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Abstract: Machine learning and deep learning methods have been employed in the hyperspectral
image (HSI) classification field. Of deep learning methods, convolution neural network (CNN) has
been widely used and achieved promising results. However, CNN has its limitations in modeling
sample relations. Graph convolution network (GCN) has been introduced to HSI classification due
to its demonstrated ability in processing sample relations. Introducing GCN into HSI classification,
the key issue is how to transform HSI, a typical euclidean data, into non-euclidean data. To address
this problem, we propose a supervised framework called the Global Random Graph Convolution
Network (GR-GCN). A novel method of constructing the graph is adopted for the network, where
the graph is built by randomly sampling from the labeled data of each class. Using this technique,
the size of the constructed graph is small, which can save computing resources, and we can obtain
an enormous quantity of graphs, which also solves the problem of insufficient samples. Besides,
the random combination of samples can make the generated graph more diverse and make the
network more robust. We also use a neural network with trainable parameters, instead of artificial
rules, to determine the adjacency matrix. An adjacency matrix obtained by a neural network is
more flexible and stable, and it can better represent the relationship between nodes in a graph. We
perform experiments on three benchmark datasets, and the results demonstrate that the GR-GCN
performance is competitive with that of current state-of-the-art methods.

Keywords: hyperspectral image classification; graph convolution network; graph construction;
supervised learning

1. Introduction

Hyperspectral image (HSI) classification has received attention due to its applications
in environmental monitoring, agriculture, and the military [1,2]. In recent years, many
methods have been applied in HSI classification, e.g., k-nearest neighbor (k-NN) [3],
support vector machine (SVM) [4], random forest [5], extended morphological profile
(EMP) [6], and extreme learning machine [7]. With the success of deep learning in the
computer vision [8–11] and natural language processing [12–14] fields, many scholars
have attempted to utilize advanced network structures in HSI classification. Chen et
al. first introduced the concept of deep learning into HSI classification by using stacked
autoencoders [15]. A feature extraction framework based on the deep belief network was
proposed by Chen et al. to deeply extract features [16]. Because recurrent neural networks
are designed for sequential data, Mou et al. applied them in HSI data analysis [17].
Zhu et al. presented two generative adversarial network (GAN) frameworks, spectral-
based and spatial-spectral-based frameworks, and confirmed the usefulness of GAN in
HSI classification [18].

Of the deep learning methods used for HSI classification, one widely applied frame-
work is the convolutional neural network (CNN). Hu et al. introduced CNN to HSI
classification for the first time as a one-dimensional CNN (1D-CNN) that only used spectral
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information and exhibited limited accuracy [19]. Various CNN types have been subse-
quently developed. Makantasis et al. adopted a two-dimensional CNN (2D-CNN), where
spectral bands are regarded as feature maps [20]. Chen et al. then systematically compared
the 1D-CNN, 2D-CNN, and three-dimensional CNN (3D-CNN), and they provided guid-
ance on CNN structure design [21]. He et al. proposed a multi-scale three-dimensional
deep CNN, in which convolution kernels of different sizes were employed in spectral
dimension [22]. In addition, Li et al. put forward a novel pixel-pair method to augment the
available training samples, with the final classification determined by voting [23]. Accord-
ing to [24], a siamese network composed of two CNNs can be trained to lower intraclass
variability and raise interclass variability. In [25], the spectral dimension is cut into several
sections, and these sections are parallelly fed into the network to effectively extract features
using fewer training parameters, known as BASS net. Additionally, a spatial-spectral
residual network (SSRN), where two residual blocks, namely spectral and spatial residual
blocks, constitute the end-to-end network, was created. By using residual blocks, SSRN can
achieve higher classification accuracy with more layers [26]. To take advantage of the high
accuracy of 3D-CNN while reducing the number of training parameters, Roy et al. devised
a hybrid network named HybridSN that uses a 3D-CNN to extract low-level features
and a 2D-CNN to extract high-level features [27]. Zhang et al. utilized the depthwise
and pointwise convolution layers to construct a three-dimensional lightweight CNN, and
they adopted transfer learning to alleviate the small sample problem [28]. Additionally,
in [29], a 1D-CNN was used to extract spectral features, a 2D-CNN was used to extract
spatial-spectral features, and the features were then fused according to a predictive feature
weighting mechanism, achieving sufficient classification performance.

As a kind of graph neural network, graph convolution network (GCN), a method to
process non-euclidean data, is widely used in the fields of social networks, knowledge
graphs, and so on. The following is a brief introduction to the development of GCN and
the graph neural network. Bruna et al. extended the convolution operation from Euclidean
data to graph-structured data using the spectral domain perspective [30]. Afterwards,
quickly localized convolutional filters were designed for graphs by Defferrard et al. using
Chebyshev polynomials to approximate the convolution kernels [31]. Kipf et al. further
simplified this work by only using the first-order approximation of spectral graph convolu-
tions, and the final result was the basic form of the GCN, which is now widely used [32].
Apart from applying convolution operations in the spectral domain, exploration in the
spatial domain has also been made. Considering that the previous work is transductive,
meaning that all node details in a graph are required for training, Hamilton et al. pro-
posed an inductive framework named GraphSAGE based on the spatial domain in which
a function learns to generate node embeddings [33]. In addition, in [34], Simonovsky et
al. formulated edge-conditioned convolution (ECC), where the filter weights depend on
the edge labels and vary according to the input samples. Velickovic et al. introduced an
attention mechanism to graph neural networks and proposed the graph attention network
(GAT) [35]. GraphSAGE, ECC, and GAT are similar, spatial-based approaches.

To the best of our knowledge, graph neural networks were introduced to the HSI
classification field within the last three years. Qin et al. proposed a spectral–spatial GCN in
which the relation between nodes not only depends on spectral similarity but also spatial
distribution [36]. Shahraki et al. applied 1D-CNN to an HSI data to obtain node features,
and then they used a semi-supervised adjacency matrix with the previously obtained
nodes to perform graph convolution [37]. In [38], the ECC method was deployed for
HSI classification, and during the graph construction process, both spectral and spatial
information were considered. Hong et al. adopted a mini-batch strategy to train the GCN
called miniGCN and investigated the situations of jointly using GCNs and CNNs to extract
feature representations [39]. A multi-scale dynamic GCN (MDGCN) was presented by
Wan et al. in which the superpixel technique was used to reduce the training complexity,
and a multi-scale technique was applied to effectively utilize spatial information [40]. Wan
et al. also developed the context-aware dynamic GCN. They proposed a dynamic graph
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refinement mechanism to obtain a more accurate adjacency matrix and graph projections
based on superpixels [41]. Liu et al. extracted EMP features and organized them as graph-
structured data to apply a GCN [42]. In addition, Mou et al. employed a nonlocal GCN in
which the entire HSI image is fed to the network, requiring high network computational
complexity [43]. Apart from applying a GCN in HSI classification through semi-supervised
learning, unsupervised learning has also been attempted. For example, Cai et al. presented
a new subspace clustering framework based on graph convolution and obtained satisfac-
tory results [44]. GAT has also been innovated for HSI classification as a graph neural
network [45,46].

