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A B S T R A C T   

Highly efficient orange-red and white organic light-emitting diodes (OLEDs) based exciplex host with different 
donor/acceptor ratios and doping concentrations are fabricated for efficient triplet excitons harvest. As a result, 
the maximum efficiency is achieved at 5:5 ratios exciplex host in orange-red OLEDs with current efficiency, 
power efficiency and external quantum efficiency (EQE) of 37.0 cd/A, 37.3 lm/W and 18.3%, respectively. 
Furthermore, the white OLEDs under two different doping concentrations give warm white (0.48, 0.41) and cool 
white (0.28, 0.37) emission with maximum current efficiencies, power efficiencies and EQEs of 38.3/37.6 cd/A, 
41.3/43.7 lm/W and 17.8/16.6%, respectively. We found that the triplet exciton harvest on exciplex host 
through reverse intersystem crossing process and efficient energy transfer are responsible for the high device 
efficiency.   

1. Introduction 

Exciplex organic light-emitting diodes (OLEDs) received more and 
more attention since the thermally activated delayed fluorescent (TADF) 
mechanism was discovered by Adachi group in 2012 [1–3]. TADF is the 
singlet exciton radiative transition that from triplet exciton reverse 
intersystem crossing (RISC) process due to the small singlet-triplet state 
energy level splitting (ΔEST). Exciplex that formed from intermolecular 
charge transfer conducts spatially separated highest occupied molecular 
orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), 
which present natural small ΔEST for high triplet exciton harvest and 
utilization. Therefore, a series of high efficiency exciplex OLEDs with 
blue, green and yellow emission were explored by suitable donor/-
acceptor materials selection [4–8]. In generally, the donor materials are 
hole transport materials and acceptor materials are electron transport 
materials, respectively. And the mixed ratio of donor/acceptor materials 
is 1:1 in most of exciplex OLEDs. 

Furthermore, mixed exciplex could be applied as host to sensitize 
dopant for high efficiency OLEDs due to the excellent charge transport 
bipolarity, efficient triplet harvest and energy transfer property [9,10]. 
The mixed hole and electron transport materials make the exciplex layer 

exhibit high hole and electron transport ability, which could improve 
charge recombination efficiency, extend exciton formation zone and 
reduce exciton concentration. High efficiency exciplex presents efficient 
TADF behavior, which could improve triplet harvest for high exciton 
utilization. The highly efficient triplet exciton RISC process could also 
enhance the long range Förster energy transfer between singlet state 
energy level of host and dopant. These outstanding characteristics 
guarantee the efficient application of exciplex in host role and the 
dopants of traditional fluorescent, phosphorescent and TADF emitter all 
could be employed in exciplex host to achieve highly efficient dopant 
emission. Kim et al. reported a series of high efficiency blue, green, or-
ange and white OLEDs by utilizing phosphorescent emitter as dopant 
and exciplex as host since 2013 [11–15]. Traditional fluorescent emitter 
of 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetra-methyljulolidyl 
-9-enyl)-4H-pyran (DCJTB) could be also doped into exciplex host to 
break 10% external quantum efficiency (EQE) [16]. While TADF emitter 
of 9-[4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl]-N,N,N′,N′-tetraphenyl- 
9H-carbazole-3,6-diamine (DACT-II) acts as dopant to apply in exciplex 
host could reach to 34.2% EQE through two RISC processes of TADF 
emitter and TADF exciplex host [17]. Thus, the high efficiency OLEDs 
could be realized in exciplex host by efficient triplet exciton harvest. 
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However, most of donor/acceptor ratio in exciplex host reported to now 
is 5:5, the different mixed ratio donor/acceptor in exciplex host is very 
rare. Besides, the effect of small ratio donor or acceptor in exciplex host 
is also need be explored to extend more application to develop OLEDs 
based exciplex further. 

In this work, we fabricated four different donor/acceptor ratios 
exciplex host to sensitize orange-red phosphorescent dopant of Iridium 
(III) bis(2-phenylquinoline) acetylacetonate (Ir (pq)2acac). As a result, 
the 5:5 ratio achieved the best electroluminescence (EL) performance 
with maximum current efficiency, power efficiency and EQE of 37.0 cd/ 
A, 37.3 lm/W and 18.3%, respectively. While other OLEDs with mixed 
ratios of 7:3, 8:2 and 9:1 also obtained a high efficiency level with 
maximum EQEs of 17.3%, 17.4% and 16.5%, respectively. Further, 
highly efficient warm and cool white OLEDs with the same exciplex host 
but smaller acceptor ratio of 1% were realized. The maximum current 
efficiency, power efficiency and EQE of 38.3 cd/A, 41.3 lm/W and 
17.8% in warm white OLEDs and 37.6 cd/A, 43.7 lm/W and 16.6% in 
cool white OLEDs were realized. Our results demonstrated that the 
acceptor ratio had little effect on exciplex host to achieve highly efficient 
OLEDs and the white OLEDs could be also realized with small acceptor 
ratio and low doping concentration. 

