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In this paper, a compact fluorescence hyperspectral imaging system based on a prism-grating-prism (PGP) struc-
ture is designed. Its spectrometer spectral range is 400–1000 nm with a spectral resolution of 2.5 nm, and its weight
is less than 1.7 kg. The PGP imaging spectrometer combines the technical advantages of prism and grating, by not
only using six lenses for imaging and collimation to realize the dual telecentres of object and image but also having
a “straight cylinder” structure, which makes the installation and adjustment simple, compact, and stable. By the
push-broom method, we obtained the three-dimensional cubic data of different oil products. By normalization
processing, minimum noise separation transformation processing, visualization processing, and support vector
machine classification processing of different oil fluorescence hyperspectral data, we demonstrate that the fluo-
rescence hyperspectral imaging system can identify different kinds of oil and recognize the oil film thickness. The
fluorescence hyperspectral imaging system can be used in oil spill detection, resource exploration, natural disaster
monitoring, environmental pollution assessment, and many other fields. ©2021Optical Society of America

https://doi.org/10.1364/AO.432851

1. INTRODUCTION

Marine oil pollution is a serious “disease” for the world, which
not only breaks the growth and reproduction environment of
marine animals and plants but also threatens human healthy [1].
If the oil pollution can be monitored in time, it will be of great
significance not only for the guidance of the cleanup work but
also for the protection of the marine environment. At present,
among the numerous sensors used in marine oil pollution
monitoring, laser-induced fluorescence (LIF) [2–4] is the most
effective oil detection technology. It uses the phenomenon in
which the polycyclic aromatic hydrocarbons (PAHs) and their
compounds contained in oil can generate excited electrons after
absorbing UV excited light to realize the accurate identification
and detection of oil target and oil film thickness. However,
the laser radar is limited to a single band, and it cannot image
the spatial-temporal distribution of oil targets. Hyperspectral
imaging technology can obtain information of hundreds of
continuous bands such as ultraviolet, visible, near-infrared, and
infrared in the same spatial position, in addition to depicting
fine spectral features such as the color and texture of the target.
[5] Some researchers use one channel of the binocular camera as
the spectral imaging channel and another channel as the spatial
imaging channel, which can obtain the spectral image while

obtaining the spatial image through the push-broom method.
Based on the binocular vision method, the spatial depth infor-
mation of the detection target can be obtained. They add depth
information detection capability to the traditional hyperspectral
technology. The system can obtain the spectral information
of the target in the range of 400–700 nm, the obtained spa-
tial image is clear, and the depth detection error is within 1%.
However, handheld scanning was used to obtain the informa-
tion, which can result in the distortion of the obtained spatial
information, and which needs to be corrected by algorithm [6].
In 2006, French scientists used a FLS series laser combined with
hyperspectral detector CASI-2 and GPS data to obtain a water
body distribution map and oil spill distribution map with spatial
resolution higher than 1 m [7]. In 2018, Zhejiang University
developed a fluorescent hyperspectral imaging system using a
cemented doublet and a CMOS detector with 1936× 1216 pix-
els, and they tested typical oil samples by principal component
analysis (PCA) and K-means clustering method [4]. In 2020,
they also developed the Scheimpflug lidar system to monitor
marine environment [8].

In this paper, a compact fluorescence hyperspectral imaging
system based on a prism-grating-prism (PGP) structure was
developed by using a 447 nm high-stability blue-violet diode
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laser [9,10]. The system detector was a CMOS planar array
detector of Basler’s acA2040-90umNIR (2048× 2048 pixels,
pixel size is 5.5 µm). The system imaging spectrometer uses
six lenses for imaging and collimation (the telecentric condi-
tion on both the objective and image sides can be realized).
The spectral resolution is 2.5 nm, and the spectral range is
400–1000 nm. Three-dimensional cubic data of different oil
films (two-dimensional spatial images and one-dimensional
hyperspectral data) were collected by the system. We used the
least noise separation algorithm for data dimension reduction
and noise reduction processing, and we established a false color
image to visualize the gradient area, uniform area, and non-
uniform area of oil film thickness and the type of oil. We used a
machine learning-support vector machine algorithm to achieve
oil classification. The overall classification accuracy of different
oil films is not less than 97%, and the kappa coefficient is not less
than 0.94. It is of great significance to detect oil spill thickness,
identify oil spill type, and monitor the marine environment.