As introduced above, machine learning and deep learning methods are widely used in
the field of HSI classification. Among the deep learning methods, the CNN-based methods
are the most widely used and become the mainstream technical route. In recent years,
GCN, as a kind of graph neural network, has achieved great success in processing graph
structure data. Because of its advantages in dealing with the node relationship, researchers
introduced GCN to the field of HSI classification. However, there are two crucial problems
using GCN in HSI classification. The one is how to transform HSI into the graph structure
data which GCN can handle. The other one is how to model the node relationship in the
graph structure data we build.

Faced with these, we propose a novel network called Global Random Graph Convolu-
tion Network (GR-GCN). Our work was inspired by [47], in which a GCN is applied in the
few-shot learning field. The primary contributions of this article are as follows.

1. A novel method of constructing the graph in HSI classification is proposed. The
method, which we call global random graph-based strategy, can save computing
resource, overcome the problem of insufficient samples. Moreover, the diversity of
the constructed graphs can make the network more robust.

2. A neural network-based method of obtaining an adjacency matrix is proposed. Com-
pared with artificial rules, this method can more effectively mine the internal connec-
tions between graph nodes.

3. We propose a general end-to-end supervised learning framework based on the GCN
for HSI classification. Three benchmark datasets are used to test the proposed frame-
work performance.

The remainder of this article is organized as follows. In Section 2, the details of
the proposed framework are presented. The experiment configurations are reported in
Section 3. Section 4 shows the experimental results and comparative analysis. In Section 5,
the study conclusions are presented.

2. Proposed Method
2.1. Preliminary Knowledge

Given the graph G = (V, E), with V and E denoting the sets of nodes and edges,
define A ∈ RN×N as the adjacency matrix of G, where Aij represents the connection status
between the ith and the jth nodes, and D ∈ RN×N as the degree matrix, where the diagonal
element Dii = ∑ii Aij. Then, the symmetric normalized Laplacian matrix, the key spectral
filtering operator on the graph, is calculated as follows:

L = I − D−
1
2 AD−

1
2 = UΛUT (1)

where I is the identity matrix, U represents the matrix of the eigenvectors of L, and Λ
denotes the diagonal matrix of the eigenvalues of L.

Based on this information, the convolution operation of the graph in the spectral
domain can be expressed as follows:

gθ ∗ X = UgθUTs (2)
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where gθ ∈ RN×N is a diagonal matrix, elements of which are the parameters to be learned.
s ∈ RN represents one scalar for each node in the graph. Because Equation (2) requires
calculating the eigenvectors of L, it is computationally costly. To overcome this problem,
Defferrard et al. [31] used Chebyshev polynomials up to the Kth order to approximate gθ .

gθ ≈
K

∑
k=0

βkTk(Λ̃) (3)

where Tk(·) is the Chebyshev polynomial of order K; βk denotes the polynomial coefficient,
which represents the parameters to be trained; and Λ̃ is defined as Λ̃ = 2

λmax
Λ− I, where

λmax is the largest eigenvalue of L. The purpose of computing Λ̃ is to rescale the Λ to fit
the input range of the Chebyshev polynomial. Hence, Equation (2) can be rewritten as

gθ ∗ s ≈
K−1

∑
k=0

βkTk(L̃)s (4)

where L̃ = 2
λmax

L− I. The eigendecomposition is circumvented in Equation (4), which is
the desired outcome. The suitable nature of the Chebyshev polynomial is also noteworthy.
Tk(L̃) = 2L̃Tk−1(L̃)− Tk−2(L̃), where T0(L̃) = I, and T1(L̃) = L̃, meaning that Tk(L̃) can
be obtained recursively.

To further simplify the computational process, Kipf and Welling [32] only utilized two
polynomials (the 0th order and 1st order polynomials), and they approximated λmax ≈ 2.
By conducting this limiting and approximating, we obtain the following equation.

gθ ∗ s ≈ θ′0s + θ′1 L̃s

= θ′0s + θ′1(L− I)s

= θ′0s− θ′1(D−
1
2 AD−

1
2 )s

(5)

where θ′0 and θ′1 are both polynomial coefficients. By letting θ′0 = −θ′1 = θ,

gθ ∗ s ≈ θ(I + D−
1
2 AD−

1
2 )s (6)

The range of I + D−
1
2 AD−

1
2 is [0, 2], which may cause gradient explosion or vanishing.

Therefore, Kipf and Welling [32] applied a normalization technique that replaced I +
D−

1
2 AD−

1
2 with D̃−

1
2 ÃD̃−

1
2 , where Ã = A + I and D̃ii = ∑j Ãij. As a result, the final GCN

model formulation is
X(l+1) = σ(D̃−

1
2 ÃD̃−

1
2 X(l)W(l)) (7)

where X(l) denotes the input graph data of the lth layer, W(l) represents the trainable
parameter matrix of the lth layer, and σ is the activate function used in network.
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Figure 1. (a) is the schematic diagram of the label sets and unlabeled set. (b) is the schematic diagram of the train graph
and test graph. Both the train graph and test graph are derived from the label sets and unlabeled set and composed of one
target node and k× C support nodes. The k× C support nodes in both train graph and test graph are obtained by randomly
selecting k samples from each label set, and there are total C label sets. The schematic diagram actually depicts the situation
when k = 1, C = 9. The one target node in train graph is obtained by randomly selecting one sample from total label set.
The one target node in test graph is obtained by randomly selecting one sample from unlabeled set.

2.2. Construction of Global Random Graph

HSIs typically exhibit a shape of (B, H, W), where H and W are the height and width
of the HSI, respectively, and B is the number of spectral bands. First, a principal component
analysis is applied to the HSI to remove redundant details in the spectral dimension.
Then, the HSI shape becomes (Bd, H, W), where Bd is the number of reserved principal
components. To fully utilize the spatial context, the input into the GR-GCN is the target
pixel combined with its neighborhood (called cube in this article), whose shape is (Bd, w, w),
where w is an odd number greater than 1 that refers to the window size limiting the
neighborhood scope. To feed pixels near the HSI edge into the network, we fill in a moat
around the image with zeros; the width of moat is set to (w− 1)/2. In the experiment,
we take Bd as 30 and w as 25.

We define C as the number of classes in the HSI, n as the number of labeled samples
of each class, and nu as the number of total unlabeled samples. Then we can get the total
label set L, the label set with label i li, and the unlabeled set U as follows:

L = {l1, l2, l3, · · · , lC} (8)

li = {xi
1, xi

2, xi
3, · · · , xi

n} (i = 1, 2, 3, · · · , C) (9)

U = {xu
1 , xu

2 , xu
3 , · · · , xu

nu} (10)

where x represents a cube whose shpae is (Bd, w, w), the superscript i of x means the cube
label is i and the superscript u of x means the cube label is unknown.

