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ABSTRACT Traditional orthogonal matching pursuit (OMP) algorithms for direction of arrival (DOA)
estimation suffer from poor angular resolution and noise suppression. In this paper, we analyze the reason
why the OMP algorithm has difficulties in resolving closely separated DOAs and conclude that it lies
in the rules of support detection. Moreover, we propose a solution to this problem via developing the
connection between the sparse reconstruction class algorithm and the subspace algorithm from the structure
of the redundant dictionary. Based on the framework of the matching pursuit (MP) algorithm, the effective
information of the signal and noise subspaces is integrated, and a noise subspace reprojection orthogonal
matching pursuit (NSRomp) algorithm for DOA estimation is proposed. By adopting signal subspaces to
reconstruct the original signal, the proposed NSRomp can reduce both the influence of noise on the selection
of the support set and the computing time. By implementing the minimum normmethod to optimize the noise
subspace into a vector, which corrects the selection rules of the support set during each iteration, the angular
resolution of the proposed algorithm is improved. From the simulation results, when the signal to noise
ratio (SNR) is lower than or near 0, the angular resolution can be improved by> 15◦ using OMP algorithms
to by < 5◦ using the proposed NSRomp algorithm.

INDEX TERMS Bearing estimation, compressed sensing, DOA, MMVOMP, multiple measurement vector,
MUSIC.

I. INTRODUCTION
The rapid development of wideband and ultrawideband sig-
nal processing technology demands simple and efficient
methods to obtain information by sampling data. In many
practical systems, information of interest is often sparse in
the vast observable signal space and thus requires exten-
sive until the recent applications of sparse signal repre-
sentation (SSR) and compressed sensing (CS) theory. The
theory notes that [1]–[3] if a signal is sparse or sparse
after a certain transformation, the high-dimensional sig-
nal can be projected into a low-dimensional space and
reconstructed from a small set of low-dimensional data
with high probability. CS theory affects many research
fields, including radar image processing [4]–[6], blind source
separation [7]–[9], sensor networks [10], [11], and Internet of
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Things communication [12]. Because signal DOAs are sub-
stantially sparse in all spatial domains, DOA estimation was
extensively studied using SSR. In 2005, Malioutov et al. [13]
proposed an l1svd algorithm that introduced SSR into DOA
estimation. In the one-dimensional DOA estimation system,
a sparse recovery model (SRM) was built, and a l0-norm
constrained optimization problem was solved by the convex
optimization theory. The proposed l1svd algorithm can be
used with any structure array and correlation signal with
satisfactory angular resolution, which improved the base pur-
suit (BP) algorithms with their variants, such as least abso-
lute shrinkage and selection operator(LASSO) [14] or basis
pursuit de-noising(BPDN) [15], adaptive LASSO [16] and
weight LASSO [17]. These algorithms commonly referred
to BP algorithm, which is similar to the l1 norm and is
used to approximate the l0 norm such that optimization can
be relaxed to l1 norm-constrained convex optimization, and
global optimality can be derived. However, these methods
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suffer from biased estimation and complex calculations [18].
When the correlation between the different components of the
observation model is strong, the l1 norm cannot guarantee
that the solution obtained is completely consistent with the
real signal model. The lp(0 < p < 1) optimization results
have better performance than BP because the lp norm is a
closer approximation to the l0 norm [19], [20]. However,
the complexity of optimizing the lp norm greatly limits
the implementation of the related methods. Compared to
the lp(0 < p ≤ 1) norm method, which has to solve
a time-consuming optimization problem, the matching pur-
suit (MP) algorithm was proposed by Mallat and Zhang [21],
[22] to reconstruct the sparsest target signal through lin-
ear measurements. Following Mallat and Zhang’s research,
OMP [23], MMVOMP [24], ROMP [25] and other improved
algorithms were proposed. Iteration based MP class algo-
rithms are greedy algorithms which cannot guarantee global
optimality, but run quickly with fewer snapshots, and make
MP class algorithms can estimate multidimensional param-
eters. Currently, MP based DOA estimation algorithms have
primarily been proposed by Karabulut [26], Cotter [27] and
Wang and Wu et al. [28]. However, existing MP based DOA
estimation algorithms have several drawbacks to constrained
their wide applications:
• Multiple snapshots are employed to for calculation but
are not fully used to suppress noise;

• The angular resolution is relatively low, and distinguish-
ing closely separated DOAs is difficult.

