775; · · · ;

Mp �

2
666664

X 0
11 X 0

12 · · · X1p

X 0
21 X 0

22 · · · X2p

..

. ..
. ..

.

X 0
N1 X 0

N2 · · · XNp

3
777775

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

(6)

where the first column ofM1 is from the first column ofMA, and the
column p ofMp is from the column p ofMA, whereas the remaining

entries are taken from MB.
3. Thirdly, a total of 280,000 sets of parameters in 14 sample

matrices obtained by sampling were substituted into the BPNN,
and the function value Y, which is the corresponding predicted
temperature T to each set of parameters, was calculated.

4. Finally, the Sobol’ indices of each thermal design parameter Xi

were calculated by substituting the function values obtained in step 2
into Eqs. (7–12):

D̂�Y� � 1

2N − 1

XN
j�1

h
f2
�
Xz1; Xz2; · · · ; Xzp

�

� f2
�
X 0
z1; X

0
z2; · · · ; X

0
zp

�i
− f̂20 (7)

f̂20 �
1

N

XN
z�1

h
f
�
Xz1; Xz2; · · · ; Xzp

�
× f

�
X 0
z1; X

0
z2; · · · ; X

0
zp

�i
(8)

D̂i �
1

N − 1

XN
z�1

h
f
�
Xz1; Xz2; · · · ; Xzp

�

× f
�
X 0
z1; X

0
z2; · · · ; X

0
z�i−1�; Xzi; X

0
z�i�1�; · · · ; X

0
zp

�i
− f̂20 (9)

D̂∼i �
1

N − 1

XN
z�1

h
f
�
X 0
z1; X

0
z2; · · · ; X

0
zp

�

× f
�
X 0
z1; X

0
z2; · · · ; X

0
z�i−1�; Xzi; X

0
z�i�1�; · · · ; X

0
zp

�i
− f̂20

(10)

Si � Di∕D�Y� (11)

STi � 1 −D∼i∕D�Y� (12)

where D�Y� is the total variance of function Y, Di is the variance of
model output caused by Xi, D∼i is the variance of model output
caused by other parameters besides parameter Xi, ^· · · represents the
estimated value, Si are the first order Sobol’ indices of the ith
parameter, and STi are the total order Sobol’ indices of the ith
parameter.
In the process of parameter sampling, this work used a quasi

random-number generator in MATLAB, qrandstream based on the
Sobol’ method, to construct 12 parameters’ quasi–Monte Carlo
sampling. Based on this random number generator, each parameter
sampling result is a kind of probability density distribution with
approximate uniform distribution. Figure 8 shows the probability
distribution of some parameters after 20,000 times of sampling, and
the probability distribution law of other parameters not given in Fig. 8
is consistent with that of parameters in the figure.
According to the preceding formula and sampling results, the first

and total order Sobol’ indices of the 12 thermal design parameters
were obtained by programming with the established BPNN. Table 5
shows the first and total order Sobol’ indices of 12 thermal design
parameters and the difference STi − Si between them. The value of
this difference reflects the influence of the ith parameter coupledwith
other parameters on the temperature T. The ranking results of 12
parameters’ Sobol’ indices are shown in Fig. 9.
From Table 5 and Fig. 9, it can be seen that the first and total order

Sobol’ indices ofX10, X3,X5, X2, and X6 are the largest, all of which
exceed 0.05, whereas the others’ are almost all lower than 0.05. This
result shows that the five parameters X10, X3, X5, X2, and X6 have a
greater impact on temperatureT, whereas the other parameters have a
relatively small impact. Among all 12 parameters, because the first
order Sobol’ index of X1 is equal to 0 (the result of Monte Carlo
integration is −0.0011, which is approximately 0, due to the non-
negativity of Sobol’ indices), it indicates thatX1 has little effect on the
temperature T and is an insensitive parameter to temperature T [21].
In addition, the difference between the total order Sobol’ indices

and the first order Sobol’ indices STi − Si also reflects the influence of
the coupling of a single parameter and other parameters on temper-

ature T. Comparing the STi − Si values of different parameters in

Table 5, it is obvious that the STi − Si values of X8, which is lower

ranked in first order Sobol’ indices, are relatively larger, indicating
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that this parameter needs to be combined with other parameters to

affect the temperature T.
Furthermore, this study verified the convergence of Sobol’ indices

calculated with N � 20;000. By calculating the Sobol’ indices of

12 parameters under a different sampling number N for 100 times

respectively, the first and total order Sobol’ indices box diagram of 12

parameters with N � 100, 1000, 10,000, and 20,000 was obtained,

as shown in Fig. 10. It can be seen from Fig. 10 that with the increase

of sampling numberN, the floating range of the Sobol’ index of each
parameter gradually decreases. WhenN � 20;000, the Sobol’ index
of each parameter converges to the central value with no intersection

with others’, which verifies the convergence of Sobol’ indices of 12

parameters calculatedwithN � 20;000. Afterward, in order to verify
the reliability of sensitivity indices calculated by the Sobol’ method

based on BPNN, further sensitivity calculation and finite element

simulation verification are needed.