The graph construction process is described in Figure 1. As illustrated in Figure 1, the
train and test graphs are derived from the label and unlabeled sets. The following is the
construction process of the train graph. First, k samples are picked randomly from each
label set so that we can obtain k× C samples called supported nodes. After that, we select
one sample from remaining samples in total label set and call it target node. The support
nodes and the target node together constitute the train graph. The test graph composition
is nearly the same as that of the train graph. The only difference is that the target node in
test graph is from the unlabeled set and not from the total label set. We can observe that
there are N = k× C + 1 nodes in both the train graph and test graph.
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Then we discuss the number of available graphs below. From the description of the
graph construction process, it can be known that the number of available train graphs and
the number of available test graphs are respectively:(

C
1

)(
n

k + 1

)(
n
k

)C−1
(11)

(
n
k

)C(nu
1

)
(12)

Let us take the University of Pavia dataset (one of the datasets we used in the experiments)
as an example. In this dataset C = 9 and we assume that n and k are 200 and 1 respectively,
then nu can be determined and is equal to 40,976. According to Equations (11) and (12),
the magnitude of train graph number we obtain is 1023 and the magnitude of test graph
number is 1025. It is apparent that by using this strategy, the available train graphs is
sufficient. However, it is neither possible nor necessary to traverse all the train graphs
due to their large number. In the experiment, we used the mini-batch learning method
for training, and set the batch size to 200, the batch number to 500. Therefore, the total
number of train graphs we used is 100,000. In subsequent section, we will discuss the
loss convergence and accuracy of our proposed GR-GCN as the batches fed into network
increases. The number of available test graphs is huge as well. But for one target node
to classify, we only use one corresponding test graph. In other words, when trianing is
accomplished, our proposed network is capable of distinguishing the given target node
only using a set of support nodes picked randomly. In subsequent section, we will discuss
the dependence of target node classification accuracy on support node selection. In the
experiments, We set n and k as 200 and 2 respectively. The hyperparameter n associates
with the number of available label samples, and the hyperparameter k associates with the
number of nodes in graphs we construct. The impact of these two key hyperparameters
will be discussed in a subsequent section.

Introducing the GCN, a method of processing non-euclidean data, into the field of
HSI classification, a key issue is how to transform HSI, a typical euclidean data, into
non-euclidean data. Different researchers have given different solutions. In [36–39,42],
the researchers searched for samples to construct neighbor nodes based on the similarity
of spectra, supplemented by spatial constraints (called spectrum-based method in this
article). In [40,41], the researchers first merged pixels into superpixels with the superpixel
technique and then determined the neighbor nodes based on the connection in space
(called superpixel-based method in this article). And in [43], the researchers considered all
the other samples when considering the neighbor nodes of a sample, which relies on the
powerful computing capacity (called entirety-based method in this article). We propose
a novel method of constructing the graph in HSI classification called the global random
graph method. There are three main advantages of using the global random graph-based
method as follows:

(1) The size of each global random graph is small. The above three methods all use
the whole samples to form graph nodes. For both the spectrum-based method and the
entirety-based method, the number of nodes in the constructed graph is tens of thousands.
Even for the superpixel-method which applies the superpixel technique, there are still
thousands of nodes in the constructed graph. However, for our proposed method, the
size of each global random graph is quite small. Let us continue taking the University of
Pavia dataset as an example and there are only 10 nodes in the global random graph with
k assumed to 1. Therefore, the computing resources occupied by the scale of the global
random graph are very limited. Actually, the most computational resource occupancy of
the proposed network is in the parallel feature extraction network.

(2) The number of available global random graphs is huge. As described above, the global
random graph-based method significantly increases the available train graphs. We can
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declare that using the global random graph-based method largely overcomes the problem
of insufficient label samples.

(3) Randomness is introduced through permutation and combination. We tend to regard the
global random graph as a lookup table by which we can identify the target node relying on
the associations between the target node and support nodes. This is why the diversity of
node combinations is needed, because only in this way can the trained network be more
robust and adapt to various situations. The randomness introduced by permutation and
combination satisfies this diversity. For the spectrum-based method, similar samples in the
spectral dimension are considered as neighbor nodes in the graph. For the superpixel-based
method, it is based on the connection in space. These two methods both consider only
a limited number of samples as neighbor nodes. Although the entirety-based method
considers the relationship between any two samples, it requires large computing resources.
Using simple permutation and combination, the global random graph-based method not
only satisfies the diversity but also does not require excessive computing resources.

Feature 
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net

D(1)

D(2)
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net

Graph 

convolution 

net
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(1)

X
(1)

X
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D(j)

X
(1)
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X(1)
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Last graph

(1)

( )j

Figure 2. The framework of Global Random Graph Convolution Network (GR-GCN). The gray arrows indicate the flow of
data. First, using the graph generator with a random mechanism, we obtain the initial graph. Then, the initial graph nodes
are fed into feature extracting net parallelly to extract features and we combine the extracted features forming a graph called
the preliminary graph. After that, the preliminary graph passes through three graph convolution modules and transforms
into the last graph. Finally, we apply the softmax/cross-entropy loss function to the target node of the last graph. There are
two symbols worthy to note. The red symbol “+” refers to splicing N tensors, whose shapes are all (a, ), into one tensor
whose shape is (N, a). The pink symbol “+” refers to splicing two tensors, whose shapes are (N, a) and (N, b), into one
tensor whose shape is (N, a + b). Here, a, b, and N are only for illustration.

2.3. The Overview of GR-GCN

The framework of GR-GCN is displayed in Figure 2. In the schematic diagram, the
gray arrows indicate the flow of data.

First, using the graph generator with a random mechanism, we can obtain a graph
called the initial graph. The initial graph node is the cube denoted by D(j) (the subscript j
denotes the jth node in the graph) whose shape is (Bd, w, w). It is worth noting that the
initial graph is just in an embryonic form because the node features and the relationship
between nodes are not determined yet.
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Then, we feed the initial graph nodes into the feature extracting net parallelly and
obtain a graph called the preliminary graph. The preliminary graph node is the feature
vector that is extracted by the feature extracting net and denoted by ψ

(1)
(j) (the subscript

j denotes the jth node in the graph) whose shape is ( f (1), ). X(1) refers to the set of
node features in the preliminary graph. Although the node features of the preliminary
graph are obtained, the preliminary graph is still not complete due to the absence of the
adjacency matrix.

After that, data passes through three graph convolution modules and transforms
into a graph called the last graph, which is the graph we use to classify. The graph
convolution module is composed of the adjacency matrix computing net and the graph
convolution net. For conciseness, Figure 2 only shows the composition of one of three graph
convolution modules. In the graph convolution module, the adjacency matrix computing
net is responsible for obtaining the adjacency matrix. Therefore, the graph becomes
complete after using the adjacency matrix computing net and is fed to the subsequent
graph convolution net. In Figure 2, X(i) refers to the set of node features and A(i) denotes
the adjacency matrix in the corresponding graph. The superscript i in X(i) and A(i) indicates
the location in the network.

Finally, the softmax/cross-entropy loss function is applied to the target node of the
last graph to train the proposed network.

To obtain additional insight into the GR-GCN, the shape details of data flow are listed
in Table 1, in which f (i) is the feature number of X(i), and J is the channel number of the
adjacency matrix. It is worth mentioning that A(2) and A(3) are not shown in Figure 2 and
they are adjacency matrices obtained in the second and third graph convolution module
respectively.

Table 1. The shape of essential datas in GR-GCN.

Data in Network Shape of Data

D(j) (Bd, w, w)

ψ
(1)
(j)

( f (1), )

X(1) (N, f (1))

A(1) (J, N, N)

X(2) (N, f (2))

A(2) (J, N, N)

X(3) (N, f (3))

A(3) (J, N, N)

X(4) (N, f (4))

2.4. The Feature Extracting Net

Figure 3 shows the main architecture of the feature extracting net and Table 2 displays
the details of each layer in the feature extracting net. It can be seen that the feature
extracting net is essentially a 3D-CNN, used for extracting features from the target pixel
and its neighborhood. Using the 3D-CNN, the feature extracting net utilizes not only
spectral information but also spatial information. Furthermore, the extracted high-level
and abstract features are more conducive to the subsequent classification task. In follow-up
experiments, the ablation experiment will be conducted to illustrate the role of the feature
extracting net and its impact on classification accuracy.
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Figure 3. The architecture of feature extracting net.

