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Abstract

Fourier ptychographic microscopy is a

promising imaging technique which can

circumvent the space-bandwidth product

of the system and achieve a reconstruc-

tion result with wide field-of-view (FOV),

high-resolution and quantitative phase

information. However, traditional itera-

tive-based methods typically require mul-

tiple times to get convergence, and due to

the wave vector deviation in different areas, the millimeter-level full-FOV can-

not be well reconstructed once and typically required to be separated into sev-

eral portions with sufficient overlaps and reconstructed separately, which

makes traditional methods suffer from long reconstruction time for a large-

FOV (of the order of minutes) and limits the application in real-time large-

FOV monitoring of live sample in vitro. Here we propose a novel deep-learning

based method called DFNN which can be used in place of traditional iterative-

based methods to increase the quality of single large-FOV reconstruction and

reducing the processing time from 167.5 to 0.1125 second. In addition, we

demonstrate that by training based on the simulation dataset with high-

entropy property (Opt. Express 28, 24 152 [2020]), DFNN could has fine gener-

alizability and little dependence on the morphological features of samples. The

superior robustness of DFNN against noise is also demonstrated in both simu-

lation and experiment. Furthermore, our model shows more robustness

against the wave vector deviation. Therefore, we could achieve better results at

the edge areas of a single large-FOV reconstruction. Our method demonstrates

a promising way to perform real-time single large-FOV reconstructions and
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provides further possibilities for real-time large-FOV monitoring of live sam-

ples with sub-cellular resolution.
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imaging systems, rapid large-FOV reconstructions

1 | INTRODUCTION

High-resolution wide-field imaging is essential for vari-
ous applications in different fields, such as digital pathol-
ogy, biological and bio-medical research, which requires
large space-band product (SBP) to provide computational
and statistical analysis for thousands of cells across a
wide field-of view (FOV). However, due to the limitation
of the system SBP, almost all conventional microscopes
suffer from a trade-off between the spatial resolution and
the expansion of the FOV [1]. To solve this problem, a
novel coherent imaging technique called Fourier
ptychographic microscopy (FPM) was developed in 2013
[1–3] which can obtain higher reconstruction resolution
while maintaining the size of the FOV, therefore circum-
vents the limitation of the system SBP. In addition, due
to the phase retrieval technique employed, the quantita-
tive phase information could be acquired without direct
phase measurement, which is of great importance in the
case of imaging phase object that cannot be well sensed
by traditional microscopy.

Since the advent of the original FPM, various modifi-
cations have been implemented to further improve the
performance. Several methods for suppressing the nega-
tive influence of the background noise have been pro-
posed [4–8]. By embedding the pupil recovery procedure,
the impacts of the optical aberrations could be eliminated
[9, 10]. In addition, many new optimization methods
have been developed to improve the robustness of FPM
[11–16]. In order to perform real-time live sample recon-
struction, the temporal resolution of data collection
should be improved, various strategies such as multi-
plexed illumination [17–19] and self-learning [20] have
been applied, the data acquisition time of single frame
could be less than 1 s [18]. Furthermore, in order to
achieve real-time FPM full-FOV monitoring of live sam-
ples we need to reduce the full-FOV reconstruction time
for single-frame to below the data acquisition time. How-
ever, for the currently used iterative-based methods, mul-
tiple iterations are usually needed to get convergence.
Moreover, as discussed in this paper, due to the wave vec-
tor deviation at the edge FOV, traditional iterative
methods could not obtain a fine result when directly
reconstruct a large FOV. Commonly, it needs to separate

the full-FOV into several small portions and reconstruct
them separately, then stitch them together to output a
full-FOV reconstruction results, and typically, a sufficient
overlap rate in each direction between adjacent portions
is required to ensure the quality of the fusion result [1,
21], which introduces extra calculations and makes the
time consumption of reconstruction much longer than
the time consumption of data acquisition. Therefore, it
becomes necessary to find a rapid FPM reconstruction
algorithm for real-time monitoring of live samples with
full-FOV and high-quality.

In recent years, with the rapid development of the
deep learning (DL) technique, algorithms based on deep
convolutional neural network (DCNN) have been pro-
posed to solve many image processing problems, such as
image de-noising [22], single image super-resolution [23–
25] and phase retrieval [26, 29]. Since the purpose of
FPM is to synthesize a high-resolution complex field from
multiple low-resolution images, several algorithms have
employed DCNN to solve the FPM problem [27–32]
which greatly improve the reconstruction speed. How-
ever, in Reference [27] they need traditional method to
generate a preliminary result as the input of network,
and then the network is trained to optimize the input
instead of using the low-resolution images to reconstruct,
and in Reference [28] the performance of the network is
mainly demonstrated by simulation and lack the descrip-
tion of the generalization to the actual experimental
dataset. Moreover, most of the DL-based methods men-
tioned above require retraining or transfer learning for
new actual sample distributions [29–32]. Although using
the technique of transfer learning can make the network
quickly adapt to another sample with less re-training
times and smaller size of the re-training dataset [32], they
still need other algorithms to generate high-resolution
ground truth of this new sample, which is not practical
[31, 32]. The main reason of this generalization problem
is that a dataset of a certain morphological information
with low-entropy property [33] is used during the train-
ing process which will certainly speed up the training
progress [31, 32], but also make the network rely too
much on the certain morphological feature to recon-
struct, thereby reducing the generalization for different
samples.