2. FLUORESCENT HYPERSPECTRAL IMAGING
SYSTEM

A. Design Principle of the Fluorescent Hyperspectral
Imaging System

The fluorescence hyperspectral imaging system combines spec-
tral detection techniques and imaging techniques. The imaging
spectrometer can obtain the two-dimensional spatial informa-
tion of the target by the push-broom method and can also obtain
the corresponding one-dimensional hyperspectral information
to form the three-dimensional data cube of the target. It is an
important carrier for the traditional spectral analysis technology
(qualitative and quantitative analysis) transformed into modern
spectral analysis technology (qualitative, quantitative, timing,
and positioning analysis).

Imaging spectrometers based on prism or diffraction grat-
ing have high spectral resolution and light energy utilization,
but they are typical off-axis optical systems; their incident light
beam and emergent light beam are not on the same axis, and they
have problems such as large volume, complex structure, difficult
assembly and debugging, and poor stability; and their fabri-
cations of convex and concave gratings are difficult and costly.
Aikio [11,12] first proposed an imaging spectrometer based on
PGP in 1991, which was used in an aerial push-sweep spectral
imager (AISA) to carry out aerial remote sensing experiments in
1993. The PGP imaging spectrometer is a straight cylinder type;
its structure is simple, compact, and high integration, which has
great application potential.

The PGP element is the core component of the PGP hyper-
spectral imaging system. Its volume phase holographic Bragg
diffraction grating (VPH) has high light efficiency, which is very
important for an imaging spectrometer, and its surface is smooth
and easy to bond with the prism. Figure 1 is a schematic diagram
of the optical principle of the PGP imaging spectrometer. The
front-placed telescopic objective images the target at the slit and
then collimator incident to the first prism of the PGP element by
the collimator objective. Different wavelengths incident on the
volume phase holographic grating at different angles and pass
through the second prism after splitting through the grating,
and then the central wavelength of the first-order diffraction

Fig. 1. Working principle of PGP structure imaging spectrometer.

Table 1. Technical Specifications of the Small
Imaging Spectrometer

Specification Value

Imaging spectral region/nm 400–1000
spectral resolution/nm 2.5

Spectrometer size/mm 280× 40× 40
Weight/kg 1.7

Front-placed lens Focal length/mm 22
F# 2.5

FOV/(◦) 26o

Imaging lens Focal length/mm 40
NA 0.2

Detector Pixel size/µm 5.5× 5.5
Detector array size/pixed 2048× 2048

is reflected back to the optical axis and then realizes the optical
path coaxial structure. Finally, the scene is imaged through an
imaging objective in the focal plane of the detector. This tubular
direct vision (coaxial) structure enables the system to have low
geometric aberration in both spatial and spectral directions,
further guaranteeing optical performance.

B. Design of the Fluorescent Hyperspectral Imaging
System

1. Main Technical Indices of theHyperspectral Imaging
System

According to the actual needs of remote sensing detection of oil
spills, and considering the specific application background and
system performance comprehensively, the design indices of the
small imaging spectrometer are shown in Table 1.

2. Design of the Front-PlacedTelescopicSystem

Compared with the visible light objective, the front lens of the
refraction imaging spectrometer is special in its wider transmit-
tance spectrum segment and its larger chromatic aberration,
which is the difficulty of the design. The front telescopic objec-
tive system is designed by selecting the angle magnification and
allocating the optical focus, and then calculating the relative
aperture. The design result is shown in Fig. 2.

The performance of the telescopic system is shown in Fig. 3.
The imaging effect was optimized by the ZEMAX optical design

Fig. 2. Schematic diagram of the optical structure of the telescope.
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Fig. 3. Design results of the telescope. (a) MTF curve of the tele-
scope, (b) spherical aberration curve of the telescope, and (c) chromatic
aberration curve of the telescope.

software. From Figs. 3(b) and 3(c), it can be seen that the chro-
matic and spherical aberration of the system was well corrected,
and the distortion and astigmatism were effectively controlled.
The modulation transfer curve was shown in Fig. 3(a), and it
can be seen that modulation transfer function (MTF) curve is
greater than 0.8 at characteristic frequency 45lp/mm, which

Fig. 4. PGP splitting element structure.

meets the imaging quality requirements of the front-facing
telescope.