Table 2. The details of each layer in the feature extracting net.

Layer Kernel Number @
Kernel Size

Output Shape

Input - (30, 25, 25)
Conv3d 8@(5, 4, 4) (8, 26, 22, 22)

MaxPool3d (2, 2, 2) (8, 13, 11, 11)
Conv3d 16@(6, 4, 4) (16, 8, 8, 8)

MaxPool3d (2, 2, 2) (16, 4, 4, 4)
Conv3d 32@(4, 4, 4) (32, 1, 1, 1)
Reshape - (32, )

Concatenate - (32 + C, )
Concatenate - (N, 32 + C)

There are two details that need to be elaborated. The one is that in the first concatenate
layer, we need to code the sample label into the one-hot format and concatenate it to the
extracted features. After that, N individual sample features ψ

(1)
(j) are concatenated forming

the set of node features X(1), from which we can see that f (1) = 32 + C. The other is that
there is no activate layer in the feature extracting net because adding the activation layer
after the convolutional layer reduces the classification accuracy by 1% to 2%. The reason
for this phenomenon may be that introducing excessive nonlinearity to the network results
in inaccurate network convergence.

2.5. The Graph Convolution Module

As Figure 2 shows, there are three graph convolution modules. As described above,
the graph convolution module consists of the adjacency matrix computing net and the
graph convolution net. In the graph convolution module, the set of node features first is fed
to the adjacency matrix computing net to obtain the adjacency matrix. Then, the set of node
features, with the adjacency matrix, passes through the graph convolution net to further
extract features. Finally, the features extracted by the graph convolution net are combined
with the previous features as the input of the subsequent module. This operation draws
trick from the residual network [10] and aims to make the features more representative
and prevent network degradation.

Figure 4 shows the main architecture of the adjacency matrix computing net and
Table 3 displays the details of each layer in the adjacency matrix computing net. Before
feeding into the adjacency matrix computing net, a metric should be applied to X(i) to
quantify the bonds between each node in the graph. The metric is calculated as

m(i)
pq =

∣∣∣ψ(i)
(p) − ψ

(i)
(q)

∣∣∣ ∀p, q ∈ [1, N] (13)

where either ψ
(i)
(p) or ψ

(i)
(q) is the features of any node in X(i) (the subscript p and q denote

the pth and qth node in the graph. The subtraction and absolute value operators both
occur at the element level. Despite the simplicity of the metric, it is demonstrated to
be effective in the experiment. It can be seen that the adjacency matrix computing net
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is essentially a 2D-CNN. In the adjacency matrix computing net, we stack multiple 2D
convolution layers with 1× 1 convolution kernels and take the final feature map as the
adjacency matrix. This approach seems slightly rough, but the end-to-end training method
makes it work well. In pioneer works that employ GCN in HSI classification, the adjacency
matrix is typically calculated using a distance metric, and then the adjacency matrix is
fixed. Compared with the artificial rules, a neural network based on trainable parameters is
more flexible and can more precisely investigate the associations between nodes in a graph.
At the end of the network, considering the relationship between the node and itself in the
graph, an identity matrix is concatenated to the adjacency matrix, which means that J = 2.
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Figure 4. The architecture of adjacency matrix computing net.

Table 3. The details of each layer in the ith adjacency matrix computing net.

Layer Kernel Number @
Kernel Size

Output Shape

Metric - ( f (i), N, N)
Conv2d 2× f (i)@(1, 1) (2× f (i), N, N)
Conv2d b1.5× f (i)c@(1, 1) (b1.5× f (i)c, N, N)
Conv2d f (i)@(1, 1) ( f (i), N, N)
Conv2d f (i)@(1, 1) ( f (i), N, N)
Conv2d 1@(1, 1) (1, N, N)

Concatenate - (J, N, N)

Table 4 displays the details of the graph convolution net. The graph convolution net
is the application of Equation (7), in which the W denotes the parameters that need to be
trained in the graph convolution net. The first and second graph convolution net output
feature numbers are both 48, whereas that of the third graph convolution net is C. From
Table 1 and Figure 2, we can obtain the relationships between the f (1), f (2), f (3), and f (4),
which are f (2) = f (1) + 48, f (3) = f (2) + 48, and f (4) = C, respectively.

Table 4. The feature number of input and output of ith GCN.

Feature Number of Input Feature Number of Output

J × f (i) (i = 1, 2) 48
J × f (3) C
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2.6. Some Hyperparameters

The softmax/cross-entropy loss function is applied to the target node, which is split
from the last graph, and the Adam optimizer is selected to train the GR-GCN. The parame-
ters in the network are randomly initialized, and the learning rate is set to 0.001 to update
these parameters. We use the mini-batch learning method and set the batch size to 200, the
batch number to 500.

3. Datasets and Experimental Setup
3.1. Datasets

Three widely used HSI datasets are employed in our experiments, including the
Indian Pines, Salinas, and University of Pavia datasets.

1. The Indian Pines dataset was obtained using the Airborne Visible Infrared Imaging
Spectrometer (AVIRIS), which is 145× 145 in size and contains 220 spectral channels.
After removing 20 water absorption bands, we obtain corrected data with 200 spectral
bands. And the spatial resolution is 20 m per pixel. There are a total of 16 land-cover
classes; only 12 of them are used in the experiments due to an insufficient number of
samples in certain categories.

2. The University of Pavia dataset was collected using the Reflective Optics System
Imaging Spectrometer, which is 610× 340 in size and contains 103 spectral channels.
And the spatial resolution is 1.3 m per pixel. There are 9 land-cover classes in the
dataset, and all of them are used in the experiments.

3. The Salinas dataset was also gathered using the AVIRIS, which is 512× 217 in size
and contains 224 spectral channels. Similar to the Indian Pines dataset, a correcting
operator is applied to the Salinas dataset, and 204 spectral bands remain afterward.
And the spatial resolution is 3.7 m per pixel. There are 16 land-cover classes in the
dataset, and all of them are used in the experiments.

The number of training and testing samples for each category of the three datasets is
listed in Tables 5–7. The dataset pseudo color images fused by certain bands and ground
truth images are displayed in Figures 5–7. The classes that are not used in the experiments
are not in the ground truth images.

Table 5. The number of label and unlabeled samples for each category in Indian Pines dataset.

No Class Label Unlabeled

1 Corn-notill 200 1228
2 Corn-min 200 630
3 Corn 200 37
4 Grass-pasture 200 283
5 Grass-trees 200 530
6 Hay-windrowd 200 278
7 Soybean-notill 200 772
8 Soybean-mintill 200 2255
9 Soybean-clean 200 393
10 Wheat 200 5
11 Woods 200 1065
12 Buildings-Grass-Tree 200 186

2400 7662
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Table 6. The number of label and unlabeled samples for each category in University of Pavia dataset.

No Class Label Unlabeled

1 Asphalt 200 6431
2 Meadows 200 18,449
3 Gravel 200 1899
4 Trees 200 2864
5 Painted metal sheets 200 1145
6 Bare Soil 200 4829
7 Bitumen 200 1130
8 Self-blocking Bricks 200 3482
9 Shadows 200 747

1800 40,976

Table 7. The number of label and unlabeled samples for each category in Salinas dataset.