2 of 17 SUN ET AL.



In this paper, we propose a novel network based on
DCNN called DFNN to solve the FPM problem, we
employ a large number of simulated pictures with dif-
ferent morphological features and high Shannon
entropy to generate training dataset which has been
discussed to improve the generalization of a network
[33]. After the first training process, we can directly
use it to perform reconstructions on experimental
dataset and obtain fine results without a secondary
training, which indicates that our model has fine gen-
eralizability and little data dependence on the mor-
phological features, thereby the practicality of the
algorithm could be further improved. Noted that the
experimental dataset should be captured with the
same system parameters. Besides, the reconstruction
results on both simulation and actual experimental
dataset indicate that the network has stronger robust-
ness to imaging noise. In the comparison of experi-
mental results, we perform single high-throughput
reconstructions (large FOV) and compare the results
with traditional iterative-based method. The compari-
son shows that our model is less sensitive to the devia-
tion of the wave vector which is essential to traditional
methods, leading to better reconstruction results at the
edge areas of the FOV. Moreover, due to the end-to-
end structure and graphic processing units (GPU)
acceleration technology, the time consumption of
DFNN for single large-FOV reconstruction could be
reduced by nearly 1500 times which greatly improves
the possibility of FPM in real-time full-FOV monitor-
ing of live samples.

This paper is structured as follows: In section 2, we
briefly introduce the overall structure and the physical
imaging process of FPM, we also introduce the recon-
struction process of commonly used alternative projec-
tion (AP) method [1, 4, 5]. In section 3, we describe the
structure of DFNN and the training strategy, and the fea-
sibility of the network is verified through simulation.
Meanwhile, the robustness of DFNN at different noise
levels is also compared with AP method. In section 4, in
order to illustrate the generalizability of DFNN, we do
not retrain or fine-tune the network on the experimental
dataset. First, we evaluate the resolution enhancement
performance with USAF dataset and compare the results
with traditional AP method. Then we use biological sam-
ples to perform single large-FOV reconstructions and by
comparing the results with AP method, we demonstrate
that our method has less sensitive to wave vector devia-
tions and could obtain fine generalization property and
better results with higher contrast and more details.
Finally, section 5 concludes the paper with summaries
and discussions.

2 | THE PRINCIPLE OF FOURIER
PTYCHOGRAPHIC MICROSCOPY

In the traditional FPM system, an LED matrix is utilized to
provide incident light with different angles. During the imag-
ing process, a thin sample, which could be represented by its
complex transmission function o(r), is placed at the front
focal plane of the objective lens, where r = (x, y) represents
the 2-dimensional (2D) coordinates in the spatial domain.

Assuming that the LED matrix is far enough away
from the sample and the reconstruction area is small
enough so that the incident light could be approximated
as an oblique plane wave. When the mth LED is acti-
vated, the spectrum of the sample will be shifted accord-
ingly. The amount of shift is equal to the wave vector of
the incident light um, which could be formulated as:

um =
sinθ mð Þ

x

λ
,
sinθ mð Þ

y

λ

 !
, ð1Þ

where θ mð Þ
x and θ mð Þ

y represent the illumination angle of
the mth LED, which is determined by the relative position
of the LED to the reconstructed area. λ is the illumination
wavelength. Therefore, the spectrum of the sample at the
Fourier plane could be expressed as:

F o rð Þexp i2πumrð Þf g=O u−umð Þ, ð2Þ

where u = (fx, fy) represents the 2D coordinates in the fre-
quency domain, F represents the Fourier transform and
O(u − um) refers to the spectrum of the sample which is
shifted to be centered around um. Due to the limitation of
NA, the spectrum is low-filtered by the system pupil
function P(u). Therefore, according to Equation (2), the
intensity image recorded by the sensor corresponding to
the mth LED could be formulated as:

Im rð Þ= F −1 O u−umð Þ�P uð Þf g�� ��2, ð3Þ

where F−1 represents the inverse Fourier transform.
When the LEDs are sequentially activated, we can obtain
a series of low-resolution images containing information
from different sub-regions of the spectrum.

The main principle of FPM algorithm is to synthesize
the estimated spectrum of the sample Oe(u) using the cap-
tured low-resolution intensity images, then get the esti-
mated high-resolution complex field oe(r) = F−1{Oe(u)}.
However, since only the intensity information is captured,
a phase retrieval algorithm needs to be employed to obtain
the phase information. At present, the most commonly
used algorithm called AP method which alternatively
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constrains the reconstruction process in the spatial and fre-
quency domain. First, AP method need an initial guess of
the reconstructed spectrum Oe(u), which is the Fourier
transform of an initial complex field in which the ampli-
tude is usually the up-sampled low-resolution image under
the normal incidence condition and the phase is set to
zero. Therefore, we can get the estimated low-resolution
complex field Ee,m(r) according to the mth LED.