2. Experimental section 

Indium tin oxide (ITO) coated glass substrates were cleaned 
routinely and treated with ultraviolet-ozone for 15 min before loading 
into a high vacuum deposition chamber (~3 × 10− 4 Pa). The organic 
materials were purchased commercially without further purification. 
And the organic layers were deposited at a rate of 1.0 Å/s, inorganic 
layers of MoO3 and LiF at the deposition rate of 0.1 Å/s. Al cathode was 
deposited in the end with a shadow mask, which defined the device 
active area of 3 × 3 mm2. EL spectra were measured with OPT-2000 
spectrophotometer. The electrical characteristics of the OLEDs were 
measured with a Keithley model 2400 power supply combined with a 
ST-900 M spot photometer and were recorded simultaneously. EQE was 
calculated from the current density, luminance and spectra data. All 
measurements were carried out at room temperature and under ambient 
conditions without any protective coatings. 

3. Results and discussions 

The exciplex host is selected as bis [4-(9,9-dimethyl-9,10-dihy-
droacridine)phenyl]sulfone:(1,3,5-triazine-2,4,6-triyl)tris (benzene-3,1- 
diyl)tris (diphenylphosphine oxide) (DMAC-DPS:PO-T2T), which is a 
highly efficient exciplex with high singlet and triplet energy level to act 
host to sensitize orange-red dopant of Ir (pq)2acac [18,19]. The photo-
luminescence (PL) behaviors presented that exciplex could well formed 
between DMAC-DPS and PO-T2T with high photoluminescence quan-
tum yield (PLQY) over 40%, and the exciplex exhibited highly efficient 

TADF characteristics through transient PL decay measurement [19]. 
Herein, we more focus on the EL behaviors of the host role of exciplex. 
So the device structure designed as follows: ITO/MoO3 (3 nm)/mCP (25 
nm)/DMAC-DPS:PO-T2T (x:y): 2% Ir (pq)2acac (20 nm)/TPBi (40 
nm)/LiF (1 nm)/Al (100 nm). m-bis(N-carbazolyl)benzene (mCP) and 1, 
3,5-tris(N-phenyl-benzimidazol-2-yl)benzene (TPBi) are the hole and 
electron transport layers, respectively. ITO/MoO3 and LiF/Al are the 
role of composite anode and composite cathode, respectively. 
DMAC-DPS:PO-T2T (x:y): 2% Ir (pq)2acac is the emitting layer (EML) 
with exciplex host conducted different donor/acceptor ratios to sensitize 
dopant. 2% concentration of Ir (pq)2acac could ensure the complete 
energy transfer to achieve pure dopant emission. The corresponding 
molecular structures and device energy level diagram are showed in 
Fig. 1. The donor/acceptor ratios (x:y) between DMAC-DPS and PO-T2T 
are used as 5:5, 7:3, 8:2 and 9:1, that means the donor of DMAC-DPS 
molecule is the majority due to its excellent carrier transport bipo-
larity [20,21], which could make the efficient charge injection, trans-
port and recombination. On the contrary, the ratios of donor/acceptor 
lower than 50%, that is PO-T2T is the majority, would block the charge 
injection and transport seriously, which results from the high hole in-
jection barrier and poor charge transport ability of PO-T2T. Therefore, 
the donor/acceptor ratios of 5:5, 7:3, 8:2 and 9:1 are conducted in this 
work. 