No Class Label Unlabeled

1 Brocoli-green-weeds-1 200 1809
2 Brocoli-green-weeds-2 200 3526
3 Fallow 200 1776
4 Fallow-rough-plow 200 1194
5 Fallow-smooth 200 2478
6 Stubble 200 3759
7 Celery 200 3379
8 Grapes-untrained 200 11,071
9 Soil-vineyard-develop 200 6003
10 Corn-senesced-green 200 3078
11 Lettuce-romaine-4wk 200 868
12 Lettuce-romaine-5wk 200 1727
13 Lettuce-romaine-6wk 200 716
14 Lettuce-romaine-7wk 200 870
15 Vineyard-untrained 200 7068
16 Vineyard-vertical-trellis 200 1607

3200 50,929

(a) (b)

Corn-notill Corn-min Corn Grass-pasture
Grass-trees Hay-windrowd Soybean-notill Soybean-mintill
Soybean-clean Wheat Woods Buildings-Grass-Tree

Figure 5. Indian Pines dataset’s pseudo color image fused of some bands (bands 9, 19 and 29) and ground truth image.
(a) pseudo color image; (b) ground truth image.
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(a) (b)

Asphalt Meadows Gravel Trees 
Painted metal sheets Bare Soil Bitumen Self-blocking Bricks
Shadows

Figure 6. University of Pavia dataset’s pseudo color image fused of some bands (bands 9, 19 and 29) and ground truth
image. (a) pseudo color image; (b) ground truth image.

(a) (b)

Brocoli-green-weeds-1 Brocoli-green-weeds-2 Fallow Fallow-rough-plow
Fallow-smooth Stubble Celery Grapes-untrained
Soil-vineyard-develop Corn-senesced-green Lettuce-romaine-4wk Lettuce-romaine-5wk
Lettuce-romaine-6wk Lettuce-romaine-7wk Vineyard-untrained Vineyard-vertical-trellis

Figure 7. Salinas dataset’s pseudo color image fused of some bands (bands 9, 19 and 29) and ground truth image. (a) pseudo
color image; (b) ground truth image.

3.2. Experimental Setup

Certain machine learning-based, CNN-based and GCN-based methods are com-
pared with our proposed method. Of the machine learning-based methods, we use k-NN
and SVM as references. Of the CNN-based methods, 1D-CNN [19], 2D-CNN [20], and
BASS [25], classic methods based on CNNs, are selected for comparison. Of the GCN-based
methods, the original GCN with no modifications [32], miniGCN [39], and MDGCN [40]
are chosen for comparison.

For the k-NN method, the parameter k, the number of nearest neighbors, is de-
termined using a grid search, in which k is set as {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The SVM
method optimal parameters are also determined using a grid search algorithm. Two
types of kernel functions are tested, linear and radial basis function (RBF) kernels. The
regularization parameter C is searched for in {0.01, 0.1, 1, 10, 100, 1000} during the linear
kernel grid search process. In the RBF kernel process, the regularization parameter C is
searched for in {0.01, 0.1, 1, 10, 100, 1000}, and the kernel coefficient gamma is searched for
in {0.00001, 0.0001, 0.001, 0.01, 0.1, 1}.

The 1D-CNN model is trained for 10000 epochs with a batch size of 256, and the other
settings are consistent with those of [19]. Because certain details regarding 2D-CNN are
not disclosed in [20], we select the parameters ourselves to achieve the same accuracy. An
SGD optimizer is used to train 2D-CNN model, and the learning rate is set to 0.0001. We
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use mini-batches 32 in size and train the network for 2000 epochs. The data we apply in
the BASS model experiment is the corrected data after the water absorption bands are
removed, whereas [25] implements the original data. Therefore, the experiment model
architecture has a few differences with that in [25]. Specifically, the model in [25] contains
10 parallel networks with a bandwidth of 22 for the Indian Pines dataset and 14 parallel
networks with a bandwidth of 16 for the Salinas dataset. However, in our experiments,
10 parallel networks with a bandwidth of 20 are set for both the Indian Pines and Salinas
datasets. Training occurrs for 500 epochs, and the other settings are the same as those
described in [25].

For the original GCN model, the k-NN algorithm is applied to acquire the most
similar pixels in spectral domain, and the key parameter k is set to 20. Then, Equation (14)
is employed to calculate adjacency matrix element

aij =

{
e−γd j ∈ N(i)
0 j 6∈ N(i)

(14)

where aij represents the element of the adjacency matrix located in row i and column j;
d is the distance computed by the k-NN algorithm; γ is the coefficient that controls the
exponential function shape; and N(i) denotes the set of k nearest neighbors obtained using
the k-NN method. Using Equation (14), a sparse adjacency matrix is acquired, which is
necessary for the GCN. For the GCN structure, we select a two-layer GCN, with the hidden
layer in the middle containing 25 units. The learning rate is set to 0.01, and the maximum
epoch is set to 500 for training. As for miniGCN and MDGCN models, all the settings are
consistent with those of [39,40].

3.3. Implementation Platform

The k-NN and SVM methods are both implemented using a scikit-learn library, and
the other methods, which are all deep learning-based, are implemented using a PyTorch
library. The experiments are conducted on a server equipped with a single NVIDIA
Tesla V100 graphics processing unit (GPU) with 16 GB of memory and 12 GB of random
access memory.

4. Results and Discussion

The methods based on the CNN (1D-CNN, 2D-CNN, and BASS) are superior to the
machine learning methods (k-NN and SVM) for all three datasets, although the SVM test
accuracy is close to that of the 1D-CNN and 2D-CNN for certain datasets. The experiment
results demonstrate the superiority of CNN-based methods, which is why CNN has been
widely used in HSI classification in recent years. We can see that the original GCN results
are only slightly superior to those of the k-NN, and they are inferior to those of the SVM.
However, as the GCN-based method continues to be explored, the GCN-based methods
keep improving and getting competitive results, such as the MDGCN model and our
proposed GR-GCN model. This can show the potential and prospects of the GCN-based
method in dealing with the HSI classification. Overall, although the GCN-based method
is not as intuitive as the CNN-based method when applied to the HSI classification, with
continuous exploration, the GCN-based method shows its potential and prospects in
dealing with the HSI classification.