3. Design of thePGPSpectrometer

The PGP component (Fig. 4) is the main design content of the
PGP spectroscopic system. The initial structure of the spectro-
scopic system is designed by solving the grating equation, the
prism refraction law, and the Bragg constraint condition of the
grating. The core of the PGP system is dispersion elements,
which mainly considers the parameters including the mate-
rial, the inclination angle of the prism, and the period of the
grating. The two prisms’ top angles β1 and β2 are important
parameters to meet the requirements of direct radiation of the
component [13].

In order to make the light still emergent along the optical axis,
the condition between the inclination angle of the prism and the
light emergence angle should be satisfied:

θ5 = β2. (1)

According to the law of refraction, the incident angle and the
exit angle on the inclined surface of the prism are satisfied:

sinβ1 = nsinθ1, (2)

nsinθ4 = sinθ5. (3)

According to triangular geometry,

sin= nλsin(β1 − θ2), (4)

where nλ is the corresponding refractive index of prismatic
glass at different wavelengths λ. The volume holographic phase
grating is a non-tilted transmission grating. The propagation
vector of the grating is parallel to the surface, and there is a Bragg
diffraction angle; when the incident angle is equal to the diffrac-
tion angle, the diffraction efficiency reaches the maximum, and
the Bragg diffraction condition is satisfied:

θ2 = θ3 = arcsin(λC/2nd), (5)
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Table 2. PGP Component Parameters

Parameter Value

Number of grating lines/(lp/mm) 360
Thickness of sinking bottom/mm 3
Prism material K9
Prism thickness/mm 5
Vertex angle of prism/(◦) 13.95
Half height of PGP element/mm 15

Fig. 5. Schematic diagram of the optical structure of the spectral
imaging system.

whereλC is the central wavelength, d is the grating constant, and
then the tilt angle of the prismβ1 can be obtained as

β1 = arcsin[nsin
(
β1 − arcsin (λC/2nd)

]
. (6)

The exit angle βλ corresponding to the non-central
wavelengthλ is

βλ = arctan[nλsin ϕ/(nλcos ϕ − 1)]. (7)

The design parameters of the grating and prism are deter-
mined according to the overall index of the system, and the main
technical indices of PGP are shown in Table 2. The two prisms
are designed symmetrically with the same materials and parame-
ters. The width of the prisms and d2 have no direct relationship
with the direct vision of light. In consideration of the purpose of
reducing weight and easy processing, an appropriate value can
be taken [14,15].

The collimation objective and imaging objective of the PGP
splitting component adopt a symmetrical design, and the colli-
mation mirror is the inverted form of the imaging mirror with
exactly the same structural parameters, which simplifies the
design difficulty and reduces the processing cost. The whole
spectrum system’s image side and object side are both telecen-
tric light paths, which can effectively eliminate the vignetting
phenomenon at the edge of the field and obtain uniform energy
distribution on the image surface. The object side telecentric
light path makes the PGP spectroscopic system more easily
connected with the front telescopic system. We can deduce
the focal length of the imaging objective lens according to the
spectral range of the upper and lower emergence angle, when
the spectral plane width is fixed. In the actual design process, the
effective aperture of volume phase holography (VPH) grating
should be considered. The parameters of the PGP element and
the initial structural parameters of the imaging mirror should
be input into ZEMAX software, and the design optimization
should be carried out according to the design requirements.
The optimized PGP spectrometer is shown in Fig. 5. The cor-
responding MTF curves of the full field of view and the full
spectrum are shown in Fig. 6. The MTF is above 0.65 in Nyquist
space frequency, and the design results meet the technical
requirements.

Fig. 6. MTF curve of the spectral imaging system: (a) 400 nm;
(b) 700 nm; (c) 1000 nm.

Fig. 7. Diagram of integrated optical structure.