Fortunately, the classic eigensubspace methods, which are
regarded as super-resolution algorithms, yield better spatial
angle resolutions. The basic concept behind these methods
is that SVD decomposition is employed to divide the data
space into signal subspaces and noise subspaces, and then
obtain the DOA estimation via the rotational invariance tech-
nique (e.g., ESPRIT [29]) or spectral peak searching tech-
nique (e.g., multiple signal classification (MUSIC [30])).
Recently, [31]–[35] have been reported to combine sparse
and subspace methods to compensate for their limitations.
However, these combined methods were primarily concen-
trated on BP algorithms with complex second order cone
programming (SOCP) with the requirement of heavy cal-
culation; thus, these methods could not be applied to sce-
narios with real-time requirements. In this paper, motivated
by the subspace algorithm, we describe a high-resolution
NSRomp algorithm for DOA estimation that requires fewer
calculation and exhibits complexity. We used SVD to divide
the data space in the autocorrelation domain into the sig-
nal and noise subspaces. The obtained data from the signal
subspace were considered to be the initial residual signal
(i.e., the input) of the OMP algorithm, and with the noise
subspace, the atom selection rules were modified at each
iteration of the algorithm. The proposed NSRomp algorithm
exploits the data of the two subspaces without data loss,
makes it more efficient than merely using data from a single
subspace. The contributions of this paper are summarized as
follows:

• Through theoretical analysis, we conclude that the MP
class algorithms are limited by the Rayleigh limit, which
prevents them from resolving closely separated DOAs.

• The connection between the sparse reconstruction algo-
rithm and the subspace algorithm from the structure of
the redundant dictionary is built.

• The angular resolution of the MP class algorithm is
improved by amending the rules of support detection.

• We develop a feasible algorithm based on the signal and
noise subspaces via the OMP framework.

The remainder of the paper is organized as follows.
In Section II, the sparse model of DOA estimation is shown.
Then, based on the flow of the OMP algorithm, we discuss the
reason of the degradation of the angular resolving resolution
furthermore this problem is solved. After that, the minimum
norm method is introduced, and NSRomp for DOA esti-
mation is implemented. Section III presents the numerical
simulation results, and Section IV draws conclusions.

Notations used in this paper are as follows. Vectors and
matrices are presented by lowercase boldface and uppercase
boldface, respectively. IM is an M × M identity matrix.
(·)∗, (·)T and (·)H denote the conjugate, transpose, and con-
jugate transpose of the matrix, respectively. vec(·) denotes
the vectorization operator that turns a matrix into a vector.
diag(a) denotes a diagonal matrix that uses the elements of
a as its diagonal elements. Tr(·) represents the trace of the
matrix. | · |, ‖ · ‖2 and ‖ · ‖F denote the cardinality, the l2
norm and the Frobenius norm of the matrix, respectively.
〈·〉 represents the inner product.

II. PRELIMINARIES AND METHODS
A. SPACE MODEL OF DOA ESTIMATION
In this subsection, the DOA estimation problem is stated.
A uniform linear array (ULA) of N sensors can be illumi-
nated by K (K < N ) narrowband far-field and uncorrelated
sources whose DOAs θk satisfies −π/2 6 θk 6 π/2 for
k = 1, 2, . . . ,K . Then, the received data vector at the t-th
snapshot can be expressed by:

X(t) = A(θ )S(t)+ N(t), t = 1, 2, . . . ,L. (1)

where L is the number of snapshots, n(t) is the addi-
tive Gaussian white noise with zero mean, the covariance
matrix σ 2

n I is uncorrelated to the source signals, A(θ ) =
[a (θ1) , . . . , a (θK )] is the manifold matrix, and a (θk) is the
steering vector of the k-th source, which can be expressed by:

a (θk) =
[
1, ej2πd sin(θk )/λ, . . . , ej2πd(N−1) sin(θk )/λ

]T
. (2)

where λ is the wavelength; d is the distance between two
adjacent sensors (d ≤ λ/2)); and K is a given number of
sources.
Remark 1: The source number K is typically unknown in

practice, and an estimate of K can be obtained by eigenvalue
decomposition, information theory, Gai’s circle method, reg-
ular correlation method, and other methods.