The proposed GR-GCN outperforms all the other methods for all evaluation criteria
including OA, AA, and Kappa. For the Indian Pines dataset, compared with the SVM,
BASS, and MDGCN methods, the GR-GCN increases the OA by 16.73%, 5.2%, and 0.99%,
respectively. For the University of Pavia dataset, compared with the SVM, BASS, and
MDGCN methods, the GR-GCN increases the OA by 7.92%, 2.13%, and 0.53%, respectively.
For the Salinas dataset, compared with the SVM, BASS, and MDGCN methods, the GR-
GCN increases the OA by 8.25%, 6.89%, and 1.21% respectively. The GR-GCN is superior
both quantitatively and qualitatively compared to the other methods. The visual effect of
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the classification maps in Figures 8–10 agree with the data in Tables 8–10. The GR-GCN
classification maps exhibit fewer noises, which indicates a lower misclassification rate
than that of the other methods, especially for the Indian Pines and Salinas datasets. For
the Salinas dataset, the GR-GCN achieves a test accuracy of 99.71%. Moreover, the two
land covers types that are easily misclassified by other methods, grapes-untrained and
vineyard-untrained, can be distinguished well by the GR-GCN. Based on these results, we
can conclude that the GR-GCN model surpasses traditional machine learning methods
and is comparable with state-of-the-art CNN-based methods. In addition, among the
GCN-based methods, the GR-GCN performance far exceeds that of the original GCN and
miniGCN, and is competitive compared with MDGCN, which verifies the effectiveness of
the techniques utilized in the GR-GCN method.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Corn-notill Corn-min Corn Grass-pasture Grass-trees Hay-windrowd Soybean-notill Soybean-mintill
Soybean-clean Wheat Woods Buildings-Grass-Tree

Figure 8. Classification map for Indian Pines dataset using different methods. (a) Ground truth map; (b) k-NN; (c) SVM;
(d) 1D-CNN; (e) 2D-CNN; (f) BASS; (g) GCN; (h) miniGCN; (i) MDGCN; (j) GR-GCN.

(a) (b) (c) (d) (e)

Figure 9. Cont.
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(f) (g) (h) (i) (j)

Asphalt Meadows Gravel Trees Painted metal sheets Bare Soil Bitumen Self-blocking Bricks
Shadows

Figure 9. Classification map for University of Pavia dataset using different methods. (a) Ground truth map; (b) k-NN;
(c) SVM; (d) 1D-CNN; (e) 2D-CNN; (f) BASS; (g) GCN; (h) miniGCN; (i) MDGCN; (j) GR-GCN.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Brocoli-green-weeds-1 Brocoli-green-weeds-2 Fallow Fallow-rough-plow Fallow-smooth Stubble Celery Grapes-untrained
Soil-vineyard-develop Corn-senesced-green Lettuce-romaine-4wk Lettuce-romaine-5wk Lettuce-romaine-6wk Lettuce-romaine-7wk Vineyard-untrained Vineyard-vertical-trellis

Figure 10. Classification map for Salinas dataset using different methods. (a) Ground truth map; (b) k-NN; (c) SVM;
(d) 1D-CNN; (e) 2D-CNN; (f) BASS; (g) GCN; (h) miniGCN; (i) MDGCN; (j) GR-GCN.
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Table 8. Class specific accuracy, overall accuracy (OA), average accuracy (AA) and kappa coefficient (Kappa) of different methods for Indian Pines dataset.

k-NN SVM 1D-CNN 2D-CNN BASS GCN miniGCN MDGCN GR-GCN

1 48.49± 2.98 79.02± 4.22 83.03± 2.19 79.77± 2.51 88.45± 7.04 49.71± 5.83 79.12± 7.04 92.77± 1.15 97.98± 0.50
2 60.06± 1.35 78.60± 3.66 84.35± 3.22 87.81± 1.73 94.79± 2.05 58.22± 4.37 56.13± 6.46 98.54± 0.54 99.14± 0.40
3 70.81± 5.20 87.03± 3.52 94.05± 3.52 95.68± 5.27 99.46± 1.21 82.16± 4.52 22.16± 16.37 97.30± 2.70 100.00± 0.00
4 90.74± 1.84 95.69± 1.23 95.34± 1.79 97.10± 0.81 99.15± 1.13 90.11± 2.42 91.80± 1.10 99.86± 0.19 99.86± 0.19
5 93.21± 1.80 97.02± 1.43 98.23± 0.66 95.77± 1.49 99.02± 0.59 92.72± 1.20 98.68± 0.69 99.55± 0.47 99.55± 0.47
6 99.35± 0.53 99.86± 0.32 99.71± 0.47 100.00± 0.00 99.86± 0.20 98.78± 0.75 99.64± 0.36 100.00± 0.00 100.00± 0.00
7 71.84± 1.57 85.28± 2.95 90.39± 1.45 89.33± 2.57 94.20± 1.91 75.39± 6.05 75.57± 5.67 97.75± 0.80 99.07± 1.02
8 53.83± 2.96 69.29± 2.64 76.38± 0.42 77.31± 2.50 89.14± 4.41 61.54± 7.55 81.29± 5.56 97.14± 1.14 96.31± 2.35
9 55.62± 5.03 87.94± 3.83 92.77± 0.50 85.24± 2.20 96.64± 2.07 56.49± 2.69 57.35± 4.07 95.32± 1.25 99.80± 0.21
10 100.00± 0.00 100.00± 0.00 92.00± 10.95 100.00± 0.00 100.00± 0.00 100.00± 0.00 60.00± 37.42 100.00± 0.00 100.00± 0.00
11 81.95± 1.82 90.59± 2.21 90.93± 2.85 93.52± 0.93 96.73± 1.41 84.98± 3.33 93.93± 2.04 99.83± 0.22 99.59± 0.49
12 59.14± 1.61 83.23± 4.14 85.38± 4.47 94.30± 1.89 96.56± 4.51 62.58± 5.44 56.67± 8.12 99.78± 0.29 99.78± 0.29

OA 65.28± 0.89 81.59± 1.02 85.75± 0.80 85.79± 0.73 93.12± 1.35 68.48± 1.18 80.19± 0.57 97.33± 0.35 98.32± 0.71
AA 73.75± 0.56 87.80± 0.75 90.21± 0.87 91.32± 0.43 96.17± 0.34 76.06± 0.35 72.70± 3.76 98.15± 0.26 99.26± 0.26

Kappa 59.92± 0.96 78.53± 1.13 83.32± 0.92 83.34± 0.82 91.87± 1.58 63.44± 1.20 76.31± 0.65 96.83± 0.41 98.00± 0.84

Table 9. Class specific accuracy, overall accuracy (OA), average accuracy (AA) and kappa coefficient (Kappa) of different methods for University of Pavia dataset.

k-NN SVM 1D-CNN 2D-CNN BASS GCN miniGCN MDGCN GR-GCN

1 72.73± 2.09 85.43± 1.33 87.85± 2.45 95.02± 1.02 94.61± 1.45 77.40± 1.45 71.99± 11.68 96.36± 0.61 97.50± 0.93
2 73.72± 5.34 91.23± 0.36 91.72± 0.78 92.46± 1.19 97.25± 1.00 76.94± 2.05 95.56± 2.00 98.62± 0.74 98.74± 0.49
3 74.20± 3.74 84.38± 2.86 86.38± 5.15 91.51± 2.24 94.86± 1.71 76.88± 2.72 96.87± 1.62 94.84± 2.33 99.06± 0.88
4 93.33± 1.16 96.56± 1.01 96.45± 0.37 96.81± 0.71 97.21± 1.41 94.40± 1.36 93.04± 1.94 94.32± 0.87 96.86± 1.38
5 99.21± 0.06 99.49± 0.36 99.77± 0.19 99.95± 0.12 100.00± 0.00 99.18± 0.27 99.37± 0.18 99.18± 0.35 99.97± 0.08
6 74.82± 5.46 92.26± 1.15 92.69± 0.29 89.89± 1.80 97.19± 1.62 79.28± 2.20 69.75± 11.67 99.99± 0.02 99.77± 0.31
7 92.32± 0.77 93.12± 0.82 93.70± 1.29 97.24± 0.65 97.15± 1.10 90.81± 0.75 96.44± 1.70 99.49± 0.95 99.98± 0.04
8 73.79± 3.25 86.91± 1.34 84.94± 5.76 91.19± 1.30 91.65± 2.57 78.36± 3.20 16.46± 10.94 98.17± 0.69 97.39± 1.66
9 99.89± 0.11 99.95± 0.07 99.73± 0.21 99.49± 0.17 99.95± 0.07 99.79± 0.20 100.00± 0.00 98.98± 0.67 98.13± 0.25