4. IntegratedDesign andPrototypeDevelopment

After the optimized design of the telescopic objective and spec-
tral imager was completed, integrating the front objective, the
PGP splitting element, and the imaging objective together,
and adding the incident slit, it can form a complete imaging
spectrometer to further optimize the optical performance
of the entire imaging spectrometer. The complete imaging
spectrometer is shown in Fig. 7.

According to the result of the design and engineering imple-
mentation method, we developed the prototype as shown
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Fig. 8. Prototype of hyperspectral imager.

in Fig. 8. The lens materials of the telescope lenses, colli-
mating lenses, and focusing lenses all come from GDGM
GLASS (Chengdu, China). The types of glass include H-FK61,
H-QK1, H-K1, H-ZF52, H-ZF4A, and so on. Antireflective
coatings are used on all the lenses, and the optical transmittance
of the lenses after coating is greater than 0.998. In the process
of assembly and adjustment, the intermediate PGP spectral
device is used as the assembly and adjustment reference so that
the beam of intermediate wavelength within the spectral range
can be parallel to the optical axis. Then the tilt and focus of the
image plane are used as the compensation parameters, and the
final assembly and adjustment can be completed.

The large diameter integrating sphere was used to carry out
absolute radiation calibration. A mercury lamp and monochro-
mator were used to calibrate the dispersion of the system. The
spectroscopic image of the mercury lamp calibration is shown in
Fig. 9(a). The radiation calibration image is shown in Fig. 9(b).
The spectral resolution of the prototype was actually measured
by He–Ne laser, and the performance test results were shown
in Fig. 9(c). According to the radiation calibration results, the
spectral calibration and fitting results are shown in Fig. 9(d), and
the inhomogeneity of the detector response can be eliminated.

3. IMAGING EXPERIMENT OF SPECTRAL
IMAGING SYSTEM

A. Process of Fluorescence Hyperspectral Imaging

The experiment site of the oil spill detection experiment was
carried out in a darkroom; the experimental device for oil spill
detection is shown in Fig. 10(a), and the experiment of exci-
tation fluorescence by laser irradiation on an oil sample pool
is shown in Fig. 10(b).The laser transmitting system includes
the laser whose wavelength is 447 nm, cylindrical lenses, and
reflectors. The laser was placed horizontally, cylindrical lenses
were used to implement line laser scanning, and reflectors were
used to implement the receiving and receiving signal at a com-
mon optical path. The receiving system is composed of a laser
source filter, a PGP imaging spectrometer, and a computer.
The PGP imaging spectrometer is placed on a 1 m high shelf,
and the filter plate is installed in front of the lens through the
bracket. The receiving system is aimed at the vessel containing
the experimental oil sample, and the vessel was placed on the
platform. The laser beam becomes linear after passing through
the cylindrical mirror. By adjusting the reflective mirror, the

Fig. 9. Spectral image of laboratory calibration. (a) Spectroscopic
image of mercury lamp calibration, (b) radiation calibration image,
(c) He–Ne laser spectrum, and (d) spectral calibration and fitting
results.

linear laser is incident onto the oil sample plate vertically. The
laser excites fluorescence from the oil film, the fluorescence
signal was received by PGP imaging spectrometer, and the
collection of high fluorescence spectra of oil samples is realized
by the push-broom method. The CCD camera receives the
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Fig. 10. Experimental device environment: (a) the experimental
device for oil spill detection; (b) the laser transmitting system.

Fig. 11. Fluorescence line image of turbine oil.

signal and converts it into digital signal before passing it to
the computer software. Before collecting the data, we opened
the software to debug the camera, including realizing that the
image plane falls in the slit of the spectrometer and choosing
the appropriate exposure time for the camera to ensure effective
imaging. After debugging, the displacement table is used for
the push-broom method, and the data are recorded. An original
picture of fluorescence during the scanning process is shown
in Fig. 11, which would later be combined with the rest of the
picture in this scanning to form a complete data cube.