Based on [13], under the receiving range of the ULA
(−π/2 ≤ θk ≤ π/2), all possible spatial angles are divided
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into Ns parts on average:

�=
{
θ̄i | −π/2 ≤ θ̄i ≤ π/2, θ̄i < θ̄i+1, i=1, 2, . . . ,Ns

}
.

(3)

where Ns is much greater than K . Then, the virtual steering
vector matrix as a dictionary matrix is constructed from �:

8(θ̄ ) =
[
a
(
θ̄1
)
, a
(
θ̄2
)
, . . . , a

(
θ̄Ns
)]

where a
(
θ̄i
)
and a (θk) can be obtained from (2). If θk ∈

�, k = 1, 2, . . . ,K ,we can derive the sparse recovery model
from (1) as

X(t) = 8(θ̄ )S(t)+ N(t), t = 1, 2, . . . ,L. (4)

where: S(t) =
[
s1(t), s2(t), . . . , sNs (t)

]T ,
si(t) =

{
sk (t), when θ̄i = θk
0, when θ̄i 6= θk

i = 1, 2, . . . ,Ns, k = 1, 2, . . . ,K
}
. (5)

The objective of this work is to find a signal S(t) with a
sparse signal recovery algorithm, and the DOA estimation is
accomplished based on the position of nonzero elements.

B. INSUFFICIENT ANGLE RESOLUTION OF MP CLASS
ALGORITHMS
In this subsection, we discuss why MP class algorithms
can be sensitive to closely spaced sources from the flow of
the OMP algorithm. It can be explained as follows: First,
the OMP algorithm regards the output signal of the sparse
array model as the initial value of the residual error signal and
then correlates the current residual signal with the column
vectors in the redundant dictionary matrix. Second, a basic
atom with the largest correlation is selected as an alternative
basis. Third, the components of the selected base atoms are
removed from the current residual error signal to obtain a
new residual error signal. The process is then repeated until
termination conditions are satisfied.

The support set based on the correlation maximum princi-
ple is chosen by the general MP class algorithm as:

λk = arg max
i=1,2...,Ns

{
|
〈
a
(
θ̄i
)
, rk−1

〉}
. (6)

where rk−1 is the residual of the (k − 1)-th iteration, and λk
is the index of the selected atom in the dictionary at the k-th
iteration.

Assuming that the array receives a plane wave signal at
the angle of θ0, the wave shape of the signal is S(t), and θ0
lies on the grid � (only if the grid density of the dictionary
is sufficiently large). Then a (θ0) = a

(
θ̄0
)
, where a

(
θ̄0
)
is

numbered as λ0 in 8(θ̄ ). Ideally, the λ0-th element of the
sparse vector S(t) is S(t), and the remaining elements are all
equal to 0. From (4), the initial residual error is:

r0 = X(t) = 8(θ̄ )S(t)+ N(t) = a
(
θ̄0
)
s(t)+ n(t). (7)

Based on (6), the inner products of a
(
θ̃j

)
and r0 are:〈

a
(
θ̄i
)
, r0
〉
= sH (t)aH

(
θ̄0
)
a
(
θ̄i
)
+ nH (t)a

(
θ̄i
)
. (8)

where i = 1, 2, . . . ,Ns, and nH (t)a
(
θ̄i
)
can be neglected

because the noise n(t) is nearly uncorrelated to a
(
θ̄i
)
.

When the λ0-th angle is explored,
〈
a
(
θ̄i
)
, r0
〉
reaches its

maximum s(t)N + a
(
θ̄0
)
NL due to the coherent addition of

the signal from the direction of θ0. The optimal λ0 is then
identified.

If we assume that the array receives two plane wave signals
at angles θ0 and θ1, respectively, then the wave shapes of
signals are s0(t), s1(t), while θ0 and θ1 lie on grid � only if
the grid density of the dictionary is sufficiently large. Then,
a (θi) = a

(
θ̄i
)
, where a

(
θ̄i
)
is numbered as λi (i = 0, 1).