C. Extended Fourier Amplitude Sensitivity Test

The extended Fourier amplitude sensitivity test (EFAST) is

another GSA method based on variance [22]. This method is based

on the Fourier amplitude sensitivity test (FAST) method and Sobol’

method, and computationally efficient when calculating the sensitiv-

ity indices of parameters compared with the Sobol’ method. In this

section, the sensitivity indices of parameters calculated by theEFAST

method was used to verify the calculation results of the Sobol’

method. The sensitivity indices’ calculation principle of 12 parame-

ters based on the EFAST method is as follows [23]:
1. Firstly, transform the parameter sampling vector xj into a

triangular-shaped vector based on the map Gω�s� as:

π��xj�� � x�j� �

8>>><
>>>:
x�2j−1�; j ≤

n� 1

2
;

x�2�n�1−j��; j >
n� 1

2
;

j � 1; 2; : : : ; n

(13)

Gω�s� �
1

π
arccos�cos�2πωs�� (14)

where s is a scalar variable varying over the range−π; π,ω is angular
frequency, and Gω�s� is the transformation map. The triangular-
shaped vector satisfies the following conditions:

x�j� ≤ x�j�1� if j ≤
n� 1

2
; x�j� ≥ x�j�1� if j >

n� 1

2
(15)

2. Secondly, expand y � f�x� as periodic function π�y�, and the
complex coefficients of the discrete Fourier transform of π�y� can be
written as:

cm �
Xn
κ�1

�π�y��κζ�κ−1�mn ; ζn � e−2πi∕n; m � 0;�1;�2; : : : ;��n∕2�

(16)

where cm is the complex coefficient of π�y�. Moreover, the estimate
of the first order EFAST sensitivity index is given by:

Table 5 Sobol’ indices of 12
thermal design parameters

Parameter Si STi STi − Si

X1 0 0.0103 0.0103

X2 0.0668 0.0836 0.0168

X3 0.2018 0.2506 0.0488

X4 0.0027 0.0244 0.0217

X5 0.0769 0.0988 0.0219

X6 0.0516 0.0823 0.0307

X7 0.0016 0.0121 0.0105

X8 0.0044 0.0561 0.0517

X9 0.0090 0.0185 0.0095

X10 0.4440 0.4981 0.0541

X11 0.0258 0.0532 0.0274

X12 0.0024 0.0155 0.0131

Sum 0.887 1.2035 0.3165

Fig. 8 Probability distribution of some parameters’ sampling.
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a) First Order b) Total Order

Fig. 9 First and total order Sobol’ indices of 12 parameters.

Fig. 10 Convergence verification of Sobol’ indices results.
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Êj �
P

M
m�1 jcmj2 � jc−mj2P

M
m≠0 jcmj2

� 2

P
M
m�1 jcmj2P
M
m≠0 jcmj2

(17)

3. Thirdly, for calculating the higher order EFAST sensitivity
indices EI , on the premise that the parameter group I (I �
fx1; : : : ; xlg;l ≥ 2) and the nonlinear correlated sets of angular
frequencies ω (ω1;ω2; : : : ;ωl) of each column vector are given, the
estimate for EI can also use the complex coefficients cm of a discrete
Fourier transform to express:

ÊI �
P

m∈ΩI
jcmj2P

m≠0
jcmj2

(18)

where ΩI � f�m1ω1 �m2ω2 � : : : �mlωl;ml ∈ f1;2; : : : ;Mgg.