B. Oil Samples Preparations and Spectral Data
Collection

Seawater, diesel, turbine oil, diesel oil, a four-grid sample dish,
and normal sample dish were selected as experimental samples.
The sample dish was placed on the workbench, and the oil
sample was dripped into the prepared sample plate containing
seawater through a burette to form a certain thickness of oil film
to simulate oil spill in the sea. The four-grid oil sample and the
turbine oil mixed seawater sample are shown in Fig. 12. The oil

Fig. 12. Oil samples: (a) four-grid oil sample; (b) turbine oil
sample.

Table 3. Oil Sample Placement of Sample Dishes and
Four-Grid Sample Dishes

Dish
Number First Second Third

Oil Type Diesel oil mixed
seawater

Turbine oil mixed
seawater

Wood oil mixed
seawater

Four-
Grid
Dish
Number

First Area Second Area Third Area Fourth
Area

Oil Type Turbine
oil

Turbine oil mixed
seawater

Wood oil Wood oil
mixed

seawater

sample type placement of each sample dish is shown in Table 3.
The displacement platform moved 5 mm per second. Every
30 ms, we took a fluorescent image. A total of 500 pictures was
taken of each oil type.

C. Data Analysis

Due to the difference of time and conditions, the radiant energy
value of fluorescence spectrum data is different. In order to
effectively eliminate the deviation of spectral values caused by
the difference of radiation energy, and moreover, to increase the
uniformity of spectral morphology of similar substances and
the difference of spectral morphology of different substances, in
this study, several methods were performed. First, the spectral
data of the oil sample was normalized, and the spectral data
of the selected oil sample region was averaged and Savitzky–
Golay smoothed [16]. Second, the minimum noise separation
transformation (MNF) [17] was used to feature extraction and
denoise. The MNF steps are as follows.

Assume that the original image size is m × f , where m rep-
resents the total number of the band and f represents the total
number of image pixels in a single band. The image vector Zi of
the i th band is composed of noise vector Ni and noiseless vector
Vi , where i = 1, 2, . . . , m:

Zi =Ni + Vi. (8)

After filtering, the covariance matrix CZ and CN of the image
vector Z and the noise vector N are obtained, and then the
matrix diagonalization is made:
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Di =UT
i (C N

−1C Z)U i . (9)

The eigenvalues of diagonalized matrices D are arranged from
large to small. The eigenvectors have no correlation with each
other, the signal-to-noise ratio is arranged from large to small,
and the processed image vector is as shown as follows:

X i =UT
i Zi . (10)

The first component X1, second component X2, and
third component X3 of the vectors are selected to build
the false color composite image. N pixels of different oil
sample areas were taken as the sample set of training data
{xj, yj, j= 1, 2, . . . , N, x ∈RDy ∈ {1, 2, 3}} is the category
label. A supervised learning algorithm-support vector machine
(SVM) [18–20] was used to distinguish different types of oil
samples. The SVM steps are as follows.

Assume the average vector xj of all vectors in the oil species
sample set is x′, and then the Euld distance from the vector to the
average vector X′ is

S j =
∣∣∣∣x j − x ′

∣∣∣∣ . (11)

Using the exponential Gaussian radial basis kernel function
to transform the nonlinear problem into a linear problem in
a high-dimensional space, the Gaussian radial basis kernel
function is

k(x j,x ′)= exp

(
−

∣∣∣∣x j − x ′
∣∣∣∣2

2δ2

)
, (12)

where δ2
= 0.3332. Suppose high-dimensional classification

discriminant function

g (x)=w · k
(
xj,x′

)
+ b. (13)

Then the classification surface equation is

w · k
(
x j,x ′

)
+ b= 0. (14)

We normalized the discriminant function and made the
sample of the classification discriminant function |g(x)| = 1.
We can established the loss function

1/2 ∗ ||w||2. (15)

The constraint condition is

y j(w · k(x j,x ′)+ b)≥ 1. (16)

Therefore, the Lagrange function can be defined as

L(w, b, a)= 1/2 ∗ ||w||2 −
N∑

j=1

aj[yj(w · k(xj,x′)+ b)− 1].