Ee,m rð Þ=F−1 Oe u−umð Þ�P uð Þf g ð4Þ

In which the pupil function P(u) is commonly considered
as the coherent transfer function (CTF) of the system and
can be expressed as:

P f x , f y
� �

=CTF=
1, if f 2x + f 2y

� �
< NA

λ

� �2
0, otherwise

(
ð5Þ

Second, the amplitude of Ee,m(r) is replaced by the actual
measured intensity �Im rð Þ and the phase remained still to
enforce the spatial domain restrain. Then the
corresponding sub-region of the spectrum is updated by
the Fourier transform of the new complex field:

Oe u−umð Þ�P uð Þ=F

ffiffiffiffiffiffiffiffiffiffiffi
�Im rð Þ

p
jEe,m rð Þ jEe,m rð Þ

( )
: ð6Þ

All sub-regions of the spectrum need to be updated during
one iteration, and AP method usually need multiple itera-
tions to converge to the final result with a wider pass-band.
Moreover, to ensure the accuracy of the wave vector um, a
large-FOV is usually needed to be separated into multiple
portions and reconstructed separately with the correct
wave vectors [1, 2], then the multiple results are stitched
together using image fusion technique. In addition, to
ensure the fusion quality, sufficient overlap between adja-
cent portions is needed [1, 21, 32], therefore, the recon-
struction speed of traditional AP methods for a large-FOV
is usually sacrificed, leading to a low reconstruction tempo-
ral resolution. In this paper, we are committed to achieving
a higher reconstruction speed for large-FOV by utilizing
deep learning technique while obtaining good generaliz-
ability and fine reconstruction results.

3 | METHOD

3.1 | The structure of DFNN

We take a series of low-resolution images captured by the
camera as input to the network. Since we expect the

network to output high-resolution complex amplitudes,
therefore the output needs to be a 2-channels tensor con-
sisting of the high-resolution amplitude and phase infor-
mation. In order to avoid the crosstalk, the reconstruction
network is divided into two branches, that is, one for the
amplitude and the other for the phase. Both branches are
identical in structure and contain multiple residual con-
nection blocks [34]. The general structure of one branch
with dimension information is shown in Figure 1A.

Each branch of the network has two data flows and
each flow contains a pre-processing module, a residual
module and a post-processing module. In the pre-
processing module, the channel number of the input ten-
sor need to be extracted into C by passing through a con-
volutional layer, moreover, in order to increase the
receptive field of the network and improve the ability to
extract information of different scales [35], the tensor in
one flow is going to down-sampled by ×4. Instead of
applying the pooling layer, we utilize two convolutional
layers with stride as 2 to carry out the ×4 down-sampling
operation. In this way we could implement the down-
sampling and convolution operations simultaneously.

The pre-processing module is followed by the residual
module which is an essential part of the network. The
residual module is composed of 16 residual blocks,
inspired by the structure proposed in Reference [32], we
build the residual block by using two convolutional layers
and a rectified linear unit activation (ReLU) layer, as
shown in Figure 1B. The first convolutional layer expands
the channel number of the input tensor by a factor of
4, then after the tensor is modulated by the ReLU layer,
the number of channels is restored into C by the second
convolutional layer. Finally, the tensor is added up with
the input through a mapping operation which is modu-
lated by a parameter β and output as the result of the cur-
rent block. By utilizing the residual structure which
connects the output and input of the block, the perfor-
mance and the convergence speed of the network could be
significantly improved [34]. In addition, compared with
the traditional residual structure, increasing the number of
channels before the activation layer could further improve
the performance in image reconstruction [36, 37].

The output of residual module is then passed through
a post-processing module, in which a series of operations
are performed, including up-sampling, concatenation
and the output of the result. During the up-sampling
operation, the tensors of two data flows are up-sampled
into the desired size. The super-resolution factor is set to
α, therefore the up-sampling ratios for two flows are ×α
and ×4α respectively. The up-sampled block is composed
of a convolutional layer and a pixel shuffle operation, as
shown in Figure 1C, an ×2 up-sampled block consists of
a convolutional layer which expands the channels by a
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factor of 4 and a pixel shuffle layer which up-samples the
size ×2 by merging the information in channels and
restores the channel number [38]. After the up-sampling
module, the output tensors of two data flows are
concatenated together and pass through the last two con-
volutional blocks of this branch, which perform the final
operation to output a 1-channel tensor (see Figure 11 in
Section 6 for more details about the functional blocks
and parameter setting we used).

We concatenate several low-resolution images as the
input of DFNN, which could be expressed as a tensor
with a dimension of c × W × H, where the W and H indi-
cate the width and height of the low-resolution image
respectively, c represents the channels of the tensor
which is also the number of low-resolution images used,
noted that, for better performance, the channel number
C inside the network should be larger than the channels
of input tensor. Therefore, after the transition of the
input tensor through two branches and a concatenate
operation, we obtain a tensor with a dimension of
2 × αW × αH which contains the reconstructed high-res-
olution amplitude and phase information.