4. Then the total order EFAST sensitivity indices can be obtained
by adding the EFAST sensitivity indices from first order to 11th
order:

ET
j �

X
j∈I

Ej �
X

j;k∈I;j<k
Ejk �

X
j;k;l∈I;j<k<l

Ejkl � : : : (19)

From the preceding equations, it is necessary to form triangular-
shaped periodic sampling of Xi in the range of �0; 1� to calculate the
EFAST sensitivity indices of Xi. Figure 11 shows the periodic
sampling results of X1 and X2 in the range of �0; 1�.
Because BPNN was trained with normalized parameters, the sam-

pling results of Xi can be directly substituted into BPNN to calculate
the EFAST sensitivity indices of 12 parameters, andEFAST sensitivity
indices calculation results are shown in Table 6 and Fig. 12.
It can be seen from Table 6 and Fig. 12 that the sensitivity indices

ranking results of 12 parameters calculated by the EFASTmethod are
consistent with the results calculated by the Sobol’ method, except
for the total order sensitivity indices of X9 and X12, caused by
calculation bias of Sobol’ sensitivity indices. Also, the absolute error
of the sensitivity indices of the corresponding parameters calculated
by twomethods is not more than 0.023, which shows the consistency
of the calculation principle of the two variance-based GSA methods.
Furthermore, in order to verify the reliability of the results of GSA
based on theBPNN surrogatemodel, the results should be transferred
back into conclusions on the thermal analysis model of the spectrom-
eter system.

V. Verification of GSA Results

According to the total order sensitivity indices ranking results of 12
parameters calculated by the Sobol’method and EFAST method, by
adjusting thevalue of sensitive and insensitive parameters in the finite
element model of the spectrometer system respectively, the change
amount and change rate of temperature T of the spectrometer frame
under different conditions can be obtained, which can be used to
verify the correctness of GSA results based on the BPNN surrogate

a) X1 b) X2

Fig. 11 Periodic sampling of some parameters.

Table 6 EFAST sensitivity indices of 12 thermal
design parameters

Parameter Ej ET
j ET

j − Ej

X1 0 0.0094 0.0094

X2 0.0706 0.0818 0.0112

X3 0.1989 0.2544 0.0555

X4 0.0013 0.0314 0.0301

X5 0.0712 0.0935 0.0223

X6 0.0489 0.0807 0.0318

X7 0.0003 0.0132 0.0129

X8 0.0035 0.0572 0.0537

X9 0.0077 0.0156 0.0079

X10 0.4217 0.4792 0.0575

X11 0.0219 0.0496 0.0277

X12 0.0009 0.0207 0.0198

Sum 0.8469 1.1867 0.3398

a) First Order b) Total Order

Fig. 12 First and total order EFAST indices of 12 parameters.
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model. In this paper, satisfying the temperature index for the spec-
trometer frame under a summer solstice working condition was used
as the criterion to adjust the parameter value, and the cooling rate of
frame temperature T was used as the comparative index to verify the
reliability of GSA results.
According to the temperature index of the frame temperature in

Table 1 and the parameters of the summer solstice working condition
in Table 3, in order to achieve the proposed thermal design index, it is
necessary to improve the cooling capacity of the spectrometer system
and reduce the impact of internal and external heat sources on
temperature T. Table 7 shows the thermal control measures designed
for 12 thermal design parameters and the optimal value of each
parameter to meet the thermal design index.
In this paper, the thermal control measures numbered 2, 4, 5, and 9

and the thermal controlmeasures numbered 1, 3, 6, 7, and 8 in Table 7
were taken as two groups to compare the cooling rate of temperature
T by TMG finite element simulation. Numbers 2, 4, 5, and 9 are the
thermal control measures corresponding to the parameters with
higher sensitivity indices ranking,which are called “sensitive group”;
1, 3, 6, 7, and 8 are the thermal control measures corresponding to the
parameters with lower sensitivity indices ranking, which are called
“insensitive group.”At the same time, the simulation results of taking
all thermal control measures in Table 7 are referred to as “reference
group.” By substituting the different values of 12 parameters in 3
cases into the finite element model of the balloon-borne spectrometer
system, the accuracy of theGSA results can be verified by comparing
the cooling rate of temperature T and the satisfaction of the thermal

design index in three cases. Table 8 shows the values of each
parameter in three cases.
According to the working-condition parameters in Table 3, after

adjusting the simulation time to 5 h and setting the active thermal
control measures working for the whole process, the parameter
values in Table 8 were substituted into the finite element model,

and the time-dependent curves of the frame temperature T of three
groups were obtained, as shown in Fig. 13.
It can be seen from Fig. 13 that the cooling rate of temperature T of

the sensitive group (mean value 0.43°C∕min) is higher than that of
the insensitive group (mean value 0.23°C∕min). In addition, under
the condition of adopting the thermal control measures of the sensi-
tive group, the simulated frame temperature T meets the thermal
design index of maintaining −5� 2°C for more than 3 h, reaching
3.4 h, whereas the thermal control measures of the sensitive group
cannot meet the thermal control index, and the time of maintaining