(17)
aj > 0, the minimum value of the Lagrange function, is solved
for w and b. If the Lagrange coefficient ai

∗ is the optimal solu-
tion, then the weight coefficient of the optimal classification
surface is obtained:

w∗
=

N∑
i=1

a j
∗ y j k(x j,x ′). (18)

Fig. 13. Diesel oil sample’s fluorescence spectrum detection results:
(a) fluorescence hyperspectral monochromatic image (480 nm) of the
diesel oil sample; (b) fluorescence spectrum curve of different areas of
the diesel oil sample.

Solve any non-zero samples aj
∗, determine the classification

threshold point b∗, and get the optimal classification function

f (x)= sgn

 N∑
j=1

a j
∗ y j k(x j,x ′)+ b∗

 . (19)

Then, output the type of the oil samples.

4. RESULTS AND DISCUSSION

A. Fluorescence Spectra

The fluorescence hyperspectral monochromatic images of
all the bands were obtained by stitching and clipping the col-
lected fluorescence line spectral images of each oil sample.
The monochrome fluorescence hyperspectral images of a cer-
tain band of each oil sample are shown in Figs. 13(a)–16(a).
The red, green, blue, and purple regions are selected from the
monochrome images to calculate the fluorescence spectrum
mean value and the Savitzky–Golay smooth of the region.
After the above signal processing, the peak intensity of the
fluorescence spectrum can be observed. The fluorescence spec-
trum curves corresponding to the above regions are shown in
Figs. 14–16(b).

Figures 13(a)–15(a) are the fluorescent hyperspectral
monochrome images of diesel oil, turbine oil, and wood oil
in a certain band, respectively. The red, green, blue, and vio-
let curves in Figs. 13(b)–15(b) correspond to the fluorescent
hyperspectral curves of the red, green, blue, and violet regions
of the image, respectively, in which the red, green, and blue
regions are the oil film region, and the purple region is the sea-
water region. Figure 16(a) shows the fluorescent hyperspectral
monochrome image of the oil samples in four-grid vessels. The
red, green, blue, and violet curves in Fig. 16(b) correspond to
the fluorescent hyperspectral curves of the red, green, blue, and
violet regions in the monochrome image, respectively, in which
the red and green regions are the turbine oil regions, and the
blue and purple regions are the wood oil regions. It can be seen
that the spectra of the oil film regions are different from those
of the seawater region. As shown in Figs. 13–15, the purple
region has no spectral peak in the seawater region, while the red,
green, and blue regions have spectral peaks in the oil film region.
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Fig. 14. Turbine oil sample’s fluorescence spectrum detection
results: (a) fluorescence hyperspectral monochromatic image (500 nm)
of the turbine oil sample; (b) fluorescence spectrum curve of different
areas of the turbine oil sample.

Fig. 15. Wood oil sample’s fluorescence spectrum detection results:
(a) fluorescence hyperspectral monochromatic image (470 nm) of the
wood oil sample; (b) local fluorescence spectrum curve of different
areas of the wood oil sample.

Fig. 16. Four-grid oil samples’ fluorescence spectrum detection
results: (a) fluorescence hyperspectral monochromatic image (500 nm)
of the four-grid oil samples; (b) local fluorescence spectrum curve of
different areas of the four-grid oil samples.

The shapes of the fluorescence spectrum lines of the same oil
sample are the same, and the positions of fluorescence excita-
tion peaks and the coverage range of fluorescence spectrum of
different oil samples are different, which provides reliable infor-
mation to guarantee for the qualitative analysis of oil sample
composition, the acquisition of oil distribution in the target

Fig. 17. Visual distribution image of (a)–(d). (a) Visual distribution
image of diesel oil; (b) visual distribution image of turbine oil; (c) visual
distribution image of wood oil; and (d) visual distribution image of
four-grid oil.

area, and the identification of oil types. The different regions of
the same oil sample have different fluorescence spectra due to
different oil film thicknesses, which provides a basis for further
regional oil film thickness assessment.

B. Oil Classification and Distribution Analysis

In order to assist the identification of oil spill type and oil spill
thickness, the oil film situation is visualized on the whole. The
spectral data of oil samples are normalized, and MNF is used
to select the first component, the second component, and the
third component to establish the false color composite image.
Figures 17(a)–17(c). show the visualized oil thickness informa-
tion image of diesel oil, turbine oil, and wood oil, and Fig. 17(d)
shows the visualized oil thickness information and oil type
information images of four-grid oil samples.