3.2 | Loss function

Instead of simply applying the L1 loss function to con-
strain the training process [31], we divide the loss func-
tion into two parts representing the losses in the spatial
and frequency domains. The loss function of the spatial
domain incorporates the L1-norm term and the structural
similarity index (SSIM) term, which could be written as
the following form:

lossspatial = η1L1 τGT,τoutput
� �

+ η2SSIM τGT,τoutput
� �

, ð7Þ

where τGT and τoutput represent the ground truth tensor
and the reconstruction result of the network respectively.
The L1-norm term is formulated as:

L1 τGT,τoutput
� �

=
1

Npixels
τGT−τoutput
�� ��� �

, ð8Þ

where Npixels denotes the total number of pixels in each
tensor. This function describes the absolute difference

FIGURE 1 Diagram of the proposed DFNN model. A, The general architecture of one branch. B, The structure of a residual block in

the residual module. C, The structure of the ×2 up-sampling block
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between each pixel of the reconstruction result and the
corresponding ground truth. Moreover, in order to make
the DFNN model pay attention to the structural informa-
tion of the image, the SSIM term is added as a part of the
loss function [39], which is defined as:

SSIM τGT,τoutput
� �

=
2μGTμoutput +C1

� �
2σGT,output +C2
� �

μ2GT + μ2output +C1

� �
σ2GT + σ2output +C2

� � ,
ð9Þ

where μGT and μoutput denote the averages of τGT and
τoutput, respectively, σGT,output represents the covariance
of τGT and τoutput, σ2GT and σ2output are the variances of τGT
and τoutput, respectively, C1 and C2 are the constant
values that stabilize the division when the averages are
close to zero which are set to 1× 10−4 and 9× 10−4,
respectively.

In the frequency domain, the higher frequency infor-
mation of an image is indicated farther from the center,
which makes it easier to be identified than that in the
spatial domain, Therefore, we add a spectral domain loss
to the loss function which could be formulated as:

lossfreq = η3L1 Ft τGTf g,Ft τoutput
� 	� �

, ð10Þ

where Ft denotes the Fourier transform of a 2-channels
tensor, which results in another 2-channels tensor con-
sisting of the real and imaginary parts of the spectrum.
According to Equations (5) and (8), the loss function of
DFNN is defined as:

loss = η1L1 τGT,τoutput
� �

+ η2SSIM τGT,τoutput
� �

+ η3L1 F τGTf g,F τoutput
� 	� �

, ð11Þ

where (η1, η2, η3) are the hyper-parameters which indi-
cate the relative weight of each component.

3.3 | Training and testing on simulation

In order to quantitatively evaluate the reconstruction per-
formance of DFNN, we utilize the DIV2K dataset [40] to
create a simulation dataset based on the FPM imaging
principle. All the 800 high-resolution images in the
DIV2K dataset are first reshaped into 512 × 512, and then
we randomly employ these images as amplitude and
phase to obtain 400 high-resolution complex amplitudes.
During the simulation, the NA of the objective lens is set
to 0.2, the wavelength is set to 0.514 μm, the distance
between the sample and the 7 × 7 LED matrix is

67.5 mm, the gap between adjacent LEDs is 4 mm and
the magnification of the system is set to ×8.15. The syn-
thesized NA could reach to 0.44, which leads to a 2-fold
improvement in the resolution (α = 2). Due to the mem-
ory limitation, we consider the ×8 up-sampling operation
shown in Figure 1A as three connected ×2 up-sampling
blocks and the channel number C inside the network is
set to 64.

During the process of acquiring low-resolution
images, the pupil function is set to the CTF. In order to
make the network learn the strict FPM reconstruction
process, the CTFs shifted corresponding to all simulated
'LEDs' are merged together to build a synthesized low-
pass filter, and the original high-resolution spectrum is
passed through this synthesized filter to obtain the gro-
und truth complex field.

Through the simulation, 400 patches of low-resolu-
tion image tensors with the size of 49 × 256 × 256 and
the corresponding high-resolution ground truth with the
size of 2 × 512 × 512 are achieved. Then the simulation
dataset is randomly separated into 300 and 100 patches to
act as the training dataset and testing dataset respec-
tively. Moreover, in order to improve the robustness of
DFNN to image noise, Gaussian distribution noise with
zero mean and standard deviation of 2 × 10−3 is added
on the low-resolution image tensor. DFNN is trained on
the training dataset with 200 epochs and the batch-size is
set to 2 due to the limitation of memory. Especially, we
set the hyper-parameters (η1, η2, η3) of the loss function
to (0.3, −0.3 0.2) and the adaptive moment estimation
(Adam) as the optimizer [41] with the initial learning
rate being 1 × 10−3 and exponential decay rate for the
first and second moment estimates being 0.9 and 0.999
(β1 = 0.9, β2 = 0.999). During the training process, we
also employ the L2-penalty weight decay rate of 1 × 10−3

and weight normalization method [42] as the weight reg-
ularization of the network, the learning rate is multiplied
by 0.2 for every 40 epochs. The entire network is built
with Python based on the PyTorch library and runs on a
PC with an Intel Core i7-8700HQ processor and NVIDIA
RTX TITIAN graphic card.

Once DFNN is trained, a rapid reconstruction process
could be performed by simply inputting the low-resolu-
tion images. We use the test dataset to quantitatively
evaluate the effectiveness of the network, Figure 2
exhibits the boxplots of mean absolute error (MAE) and
SSIM between the output and the ground truth.