OA 76.80± 1.87 90.57± 0.19 91.16± 0.66 93.18± 0.52 96.36± 0.52 80.05± 0.72 82.19± 1.41 97.96± 0.45 98.49± 0.52
AA 83.78± 0.19 92.15± 0.36 92.58± 0.44 94.84± 0.28 96.65± 0.20 85.89± 0.28 82.17± 0.82 97.77± 0.43 98.60± 0.41

Kappa 70.14± 2.04 87.51± 0.27 88.28± 0.86 90.92± 0.67 95.13± 0.68 74.18± 0.83 76.07± 1.70 97.26± 0.60 97.98± 0.69
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Table 10. Class specific accuracy, overall accuracy (OA), average accuracy (AA) and kappa coefficient (Kappa) of different methods for Salinas dataset.

k-NN SVM 1D-CNN 2D-CNN BASS GCN miniGCN MDGCN GR-GCN

1 98.65± 0.36 99.61± 0.09 99.57± 0.31 99.82± 0.13 99.69± 0.40 98.70± 0.26 98.85± 0.49 99.88± 0.27 100.00± 0.00
2 99.33± 0.17 99.65± 0.27 99.74± 0.21 99.74± 0.40 99.98± 0.01 99.81± 0.14 99.86± 0.05 99.74± 0.19 100.00± 0.00
3 98.68± 1.25 99.73± 0.18 99.79± 0.10 99.77± 0.08 99.63± 0.47 99.16± 0.27 99.07± 0.73 100.00± 0.00 99.95± 0.06
4 99.53± 0.16 99.58± 0.23 99.65± 0.09 99.50± 0.13 99.73± 0.23 99.41± 0.30 99.55± 0.14 100.00± 0.00 99.66± 0.43
5 96.26± 0.62 98.91± 0.38 98.47± 0.94 98.47± 0.13 98.45± 1.68 97.05± 0.31 98.99± 0.32 99.05± 0.04 99.87± 0.10
6 99.75± 0.05 99.78± 0.10 99.82± 0.06 99.90± 0.14 99.99± 0.01 99.79± 0.07 99.82± 0.04 99.87± 0.12 99.95± 0.08
7 99.53± 0.07 99.66± 0.11 99.60± 0.12 99.80± 0.17 99.78± 0.22 99.42± 0.10 99.86± 0.06 99.75± 0.17 99.98± 0.05
8 63.28± 6.22 80.10± 2.68 79.22± 7.30 81.27± 2.01 79.42± 4.34 59.74± 11.22 40.35± 24.13 95.99± 4.31 99.17± 0.68
9 98.67± 0.34 99.61± 0.37 99.46± 0.28 99.91± 0.10 99.81± 0.25 99.29± 0.17 99.83± 0.04 100.00± 0.01 99.84± 0.15

10 89.82± 0.99 95.61± 0.41 95.99± 0.89 95.82± 1.26 97.60± 0.72 91.61± 0.47 93.71± 0.40 98.71± 0.92 99.56± 0.43
11 96.57± 1.00 98.48± 1.10 98.89± 0.64 99.03± 0.53 99.31± 0.52 96.24± 0.54 97.10± 0.32 99.56± 0.57 100.00± 0.00
12 99.21± 0.13 99.78± 0.20 99.90± 0.17 99.85± 0.08 99.92± 0.12 99.40± 0.25 99.97± 0.03 99.77± 0.00 99.97± 0.05
13 98.38± 0.65 99.33± 0.18 99.19± 0.40 99.94± 0.12 99.72± 0.26 98.13± 0.56 99.41± 0.41 98.02± 0.82 99.97± 0.06
14 93.91± 0.96 97.98± 0.83 98.64± 0.72 99.01± 0.53 99.43± 0.39 93.54± 0.98 91.24± 1.24 98.32± 0.75 99.93± 0.10
15 63.15± 4.75 73.81± 2.42 79.63± 5.67 81.02± 2.33 83.01± 2.93 71.19± 8.76 89.80± 8.87 97.22± 1.83 99.69± 0.17
16 97.86± 0.23 98.64± 0.25 99.14± 0.41 99.49± 0.38 99.14± 0.35 98.05± 0.58 98.52± 0.30 100.00± 0.00 99.95± 0.11

OA 85.47± 0.85 91.46± 0.42 92.10± 0.87 92.84± 0.48 92.82± 0.66 86.08± 1.25 84.80± 4.07 98.50± 1.21 99.71± 0.18
AA 93.29± 0.27 96.27± 0.17 96.67± 0.15 97.02± 0.21 97.16± 0.20 93.78± 0.23 94.12± 1.00 99.12± 0.41 99.84± 0.09

Kappa 83.79± 0.93 90.45± 0.47 91.18± 0.95 91.99± 0.54 91.98± 0.72 84.49± 1.34 83.18± 4.43 98.32± 1.36 99.67± 0.20
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4.1. The Accuracy and Loss Convergence

For further exploring the model optimization, we display the loss convergence and
classification accuracies of our proposed GR-GCN as the batches fed into the network
increase in Figure 11. In Figure 11, the orange line corresponds to the train data and the
blue line corresponds to the verification data. All hyperparameters are the same as those
described above, except that the validation data is added. The verification data is composed
of 500 batches, each of which contains 200 random test graphs, and it is worth noting
that the verification data does not participate in the backward propagation. As shown
in Figure 11, as the batches fed into the network increase, the training and verification
accuracy simultaneously improve and the training and verification loss simultaneously
converge. The accuracy and loss curves prove that the model we proposed has a good
generalization ability, and no over-fitting phenomenon occurs. It can be seen that the
convergence is basically completed in the 200th batch, which demonstrates the GR-GCN’s
optimization efficiency.
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Figure 11. The loss convergence and classification accuracies of our proposed GR-GCN as the batches fed into network
increase. (a) classification accuracies; (b) loss convergence.

4.2. The Ablation Experiment of Feature Extracting Net

To investigate the role of the feature extracting net, the following experiments are
conducted. Figure 12 shows the loss convergence and classification accuracies of our pro-
posed GR-GCN with four different configurations. The parameters used in configuration
4 are the parameters of the experiment described above, namely the ultimate version of
GR-GCN. Configuration 1 does not adopt feature extracting net but directly inputs the
one-dimensional spectral data to the graph convolution module. Configuration 2 uses
some regularization techniques, such as batch normalization, on the basis of configuration
1. Configuration 3 adopts feature extracting net but utilizes fewer neighborhoods of the
target pixel, setting w as 15.

The comparison of configuration 1 and 4 illustrates the abstract features extracted
from spectral-spatial information are more conducive than only spectral information.
The comparison of configuration 2 and 4 demonstrates that the global random graph
technique can achieve relatively satisfying accuracy and robustness even without using
spatial information. The comparison of configuration 3 and 4 probes the influence of
hyperparameter w, and the result shows that a larger value of w can make the model
converge faster and fit better.
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Figure 12. The loss convergence and classification accuracies of our proposed GR-GCN with four different configurations.
(a,b) configuration 1; (c,d) configuration 2; (e,f) configuration 3; (g,h) configuration 4.