Figures 17(a)–17(c) show that the fluorescence intensity in
some areas is consistent, while the fluorescence intensity in some
areas is obviously different, and the fluorescence intensity in
other areas is gradually changed. It can be seen that the oil film
thickness distribution is uneven, and the boundary between the
oil film and the seawater area is obvious. As shown in Fig. 17(d),
the color of the wood oil area on the left of the vessel is not
significantly changed, and the relative fluorescence intensity
is weak, while the color of the turbine oil area on the right of
the vessel is significantly changed, and the relative fluorescence
intensity is strong. It can be seen that under the same test con-
ditions, the fluorescence excitation efficiency of different oil
samples is different. Compared with a laser imaging system,
the fluorescent hyperspectral imaging system not only obtains
spectral information but also obtains the space image informa-
tion. By establishing the color image, the oil film image can be
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visualized. The areas with gradual change of oil film thickness,
the areas with uniform distribution of oil film thicknessor non-
uniform distribution of oil film thickness, and oil species can
be visually seen through the images. It provides a useful visual
reference for the system to detect oil spill thickness and identify
oil species.

C. Oil Thickness Estimation

Hoge and others [21,22] used LIF detection technology to
evaluate oil film thickness by using an inversion algorithm, and
they concluded that if the laser light intensity reflected from the
oil spill surface is less than the saturated fluorescence intensity
of the oil spill, the received fluorescence signal intensity changes
with the change of the oil film thickness. Therefore, in order
to qualitatively monitor the relationship between the fluores-
cence intensity of the oil and its thickness, in our experiment,
we choose diesel as the sample oil and used point laser or line
laser for the fixed point measurement in our experiment. The
thickness range was selected from 300 to 1050 um at 150 µm
intervals. We added diesel oil to the surface of seawater in a
container whose diameter is 2.9 cm. The volume of diesel oil
is accurately measured by a syringe. According to the volume,
the thickness of diesel oil can be estimated. Then, we captured
10 fluorescence images at time intervals of 1s at a particular
diesel oil area for every oil thickness, and we took the average
fluorescence intensity as the fluorescence intensity of the oil
film thickness. Figure 18(a) shows the mean fluorescence spec-
tra of oil films of different thickness. Figure 18(b) shows the
linear regression analysis results of fluorescence intensity at
500 nm and diesel film thickness, and the determination coef-
ficient R2= 0.9920 was obtained. This experiment shows the
feasibility of measuring oil thickness.

D. Classification Results and Evaluation

SVM is a classic supervised classification algorithm. In 2020,
Jiao et al. [23] identified the origins and varieties of tetrastigma
by using a dual-mode microscopic hyperspectral imager and the
supervised classification algorithm SVM. In 2021, Xu et al. [24]
classified, identified, and estimated the growth stage of microal-
gae by using a transmission hyperspectral microscopic imager
(THMI) and SVM. In this paper, the collected fluorescence
hyperspectral data of diesel oil, turbine oil, wood oil, and four-
grid oil samples were reduced to MNF1, the first component of
MNF, the second component of MNF2, and the third compo-
nent of MNF3. Then, N pixels from different regions of the oil
samples were selected as the training data of the SVM supervised
classification algorithm. The separability of the training data
[25] is larger than 1.5. The selections of the training data set are
shown in Fig. 19. By using SVM processing, classification types
and spatial distribution of diesel oil, turbine oil, wood oil, and
four-grid oil samples are shown in Fig. 20.

In order to quantitatively measure the quality of the results
of image classification, this paper evaluates the processing
results through the overall classification accuracy T and kappa
coefficient, where

T=
K∑

i=1
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Fig. 18. Relationship between different oil film thickness and
fluorescence intensity: (a) the fluorescence intensity of the different oil
film thicknesses; (b) the fitted curve between the fluorescence intensity
at the peaks (500 nm) with the different oil film thickness.

Kappa=

(
N

K∑
i

Mii −

K∑
i

(MiM+i)

)/(
N2
−

K∑
i

(MiM+i)

)
.