The results are normalized into 0-1 before calculate
the MAE and SSIM. It can be seen from Figure 2 that
MAE of the amplitude and phase reconstructed by DFNN
could be less than 0.010 and 0.015, respectively, and SSIM
of the reconstructed amplitude and phase could exceed
0.990 and 0.985, respectively. Each patch of this
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simulated dataset has completely different morphological
features from others, the only thing in common is the
process of getting low-resolution images through the
FPM forward imaging model as mentioned in section 2.
Therefore, by training DFNN on this dataset, it could pay
less attention to the morphological features of the dataset
itself, and focus on the reverse process to get high-resolu-
tion results. On the other hand, for FPM reconstruction,
the input–output ratio of the algorithm is usually much
larger than 1, DFNN only needs to learn how to extract
the detailed information contained in low-resolution
images [43, 44] and “merge” them together, instead of
relying on learning the morphological features of a large
amount of dataset to know how to “add” detailed infor-
mation like single image super-resolution technology.
Therefore, DFNN could show less dependence on the
morphological features, and for the testing dataset with
different morphological features, DFNN still shows good
reconstruction ability and fine generalization property
(Figure 2).

Moreover, in order to verify the robustness of DFNN,
we build a new test dataset by contaminating the low-reso-
lution images with different levels of Gaussian distribution
noise and compare the reconstruction results of the net-
work with traditional AP method. The MAE and SSIM of
the two methods at different levels of noise are shown in
Figure 3, in which the standard deviation of Gaussian
noise is set from 8 × 10−4 to 8 × 10−3. In order to ensure
the convergence, the AP algorithm is iterated for 40 times.

From Figure 3, we can see that the reconstruction
quality of AP is rapidly degraded with the increase of the
noise level and DFNN can obtain a better result in terms

of MAE and SSIM with only slightly decline as the noise
level increases.

For better illustration, Figure 4 exhibits the reconstructed
amplitudes, phases and spectra of these two methods at the
maximum noise level (8 × 10−3) along with the ground
truth. Inserts two small highlighted sub-regions of amplitude
and phase and their error maps with the ground truth. It can
be seen that, in the case of a high-level noise, the iterative-
based AP method would converge to the result suffering
from serious artifacts (Figure 4A), However, the DFNN
model could still obtain a clearer result with more details
and fewer errors (Figure 4B), which indicates that the pro-
posed DFNN has a much stronger robustness and better per-
formance under noise.

In order to quantitatively evaluate the performance of
these two methods from the reconstructed spectrum, we
calculate the normalized mean square error (NMSE)
between the L1-norms of the reconstructed spectra and
the ground truth spectrum as shown in Table 1 [9, 10].
We can see that DFNN presents the best result in NMSE,
which means the reconstructed spectrum is more similar
to the ground truth.

4 | PERFORMANCE ON
EXPERIMENT

4.1 | Testing the performance on
resolution improvement

As discussed in section 3, DFNN can improve the resolu-
tion of the input image, therefore, in order to

FIGURE 2 The quantitative evaluation of the reconstruction results using the test dataset (100 patches), mean absolute error (MAE)

and structual similarity (SSIM) are calculated after normalizing the results into 0-1. A, The boxplots of MAE of the reconstructed amplitude

and phase. B, The boxplots of SSIM of the reconstructed amplitude and phase
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quantitatively illustrate the performance of DFNN in
improving the resolution on actual measured dataset, in
this section, we first test the performance of our network
on an open-sourced USAF dataset [4]. The NA (NAobj) of
the employed object lens is 0.1, the magnification of the
system is ×4, the pixel size of the camera is 6.5 μm, the
distance between the sample and a 11 × 11 LED matrix is
87.5 mm, the distance between adjacent LEDs is 5 mm,
therefore, the synthetic NA (NAsyn) of the system is up to
0.37 in both X and Y direction which results in a ×4 reso-
lution improvement.

It is worth noting that since the experiment parame-
ters of this dataset are different from those used in our
previous simulation, our proposed network need to be
retrained according to the new system parameters. In
order to demonstrate that DFNN trained based on simu-
lation could have fine generalizability to experimental
dataset, the training dataset is obtained from the same

simulation dataset (DIV2K) as in section 3 and according
to the new parameters, we get 300 patches of low-resolu-
tion image tensors with the size of 121 × 128 × 128 (the
same Gaussian distribution noise is added as before) and
the corresponding high-resolution ground truth with the
size of 2 × 512 × 512. Besides, we add an extra ×2 up-
sampling operation at the beginning of the network,
therefore, the overall resolution improvement could
reach to ×4 and the channel number C is set to 128 for
better performance. Then we use this new simulation
dataset to train our network with a similar training pro-
cess as before, after the training is complete, we directly
test our network with the USAF dataset and compare the
reconstruction results with AP method which iterates for
15 times to ensure the convergence. The comparison is
shown in Figure 5.

From Figure 5D we can see that at the normal inci-
dence, the resolution limit of the system is group 7,

FIGURE 3 Mean absolute error (MAE) and structual similarity (SSIM) of the reconstruction results obtained by alternative projection

(AP) and DFNN at different levels of noise, MAE and SSIM are calculated after normalizing the results into 0-1. A,B, MAE of the

reconstructed amplitudes and phases. C,D, SSIM of the reconstructed amplitudes and phases
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element 4 (2.76 μm), therefore the maximum resolving
limit of the reconstructed results in both X and Y direc-
tion should be 2.76/(NAsyn/NAobj) = 0.745 μm, which is
slightly lower than the line width of group 9 element 3
(0.775 μm).