the temperature level is not more than 1 h. The comparison results
demonstrate that the influence of parameters in the sensitive group on
the temperature T is greater than that of parameters in the insensitive
group, which indicates the correctness of GSA results based on the
BPNN surrogatemodel. Furthermore, the cooling rate of temperature
T of the reference group (meanvalue 0.89°C∕min) is higher than that
of the sensitive group, which is caused by the effect of the parameter

in the insensitive group and the joint coupling effect of 12 parameters
on temperature T. The thermal control measures of the reference
group can better meet the proposed thermal design index. However,
from the perspective of resource saving, the thermal controlmeasures
of the sensitive group canmeet the temperature indexmore economi-
cally and with more energy saving.
After GSA results were verified, this paper also introduced the

Spearman rank correlation coefficient (SRCC) formula [24], which is
often used in thermal analysis model modification, to calculate the
monotonic goodness-of-fit of 12 parameters to the temperature T to

express the influence of each parameter on T. Different from the
sensitivity indices of the Sobol’ or EFAST method, the SRCC for-
mula can only calculate the correlation degree between parameters
and temperature T. Although the calculation results can reflect the
influence of parameters on model output to some extent, it does not
belong to the sensitivity category in mathematical sense. However,
due to the fast calculation speed of SRCC, it is widely used in the

rough modification of a thermal analysis model to find the most
important parameters that affect the output of the model. According
to the data set in Table 4, the monotonic goodness-of-fit values of 12
parameters were calculated by using the SRCC formula, and the
results were compared with the total order sensitivity indices calcu-
lated by the Sobol’ and EFAST methods. The comparison results are
shown in Fig. 14.
In order to make a more intuitive comparison, the results of the

SRCCformulawere squared tomake the results of the threemethods in
the same scales. From the comparison results in Fig. 14, it can be seen

that the ranking results of parameters’ monotonic goodness-of-fit
calculated by the SRCC formula are inconsistent with 12 parameters’

Table 7 Thermal controlmeasures and correspondingparameters of

spectrometer system

Number Thermal control measures Parameters

1 Using aluminum alloy as pod’s
material

X1 � 150 W∕�m ⋅ K�

2 Spraying S781 white paint on all
external surfaces of pod

X2 � 0.86; X3 � 0.18

3 Blackening internal surface of
pod

X4 � 0.8

4 Adding thermal insulation pad
between CCD and frame of
spectrometer

X5 � 50 K∕W

5 Adding thermal insulation pad
between electrical box and pod

X6 � 50 K∕W

6 Dry contact at the connection of
frame of spectrometer

X7 � 10 K∕W

7 Filling thermal conductive filler
between spectrometer frame and
surface of pod

X8 � 1000 W∕�m2 ⋅ K�

8 Connecting CCD and surface of
pod with heat-conducting
aluminum block

X9 � 1000 W∕�m2 ⋅ K�
X10 � 8.5 W∕�m2 ⋅ K�

9 Improving the surface roughness
of pod

X11 � X12 � 7.5 W∕�m2 ⋅ K�

Table 8 Values of each parameter in three cases

Parameters Sensitive group Insensitive group Reference group

X1∕�W∕m ⋅ K� 150 150 150

X2 0.86 0.4 0.86

X3 0.18 0.4 0.18

X4 0.2 0.8 0.8

X5∕K∕W 50 5 50

X6∕K∕W 50 5 50

X7∕K∕W 10 10 10

X8∕W∕�m2 ⋅ K� 100 1000 1000

X9∕W∕�m2 ⋅ K� 100 1000 1000

X10∕W∕�m2 ⋅ K� 8.5 3 8.5

X11∕W∕�m2 ⋅ K� 7.5 3 7.5

X12∕W∕�m2 ⋅ K� 7.5 3 7.5

Fig. 13 Temperature curve of spectrometer frame in three cases.
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sensitivity indices ranking results of the Sobol’ and EFAST method,
except forX10 andX3.Morover, the gap of the results calculated by the
three methods is actually caused by the nonmonotonic part of the
model. The comparison results firstly indicate that the monotonic
goodness-of-fit of the sensitive parameters calculated by the SRCC
formula can be used to express the influence of parameters on the
model output. Secondly, the SRCC formula cannot calculate the
influence of parameters on the nonlinear part of the model (higher
order response), making it unable to distinguish the actual sensitivity
indices of parameters with low sensitivity. Finally, the monotonic
goodness-of-fit calculated by the SRCC formula does not include
the influence of multiparameter coupling on the model output, and
the calculation error of the SRCC formula is largewhen calculating the
actual influence of 12 parameters on temperature T. Therefore, the
SRCC formula is not suitable for other parameter SA tasks except the
casewhere only the parameters that have the most important influence
on the model output need to be studied. In addition, the time spent by
the three methods in calculating the sensitivity of parameters was
compared, and the comparison results are shown in Table 9.
The data given in Table 9 shows that the Sobol’ method takes the