The EL performance of OLEDs with EML of DMAC-DPS:PO-T2T (x:y): 
2% Ir (pq)2acac are displayed in Fig. 2. Under the different donor/ 
acceptor ratios of 5:5, 7:3, 8:2 and 9:1, all four devices exhibit high EL 
performances with turn-on voltage of ~3 V, maximum luminance of 
30,000–45000 cd/m2 and intrinsic orange-red emission of Ir (pq)2acac, 
which indicate the efficient charge injection, transport, recombination 
and complete energy transfer from exciplex host to dopant [22]. From 
the energy level diagram shown in Fig. 1b, we can see that there have no 
the energy level barrier between transport layer and EML. In our device, 
the donor of DMAC-DPS is the majority molecule, so the charge injection 
and transport is dependent on DMAC-DPS. The HOMO energy level of 
mCP and DMAC-DPS is 6.1 eV and 5.9 eV [23,24], while the LUMO 
energy level of TPBi and DMAC-DPS is 2.9 eV and 2.7 eV [24,25], 
respectively. Therefore, the carrier injection barrier from mCP and TPBi 
to DMAC-DPS is zero, which results to highly efficient charge injection. 
The bipolarity of DMAC-DPS could transport hole and electron in EML 
efficiently, which gives the efficient recombination for high EL effi-
ciency. In the four different ratios OLEDs with exciplex host, 5:5 ratio 
present the maximum efficiency with current efficiency, power effi-
ciency and EQE of 37.0 cd/A, 37.3 lm/W and 18.3%, respectively. While 
the moderate EQEs of 17.3%, 17.4% and 16.5% are also obtained under 
other ratios of 7:3, 8:2 and 9:1, respectively. That means the exciplex 
host with different donor/acceptor ratios have little effect on the device 
performance and high EQEs of 16.5%~18.3% are realized with various 
ratios. In the previous reports, the exciplex of DMAC-DPS:PO-T2T shows 
efficient TADF characteristics [19], which could harvest triplet excitons 

Fig. 1. The molecular structure of organic materials used in this work and device energy level diagram.  
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by RISC process. So the high EQE in this work demonstrate the triplet 
excitons could be also collected under low ratio acceptor of PO-T2T for 
efficient energy transfer. 

Furthermore, we found that the small ratio acceptor of PO-T2T with 
5% and 1% in DAMC-DPS donor is also efficient to form exciplex in our 
previous work, high EQE of >10% could be realized in pure exciplex 
emission of DMAC-DPS:PO-T2T with different donor/acceptor ratios 
and the emission peak could fix on 496 nm of blue emission with 1% PO- 
T2T in DMAC-DPS [26]. So here we design the EML of DMAC-DPS: 1% 
PO-T2T: x% Ir (pq)2acac to fabricate white OLEDs to explore the 
application of small ratio acceptor exciplex host on white OLEDs. The EL 
efficiency curves of white OLEDs with 1.0% and 0.5% Ir (pq)2acac 
dopant are showed in Fig. 3. The white OLEDs with 1.0% Ir (pq)2acac 
exhibits high efficiency with maximum current efficiency, power effi-
ciency and EQE of 38.3 cd/A, 41.3 lm/W and 17.8%, respectively. While 
maximum current efficiency, power efficiency and EQE of 37.6 cd/A, 
43.7 lm/W and 16.6%, respectively, are also obtained in the white 
OLEDs with 0.5% Ir (pq)2acac. Meantime, a low turn-on voltage of ~2.5 
V and high luminance of ~20,000 cd/m2 are also achieved in the two 
white OLEDs. The almost same current density-voltage curves showed in 
inset of Fig. 1a demonstrates the energy transfer is the main emission 
mechanism rather than direct charge trapping in the white OLEDs 
[27–29]. Besides, the low dopant concentration of 1.0% and 0.5% also 
make the trapping difficult to happen [30]. The detailed energy transfer 
and emission process would be described in the next section. And the EL 
performances of all the OLEDs in this paper are summarized in Table 1. 

The normalized EL spectra of white OLEDs with 1.0% and 0.5% 
concentration are displayed in Fig. 4. Both of the two white OLEDs 
exhibit two emission peaks with blue peak of exciplex host of DMAC- 
DPS:PO-T2T and orange-red peak of dopant of Ir (pq)2acac without 
other emission behavior. More important, warm white and cool white 
emission is realized in the two white OLEDs, respectively. The concen-
tration of 1.0% white OLEDs shows the warm white emission of stronger 
orange-red emission with Commission Internationale de l’Eclairage 
(CIE) coordinates of (0.48, 0.41) at 6 V. While cool white emission of 

stronger blue emission with CIE coordinates of (0.28, 0.37) at 6 V is 
achieved in the white OLEDs with 0.5% concentration. That means the 
spectra could be modulated easily by change the doping concentration, 
which derived from the efficient control of energy transfer between 
exciplex host and dopant. The blue emission intensity is enhanced with 
increased voltages, which may be derived from the insufficient energy 
transfer from exciplex host to dopant, which leads to a mass of excitons 
produced with increased voltage, could not be transferred to dopant 
efficiently. 