As shown in Figure 5D, DFNN can successfully
reconstruct the fringe of group 9, element 2–3 to the the-
oretical limit with fine contrast, therefore, it can be con-
cluded that DFNN can surely improve the resolution to
the desired level which also demonstrates the resolution
improvement ability of the proposed network. Further-
more, since the morphological information of the USAF
target is completely different from the simulated training
dataset, this reconstruction effect also, to a certain extent,
verifies the generalizability of DFNN as mentioned in
section 3.

Due to the sufficient overlap rate of the dataset in the
frequency domain, AP method could obtain fine result
with good contrast at the theoretical limit (Figure 5A2
and Figure 5D) [1, 2]. However, the reconstructed result
obtained by AP method suffers from serious background
noise (Figure 5A). In contrast, as shown in Figure 5B2
and Figure 5D, since the DCNN structure employed in

DFNN could capture the invariants while filtering out
other random fluctuations [45, 46], DFNN can achieve a
better result with minimal background noise and slightly
higher contrast which further verifies the robustness of
DFNN against noise.

Meanwhile, as shown in Table 2. due to the end-to-
end structure and GPU acceleration technology
employed, DFNN can achieve a reconstruction speed
about 50× faster than iterative-based AP method.

4.2 | Testing the performance on
biological samples for large-FOV
reconstruction

In this section, we utilize the open-sourced experimental
dataset [17, 18] (stained Human Bone Osteosarcoma Epi-
thelial U2OS sample captured on a Nikon TE300 inverted
microscope) to test the generalizability and reconstruc-
tion performance of DFNN in terms of both amplitude
and phase. The system parameters are the same as those
in section 3, therefore, we could directly apply the DFNN
trained based on simulation to reconstruct the U2OS
sample. In order to better illustrate the advantage of
DFNN in reconstructing large FOV result, we choose the
region with the size of 1800 × 1800 as input, which is
equivalent to 1.44 mm × 1.44 mm at the object plane.
Meanwhile, we compare the result with traditional AP
method in terms of both the reconstruction quality and
speed. As for the iteration times of AP method, we
employ the adaptive step strategy [4] to make the algo-
rithm automatically judge whether the result is

FIGURE 4 The reconstruction results of two methods at the maximum noise level (8 × 10−3). Inserts the detailed features and error

maps with the ground truth

TABLE 1 The comparison of reconstructed spectra

Methods AP DFNN Ground Truth

NMSEa (×e−3) 37.1 1.9 0.0

Abbreviations: AP, alternative projection; NMSE, normalized mean square
error.
aNMSE is calculated over the center 256 × 256 pixels area which is enough

overlapped.
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converged and jump out of the iterative process. The
pupil function used in AP method is set to CTF. The com-
parison is shown in Figure 6.

In Figure 6, in order to better illustrate the recon-
struction performance of these two algorithms, we ran-
domly zoom in and demonstrate seven different sub-
regions scattered from the center to the edge FOV.
Figure 6A illustrates the raw image captured under the
normal incidence. It can be seen from the comparison of
Figure 6B-E that the main advantage of DFNN over tradi-
tional AP method for this dataset lies in the phase recon-
struction. All 7 sub-regions of the phase reconstructed by
DFNN show better contrast, lower fluctuation and much
clearer details than those by AP method.

Moreover, in Figure 7, we show the contrast curve of
the plasmodesmata feature indicated in the sub-region of
Figure 6C,E, DFNN can successfully reconstruct this
detailed information with higher contrast than tradi-
tional AP method. Furthermore, in Figure 7B,C, we dem-
onstrate the background fluctuation at the upper right
corner of the phase results shown in Figure 6C,E, from
the 3D surface graph, it can be seen that the peak-to-val-
ley value (PV) of the background obtained by AP method
is about 0.27; however, the PV value of the background
by DFNN is only about 0.08.

As for the reconstruction speed of two methods, we
show the time comparison in Table 3. Since the adaptive
strategy used in AP method, it will automatically stop
after 12 iterations. At the same time, due to the large
reconstruction image size, the advantage of the DL-based
DFNN in reconstruction speed is fully revealed, the time
consumption is only 0.1125s which is about 1.5 × 103

faster than AP method.
It is worth noting that such phenomenon of large

background fluctuation appeared in the reconstructed
phase of AP method (Figure 7B) could be explained by
the effect of the inaccurate wave vector [47, 48]. Since the
system uses a point light source (LED) for illumination,
the incident light received by the sample is strictly a
spherical wave, therefore, the wave vector corresponding
to the edge FOV is different from the center. For the

FIGURE 5 The comparison of reconstructed results between different methods using USAF dataset. A,B, The reconstructed results by

alternative projection (AP) and DFNN respectively. C, the low-resolution image captured under the illumination of the center LED. D, the

fringe contrast of group 9, element 2–3 obtained by AP and DFNN respectively

TABLE 2 The comparison of reconstruction time for USAF

sample

Methods Iteration times Time

APa 15 2.01 s

DFNNb 0 35.75 ms

Abbreviation: AP, alternative projection.
aThe code of AP is open-sourced and provided in Ref. 1 and implemented
with MATLAB.
bDFNN is implemented based on Python and tested on the same PC as AP.
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U2OS dataset used above, the wave vector angle from the
center LED to the edge FOV is about 1.75 degree different
from the center FOV which leads to a total deviation of
182 pixels in the amount of movement on the spectrum
(91 pixels in the X direction, 91 pixels in the Y direction).