(21)
M is a confusion matrix of K×K obtained from the com-

parison between the image classification result graph and the
real ground object, K is the number of oil product types, Mij

represents the number of samples in which type j is classified as
type i .

∑K
i Mii represents the number of pixels classified, and∑K

i (MiM+i) represents the sum of the total number of pixels of
all categories multiplied by the total number of pixels of the cat-
egories. The overall classification accuracy and kappa coefficient
[26,27] of the classification results are shown in Table 4.

According to the evaluation of classification results, the over-
all classification accuracy of single diesel oil and single wood
oil film is 100%, and the kappa coefficient is 1. The kappa
coefficient of turbine oil is 0.9497, and the kappa coefficient of
four-grid oil is 0.9525. Combining with the classification image
in Fig. 20(b), there are scattered oil film signals in the seawater
area where the turbine oil vessels are placed. It may be that there
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Fig. 19. Training data set area for SVM (a)–(d). (a) SVM training
data set area of diesel oil; (b) SVM training data set area of turbine oil;
(c) SVM training data set area of wood oil; (d) SVM training data set
area of four-grid oil.

Fig. 20. SVM classification result of (a)–(d). (a) SVM classifica-
tion result of diesel oil; (b) SVM classification result of turbine oil;
(c) SVM classification result of wood oil; (d) SVM classification result
of four-grid oil.

are non-seawater pixel elements in the seawater training data
set selected, which are taken as turbine oil elements for analysis
in SVM algorithm. On the other hand, the low fluorescence
excitation efficiency of turbine oil may lead to weak fluorescence

Table 4. Overall Classification Accuracy and Kappa
Coefficient of Diesel Oil, Turbine Oil, Wood Oil, and
Four-grid Oil Samples

Oil Type Evaluation
Index

Diesel
Oil

Turbine
Oil

Wood
Oil

Four-Grid
Oil

Overall classification
accuracy

100.0% 97.57% 100.0% 97.53%

Kappa coefficient 1.000 0.9497 1.000 0.9602

signal of steam engine oil. The intensity of fluorescence signal
in some areas is even similar to that in the seawater area, which
leads to the relatively low kappa coefficient. Combining with the
visual image in Fig. 19(d), we find that the relative fluorescence
intensity span of the wood oil film is obvious, while the relative
fluorescence intensity span of the turbine oil is not obvious. The
turbine oil region’s and wood oil region’s darkest colors are close
to the color of the seawater, and the relative fluorescence inten-
sity of the two oil films in our experiment is greatly different.
The oil film regions with higher relative fluorescence intensity
are easier to detect and distinguish, while the oil film regions
with lower relative fluorescence intensity can be misjudged more
easily. Therefore, the selection of training data sets in SVM and
the combination of different oil films will affect the accuracy of
system recognition.

5. CONCLUSIONS

A compact fluorescence hyperspectral imaging system based on
a PGP structure is designed in this paper, and it is convenient
for installation and adjustment and has a compact structure.
The MTF curve of the telescopic system is greater than 0.8 at
the characteristic frequency of 45 lp/mm, and the MTF curve
corresponding to the full field of view and the full spectrum of
the PGP spectrometer is greater than 0.65 at the Nyquist space
frequency. After testing and calibration, the spectral resolution
of the system is 2.5 nm, and the spectral range is 400–1000 nm.
Three-dimensional data cubes (two-dimensional spatial images
and one-dimensional hyperspectral data) of different oil samples
were established through fluorescence hyperspectral imaging
detection of different types of oil samples. MNF and SVM were
used to process the data, and visual images of the thickness and
spatial distribution of different oil samples were obtained. The
overall classification accuracy was over 97%, and the kappa
coefficient was above 0.94. It provides a technical foundation
for qualitative analysis of marine oil spill composition, oil spill
distribution in a target area, oil spill type identification, and
oil film thickness assessment. The fluorescence hyperspectral
imaging system developed in this paper is not only suitable for
laboratory detection of different types of oil but also suitable for
oil spill detection on ships and unmanned aerial vehicles at night
or at other weak-background-light environment conditions. It
provides a way of thinking for oil spill detection and has great
significance for marine environmental protection.
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