longest time, 3440.238 s, to calculate the global sensitivity indices of
12 parameters, and the time is mainly spent on calculation of param-
eter sensitivity indices. This is because a large number of parameter
samples are needed to ensure the convergence of calculation results
when the Sobol’method is used to calculate the sensitivity indices of
parameters. In this paper, 280,000 sets of sampling datawere used for
the calculation of Sobol’ sensitivity indices of 12 parameters, result-
ing in the limited calculation speed of the Sobol’ method. Different
from the Sobol’ method, the EFAST method can obtain the conver-
gent parameter sensitivity indices without a large number of param-
eter sampling. Therefore, the calculation time of the EFAST method
to calculate the first and total order EFASTindices of 12 parameters in
this paper is only 70.94 s, much shorter than Sobol’s. Additionally,
because of the simple calculation principle and few computational
procedures, the calculation speed of themonotonic goodness-of-fit of
12 parameters by using the SRCC formula is the fastest, with only
3.002 s needed. However, in terms of the reliability of the calculation
results, the calculation results of the EFASTmethod aremore reliable
than those of SRCC, so that calculation time of 70.94 s is acceptable.
Furthermore, this paper also compared the time of simulation

between the BPNN metamodel and finite element model. The results
indicate that the average single simulation time of the finite element
model is 423.6 s,whereas the timeof theBPNNmetamodel is 0.0122 s,
which ismuch lower than that of the finite elementmodel. In this study,

the calculation of Sobol’ indices called BPNN for 280,000 times,
which took 3425 s, whereas the finite element model only simulated
200 times, taking more than 23 h. Therefore, the speed advantage of
GSA based on the metamodel is obvious. In addition, in this paper, the
computing speed of GSA based on the BPNN surrogate model is also
limited by the computing resources (Intel Core i5-4200 CPU, 12 GB
RAM),which leads to the longer calculation timeof sensitivity indices.
With the further improvement of computing resources, the calculation
time of GSAwill be further shortened, further promoting the applica-
tion of GSA in thermal analysis tasks.

VI. Conclusions

In the current research of GSA for thermal design parameters of an
optical remote sensor, it is difficult to directly establish the display
function between target temperature and parameters, which limits
the application of various GSA methods. In this paper, the variance-
based GSA methods, Sobol’ method and EFAST method, based
on the BPNN surrogate model, were introduced to calculate the first
and total order sensitivity indices of 12 parameters to the temperature
T of the spectrometer frame, to study the influence of parameters on
temperature T in a balloon-borne spectrometer system. Then, based
on the ranking results of sensitivity indices of 12 parameters, the
thermal control measures are designed for sensitive parameters and
insensitive parameters respectively, and the cooling rate and satisfac-
tion of the temperature index of temperature T under the two con-
ditions are obtained by finite element simulation in I-DEAS/TMG.
The simulation results indicate that the cooling rate of the sensitive
group is higher than that of the insensitive group, and thermal control
measures of the sensitive groupmeet the requirements ofmaintaining
temperature T at −5� 2°C for more than 3 h, whereas the thermal
control measures of the insensitive group cannot meet the index,
which shows the correctness and reliability of GSA results based
on BPNN. At the end of this paper, the monotonic goodness-of-fit
of 12 parameters calculated by the SRCC formula, which is com-
monly used in thermal analysis model modification, was compared
with sensitivity indices calculated by the Sobol’method and EFAST
method. The comparison results show that although the calculation
speed of the SRCC formula is fastest among the three methods, the
calculation results of this formula do not belong to the category
of sensitivity indices and they lack reliability. Different from this,
the EFAST method based on BPNN has greater advantages in the
reliability of calculation results and in the speed of the computation
process, which is conducive to the promotion of surrogate-based
GSA in thermal analysis tasks. Moreover, the influence of a BPNN
training error on the calculation results of sensitivity indices is beyond
the scope of this paper and will be studied in a consecutive paper.
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