Since the large FOV is reconstructed at the same time,
the wave vector corresponding to the center FOV is used,
therefore, the inaccuracy of the wave vector at the edge
FOV will iteratively contaminate the reconstruction
result until the AP algorithm converges [47, 48]. As

FIGURE 6 The comparison of the large field-of-view (FOV) reconstruction results using the open-sourced dataset (U2OS). A, the large-

FOV raw image captured under the normal incidence and the seven randomly selected enlarged sub-regions. B-E, The reconstructed

complex amplitudes of alternative projection (AP) and DFNN. Inserted with 7 randomly selected enlarged sub-regions
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shown in Figure 8, the comparison between the
reconstructed sub-regions at the edge FOV using the
wrong wave vector and the correct one. The sub-region is
the same as shown in Figure 7B,C, and Figure 8A is the
copy of Figure 7B, in which the wave vector is inaccurate
for this sub-region. Figure 8B is the reconstruction result
using the correct wave vector, it can be seen that the
background fluctuation is effectively reduced.

In general, to ensure the accuracy of the wave vector,
traditional AP method can only reconstruct a small FOV
at once, and then stitch multiple small FOV results
together using image fusion technology such as the
alpha-blending stitching method [1]. However, the
uneven brightness of multiple reconstruction results will
more or less affect the stitching result, therefore, suffi-
cient overlap of adjacent small portions is required [1,
21, 32] to ensure the fusion quality which further intro-
duces additional calculations and makes the method less
practical. As for the DL-based DFNN method, since there
is no iterative process and the DCNN structure used cap-
tures the invariants while filtering out other random fluc-
tuations [45, 46], the wave vector error has little
influence on the reconstruction results leading to a
smoother background and higher contrast as shown in

Figure 7. Meanwhile, the substantial increase in recon-
struction speed also makes it possible to perform real-
time single full-FOV reconstruction.

To further test the reconstruction performance and
the generalization property of DFNN on different sam-
ples, we use the open-sourced unstained vitro-Hela
dataset to test the reconstruction performance. Noted
that this sample could be treated as a phase object which
contains significant intensity differences from the previ-
ous one [32]. The system parameters are the same as
before, however, here we employ 11 × 11 images to
increase the synthesis NA to 0.58 which leads to the up-
sample factor of 3 (α = 3). And the channel number C is
set to 128. The training dataset is still obtained based on
the simulation dataset (DIV2K) and the training strategy
is similar as before. We enlarge two sub-regions located
at the center and edge of the FOV and compare the
results with those obtained by AP method. To ensure the
accuracy of wave vectors, we use AP method to recon-
struct the small sub-regions separately with the
corresponding wave vectors. The comparison is shown in
Figure 9.

The reconstructed result shown in Figure 9A has the
size of 0.77 mm × 0.77 mm at the object plane due to the
CUDA memory limitation. Figure 9C1,C2 represent the
contrast of two reconstructed details indicated in
Figure 9A3,A4 and Figure 9B3,B4, it can be visually seen
that the results obtained by DFNN show higher contrast.

Moreover, such generalization property over experi-
mental dataset could also be explained by the Shannon
entropy of the training dataset, as mentioned in [33], a
trained DCNN can have a better generalization

FIGURE 7 A, The contrast curve of the phase results across the plasmodesmata information which is drawn after normalize into 0 ~ 1.

B, C, The enlarged sub-regions of the upper-right corner of the phase results along with the 3D surface graphs

TABLE 3 The comparison of reconstruction time in single

large-FOV reconstruction

Methods Iteration times Time(s)

AP 12 167.5

DFNN 0 0.1125
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performance when the training dataset is more general
and high-entropy. Compare with the strategy of using the
open-sourced dataset (DIV2K) to generate the training
dataset as mentioned in section 3, other networks for
similar reconstruction task usually employ the experi-
mental dataset to train the networks and the high-resolu-
tion ground-truth images are typically generated by other
iterative-based algorithms such as AP method [31, 32].
Here, we compute the Shannon entropy of the images in
DIV2K and the reconstructed results of the experimental
dataset (U2OS) obtained by AP method and show their
histograms in Figure 10.

Noted that to ensure the ground-truth images in two
strategies have the same size (512 × 512), the large for-
mat raw image of U2OS (2560 × 2160) is first divided into
300 portions with the size of 256 × 256 (125-pixel and
136-pixel overlap in the vertical and horizontal direc-
tions) and then reconstructed into 512 × 512 by AP
method using the correct wave vectors, the reconstructed
results are divided into amplitude and phase and com-
puted separately.

It can be seen that most images in DIV2K dataset
have their entropy lie in 7.0 to 8.0 (mean 7.382, standard
deviation 0.423), which is larger than the reconstructed
results of U2OS by AP method (mean 5.787, SD 0.478 for
amplitude; mean 5.352, SD 0.535 for phase). Therefore,
due to the “higher-entropy” property of the simulated
dataset we use, DFNN could show better generalizability
than the networks only trained based on experimental

dataset and obtain fine reconstruction results of various
samples with complete different morphological features.