4.3. The Effect of Support Node Selection

For one target node to classify, we only use one corresponding test graph whose
support nodes are randomly selected. Therefore it is necessary to check whether the
random selection strategy of the support nodes is effective. The experiment is conducted
using the University of Pavia dataset. For each category, we randomly choose 10 unlabeled
samples as the target nodes to test. And for each target node, we randomly select 1000 sets
of support nodes constructing 1000 test graphs. Table 11 shows the percentage of correct
predictions using the 1000 test graphs for each target node. From Table 11, we can see that
completely random selection of support node can make correct prediction for target node,
which demonstrate the effectiveness and the robustness of our GR-GCN.

Table 11. Employing GR-GCN to University of Pavia, we randomly choose 10 unlabeled samples as the target nodes for
each category. And for each target node, we randomly select 1000 sets of support nodes constructing 1000 test graphs. Here
is the the percentage of correct predictions.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

Target 1 99.70 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Target 2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Target 3 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Target 4 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Target 5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Target 6 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Target 7 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.90 100.00
Target 8 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Target 9 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Target 10 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

4.4. The Impact of Labeled Sample Number n

The number of labeled samples can affect the classification accuracy significantly, there
are more labeled samples, the classification accuracy is higher. To investigate the perfor-
mance of GR-GCN and other competitors under different numbers of labeled samples, we
conduct the following experiments. All the methods above are employed under different
numbers of labeled samples per class which range from 50 to 200 with a step of 50. And we
repeat the experiments in Indian Pines, University of Pavia, and Salinas, and take OA as
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the metric. The results are shown in Figure 13. As can be seen from Figure 13, except in the
experiments in which the labeled sample number is set 50 in Indian Pines and University
of Pavia datasets, GR-GCN outperforms the other competitors regardless of the number
of labeled samples, no matter in Indian Pines, University of Pavia, or Salinas. The reason
why MDGCN performs well when the labeled sample number is small is that it applies a
superpixel technique and it is a semi-supervised method that can use unlabeled sample
information.
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Figure 13. Overall accuracies of different methods as the number of labeled samples varies. (a) Indian Pines; (b) University
of Pavia; (c) Salinas.

4.5. The Influence of Hyperparameter k

According to the graph-constructing process, we can presume that the number of
samples picked randomly from each sample set k influences the classification accuracy. We
employ GR-GCN for three datasets with different k values, which varied from 1 to 3 at
an interval of 1. As illustrated in Table 12, we do not obtain the accuracy for the Salinas
dataset when k is 3 because the GPU run out of memory under these conditions. Because
as the value of k increases, the cost of computing resources dramatically increases due
to the feature extracting net. Based on Table 12, as the k value increases from 1 to 2, the
classification accuracy improves, which is in line with our expectations. However, when
the k value increases from 2 to 3, the classification accuracy declines slightly, which is
probably due to intra-class difference. Therefore, we set k as 2 in the experiments. Setting k
as 1 is also a suitable choice because when k is 1, high accuracy is achieved, and the cost of
the computing resources is low.

Table 12. Overall accuracies of GR-GCN under different hyperparameter k, the number of samples
picked randomly from each label set, for Indian Pines, University of Pavia, and Salinas.

The Value of k Indian Pines University of Pavia Salinas

1 98.85 98.19 99.54
2 99.09 98.61 99.72
3 97.87 98.33 -

4.6. Running Time

Running time is an important indicator of deep learning method performance as it
affects whether the method can be deployed in real-world applications. Both CNN-based
and GCN-based methods are tested using the three datasets, and the results are listed in
Table 13, where the training and testing times are reported as the evaluation index. The
running time measured for the GCN-based methods includes the graph-building time to
make a fairer comparison between the various methods.
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Table 13. The training time and testing time, both in seconds, of various deep learning methods for Indian Pines, University
of Pavia, and Salinas.

Indian Pines University of Pavia Salinas

Training Testing Training Testing Training Testing

1D-CNN 263.91 1.31 191.30 0.87 323.32 1.10
2D-CNN 323.11 1.43 249.65 1.62 470.74 1.87

BASS 125.82 0.37 56.50 1.11 161.98 2.05
GCN 30.35 0.05 70.02 0.19 208.52 0.19

miniGCN 80.28 0.09 97.43 0.26 175.33 0.32
MDGCN 102.40 0.06 893.13 0.43 578.38 0.34

GR-GCN (k = 1) 257.39 13.85 192.66 55.43 316.80 116.25
GR-GCN (k = 2) 461.30 25.89 361.96 106.76 652.15 241.71

Based on the results listed in Table 13, we can see that the training time of GR-GCN
has its strengths and weaknesses compared with other methods, but it is basically in the
same order of magnitude. However, the GR-GCN testing time is substantially longer than
the other methods, which is unexpected. The training time can be reduced by using a
smaller k value or by terminating the training process in advance. As displayed in Table 13,
using a small k value can cut the training time nearly in half. Terminating the training
process in advance is effective because the loss convergence is achieved in approximately
the 200th batch out of 500 batches. In contrast, testing time can only be reduced by using
a smaller k value, which is severely limited. After analyzing the GR-GCN structure, we
find that a graph must be constructed for each HSI pixel tested, which makes the testing
process costly. Higher cost of testing may be the main limitation of our proposed GR-GCN,
and the future work will focus on decreasing the testing time.

5. Conclusions

In this article, we have proposed a novel end-to-end supervised framework named
GR-GCN for HSI classification. Two techniques are applied in GR-GCN, constructing the
graph for HSI classification in a novel manner and using the neural network to obtain the
adjacency matrix necessary for GCN. Using the former technique, the size of the constructed
graph is small, which can save computing resources. Besides, we can obtain an enormous
quantity of graphs, which can overcome the problem of insufficient samples. Moreover,
the random combination of samples can make the generated graph more diverse and make
the network more robust. Using the latter technique, we obtain a more reliable and precise
adjacency matrix by which high-precise classification can be achieved. Three benchmark
datasets have been selected to test the performance of our proposed GR-GCN, and the
results indicate that our method is both quantitatively and qualitatively competitive with
current state-of-the-art methods.
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Abbreviations
The following abbreviations are used in this manuscript:

HSI hyperspectral image
CNN convolution neural network
GCN graph convolution network
GR-GCN Global Random Graph Convolution Network
k-NN k-nearest neighbor
SVM support vector machine
EMP extended morphological profile
GAN generative adversarial network
1D-CNN one-dimensional convolution neural network
2D-CNN two-dimensional convolution neural network
3D-CNN three-dimensional convolution neural network
BASS Band-Adaptive Spectral-Spatial Feature Learning Neural Network
SSRN Spatial-Spectral Residual Network
HybridSN Hybrid Spectral Convolutional Neural Network
GraphSAGE Graph SAmple and aggreGatE
ECC edge conditioned graph convolutional network
GAT graph attention network
miniGCN mini-batch graph convolution network
MDGCN Multi-scale Dynamic Graph Convolutional Network
AVIRIS Airborne Visible Infrared Imaging Spectrometer
RBF radial basis function
GPU graphics processing unit
OA overall accuracy
AA average accuracy
Kappa kappa coefficient
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