In order to clarify the exciton formation and energy transfer mech-
anism further, the schematic diagram of energy transfer and emission 
process are described in Fig. 5. In orange-red OLEDs, the energy transfer 
and direct charge trapping could be obtained due to the relative high 
doping concentration of 2%. First, the triplet excitons produced on 
exciplex host convert into singlet excitons through RISC process due to 

Fig. 2. The EL performances of OLEDs with EML of DMAC-DPS:PO-T2T (x:y): 2% Ir (pq)2acac. (a) Current efficiency-luminance curves. Inset is the current density- 
voltage-luminance curves. (b) Power efficiency-luminance-EQE curves. Inset is the EL spectra under different donor/acceptor ratios. 

Fig. 3. The EL efficiencies of white OLEDs with EML of DMAC-DPS: 1% PO-T2T: x% Ir (pq)2acac (x = 1.0 and 0.5). (a) Current efficiency-current density curves. Inset 
is the current density-voltage-luminance curves. (b) Power efficiency-current density-EQE curves. 

Table 1 
The list of orange-red and white OLEDs performance under different donor/ 
acceptor ratios and concentrations in this paper.  

DMAC-DPS:PO-T2T (D:A = x: 
y): z% Ir (pq)2acac (dopant) 

CEmax
a 

(cd/A) 
PEmax

b 

(lm/W) 
EQEmax

c 

(%) 
CIE at 6 
V 

D:A (5:5): 2% dopant 37.0 37.3 18.3 (0.59, 
0.40) 

D:A (7:3): 2% dopant 34.5 31.2 17.3 (0.59, 
0.40) 

D:A (8:2): 2% dopant 34.5 32.1 17.4 (0.59, 
0.40) 

D:A (9:1): 2% dopant 33.2 28.2 16.5 (0.59, 
0.40) 

D:1% A: 1% dopant 38.3 41.3 17.8 (0.48, 
0.41) 

D:1% A: 0.5% dopant 37.6 43.7 16.6 (0.28, 
0.37)  

a Maximum current efficiency. 
b Maximum power efficiency. 
c Maximum EQE. 
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the small singlet-triplet state energy level splitting. Then the long range 
Förster energy transfer between singlet energy level could transfer the 
singlet exciton to dopant for phosphorescent radiative transition from 
triplet energy level by subsequent intersystem crossing (ISC). Besides, 
the Dexter energy transfer between triplet energy level may be also 
efficient due to the relative high doping concentration. Therefore, the 
orange-red emission in monochromatic OLEDs could be originated from 
the direct charge trapping recombination, long range Förster and short 
range Dexter energy transfer with the relative high concentration of 2%. 
While in the white OLEDs, the doping concentration is reduced to 1.0% 
and 0.5%, so the direct charge trapping recombination and Dexter en-
ergy transfer could be restrained efficiently [30]. Hence, the exciplex 
host triplet exciton RISC and followed by long range Förster energy 
transfer becomes the main pathway for dopant emission. The realization 
of white emission is also derived from the low doping concentration for 
incomplete energy transfer, which acquire the exciple host blue and 
dopant orange-red emission simultaneously for white emission. In one 
word, the triplet exciton RISC process in exciplex host plays a key role 
for efficient triplet exciton harvest for high OLEDs efficiency. 

4. Conclusion 

In conclusion, the orange-red and white OLEDs are realized by 
employing different donor/acceptor ratios exciplex host and doping 
concentrations. The orange-red OLEDs with various donor/acceptor 
ratios (9:1, 8:2, 7:3 and 5:5) exciplex host give a high maximum current 
efficiencies, power efficiencies and EQEs of 33.2–37.0 cd/A, 28.2–37.3 
lm/W and 16.5–18.3%, respectively. While the white OLEDs with 

different doping concentration (1.0% and 0.5%) also present high EL 
efficiency with maximum current efficiencies, power efficiencies and 
EQEs of 37.6–38.3 cd/A, 41.3–43.7 lm/W and 16.6–17.8%, respectively. 
Besides, the warm white emission with CIE coordinates of (0.48, 0.41) 
and cool white emission of (0.28, 0.37) are also achieved in the white 
OLEDs with doping concentration of 1.0% and 0.5%, respectively. The 
results demonstrate the donor/acceptor ratio of exciplex host have little 
effect on device performance and triplet exciton RISC process in small 
acceptor ratio exciplex host also acts as the important function for 
efficient exciton harvest and high device efficiency. We believe the 
application of exciplex host would promote the development of OLEDs 
in more device structure design. 
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