5 | CONCLUSION AND
DISCUSSION

In this paper, we have proposed and demonstrated a DL-
based method called DFNN for rapid FPM reconstruc-
tion. By separating the network data flow into two bra-
nches, DFNN can simultaneously achieve the high-
resolution amplitude and phase information without
crosstalk. Each branch consists of two data flows with
multiple residual blocks which utilize the structure from
Reference 32 for better performance. In order to quantita-
tively evaluate the feasibility and the reconstruction qual-
ity of DFNN, we carry out a simulation using the DIV2K
dataset. In addition, by adding different levels of noise,
we demonstrate that the proposed DFNN model has
stronger robustness than traditional iterative-based AP
method. The superior of robustness is also illustrated
through the experiment on actual USAF dataset.

We further discuss the importance of the accuracy of
the wave vector to traditional AP method, in order to
obtain fine large-FOV reconstruction results, traditional
AP method needs to separate the full-FOV image into
several portions and reconstruct them separately using
the accurate wave vectors, and then stitch the results
together using image fusion technology such as alpha-

FIGURE 8 The comparison of the edge sub-region reconstructed by alternative projection (AP) method with the wrong wave vector and

the correct one. A, The reconstructed phase of the sub-region with the wrong wave vector which is the same as shown in Figure 7B. B, The

reconstructed phase of the sub-region with the correct wave vector in which the background fluctuation is smaller than the other one
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blending strategy [1], furthermore, in order to ensure the
quality of the fusion results, sufficient overlap between
adjacent portions is required. As a result, extra calcula-
tion will be introduced leading to a lower reconstruction
speed. In addition, we demonstrate the performance of
DFNN and traditional AP method in large FOV

reconstruction. Due to the end-to-end structure, no itera-
tive process is needed for DFNN method. Moreover, since
the model could capture the invariants while filtering out
other random fluctuations [45, 46], the sensitivity to the
wave vector deviations could be greatly reduced. There-
fore, DFNN could obtain better reconstruction quality

FIGURE 9 The comparison of the center and edge sub-regions reconstructed by DFNN and alternative projection (AP) methods. A, The

large field-of-view (FOV) reconstruction result obtained by DFNN with the size of 2880 × 2880 corresponding to 0.77 mm × 0.77 mm at the

object plane. A1-A4, The enlarged two sub-regions located at the center and edge FOV. B1-B4, the reconstruction results of the two sub-

regions using AP method which will automatically stop the iteration after 12, respectively. C1, the contrast curve of the detail structures

indicated in, A3 and B3 which is drawn after normalized into 0 ~ 1. C2, the contrast curve of the detail structures indicated in, A4 and B4

which is drawn after normalized into 0 ~ 1
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than AP method especially at the edge FOVs. Meanwhile,
high-throughput reconstruction could better reveal the
advantage of the DL-based DFNN in reconstruction
speed, which results in about 1500 times faster. In sec-
tion 4, we show that the Shannon entropy of our training
dataset is higher than the dataset generated from the
experimental images which is typically used in other net-
works with similar task [31, 32]. And according to [33],
by training based on a “high-entropy” dataset, the gener-
alizability of the network could be improved, which is

further be verified by the testing on experimental samples
in sections 3 and 4.

It is worth noting that the temporal resolution of
FPM technology does not mainly rely on the reconstruc-
tion speed but on the raw-data acquisition speed, how-
ever, in order to achieve real-time full-FOV FPM
monitoring, the time consumption of full-FOV recon-
struction for single frame should be less than the time
consumption of data acquisition. In recent years, since
the introduction of multi-LEDs illumination strategy, the

FIGURE 10 The entropy histogram of DIV2K and the reconstructed results of U2OS by AP method. A, The entropy histogram of

DIV2K computed based on 100 bins and 600 images. B1, B2, The entropy histograms of the reconstructed amplitude and phase of U2OS

dataset by alternative projection (AP) method and computed based on 100 bins and 300 images separately

FIGURE 11 The detailed information of each function block in DFNN
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single frame acquisition speed of FPM could be above
1 Hz [18]. Therefore, it becomes vital to reduce the time
consumption of full-FOV reconstruction to less than 1 s
while ensuring the quality, which makes the DL-based
reconstruction method become promising. Moreover, we
could combine the deep learning strategy with image
acquisition, and through training, we can reasonably
reduce the data acquisition time while maintaining the
reconstruction quality, which will be our future work.

6 | MORE DETAILS OF DFNN

In section 3.1, we introduce the general architecture of
one flow in DFNN (Figure 1). Here, in Figure 11, we pro-
vide the detailed lay-wise information of each function
block in Figure 1, along with the parameter setting. It
can be seen that each convolution layer is followed by a
weight normalization operation which could accelerate
the training convergence of DFNN [42]. In the residual
block, we employ the strategy mentioned in [36] which
expands the channel number in the first convolution
layer while restores the channel number in the second
convolution layer. Noted that in order to increase the
receptive field [35] of the block without changing the size
of the tensor, we use dilated convolution in the first con-
volution layer (Dilation = 1). In the side-branch of the
residual block, there is a parameter β which could modu-
late the retention of the input tensor in the output result
and is set to 1.0. It is worth noting that in the last ×α up-
sampling block shown in Figure 1A, the output channels
in the convolution layer should be 32 × α2 and the
upscale in the pixel-shuffle layer is α.
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