Because the signal wave shapes do not contain information
about direction, we assume that the wave shapes of the two
signals are sufficiently similar that s0(t) ≈ s1(t) = s(t).
Based on (6), the inner products of atoms and r0 are given
by:〈
a
(
θ̄i
)
, r0
〉
=

[
aH
(
θ̄i
)
a
(
θ̄0
)
+ aH

(
θ̄i
)
a
(
θ̄1
)]

s(t)+ aH
(
θ̄i
)
n(t). (9)

If all dictionary atoms are normalized as
∥∥a (θ̄i)∥∥2 = 1.

The term aH
(
θ̄i
)
a
(
θ̄0
)
+ aH

(
θ̄i
)
a
(
θ̄1
)
in (9) will vary with

θ̄i and form a wave shape3
(
θ̄i
)
composed of discretized θ̄i =

1, 2, . . . ,Ns.
Intuitively, 3

(
θ̄i
)
is generated by the superposition of

the two sinusoidal peaks at θ̄0, θ̄1. When θ0 and θ1 are
sufficiently far in the angular space,

〈
a
(
θ̄i
)
, r0
〉
reaches its

maximum successfully with the λ0 th or λ1 th atoms, and
the OMP algorithm functions correctly. However, when θ0
and θ1 are close in the angular space, 3

(
θ̄0
)
and 3

(
θ̄1
)

will interfere and form a new wave shape. Then, affected by
the term aH

(
θ̄i
)
n(t),

〈
a
(
θ̄i
)
, r0
〉
will reach multiple optimal

solutions between θ0 and θ1, and the OMP algorithm fails.
If we investigate the mutual coherence of 8(θ̄ ), it is easy

to predict this result. Let the pairwise coherence between the
k-th and l-th columns be [26]:

µ(k, l) =

∣∣∣∣∣
〈
a
(
θ̄k
)
, a
(
θ̄l
)〉∣∣a (θ̄k)∣∣ |a(θ̄ )|
∣∣∣∣∣ . (10)

Definition 1: The mutual coherence of 8(θ̄ ) is the maxi-
mum pairwise coherence of columns:

µ(8(θ̄ )) = max
k 6=l

µ(k, l). (11)

If let the number of sensor elements be M = 10 and
the grid spacing be 1◦, µ(8(θ̃ )) = 0.999999758842. If the
difference between θ0 and θ1 is less than 1◦, we have to
account for at least 7 decimal places to guarantee the validity
of the OMP algorithm.

For quantitative analysis, we assume that θ0 is already
given. Then, the module of aH

(
θ̄i
)
a
(
θ̄0
)
can be considered
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to be a function of θ̄i

F
(
θ̄i
)
=

∣∣∣〈aH (θ̄i) , a (θ̄0)〉∣∣∣ =
∣∣∣∣∣
N−1∑
i=1

e−j
2πd
λ
i sin θ̄iej

2πd
λ
i sin θ̄0

∣∣∣∣∣
= N sin c

(
ϕj − ϕ0

)
. (12)

where ϕi =
2πd
λ

sin θ̄i, sin c(ϕ) =
sin Nϕ

2

sin ϕ2
. From the first

zero position of the sin c function in (12), the beam width can

be given by the half power point (3 dB) of F
(
θ̄i
)
,
λ

Nd
. Addi-

tionally, if we assume θ1 is already given, then
∣∣aH (θ̄i) a (θ̄1)∣∣

is a function of θ̄i. Drawing the curve can yield the beamwidth
in the direction of θ1. The beam widths can be considered

to be the valid range. When
∣∣θ̄0 − θ̄1∣∣ ≤ λ

Nd
(rad), the valid

ranges of signals θ0 and θ1 will interfere with each other and
lead to the incompetence of the OMP algorithm. Thus, we can
conclude that the angular resolution of the OMP algorithm

based on (6) is
λ

Nd
(rad),which is the so-called Rayleigh limit

and proportional to the array aperture Nd .
When there are two or more spatial distances approach-

ing DOAs within a beam width, the method of support set
selection based on the principle of maximum correlation fails.
Due to the strong correlation between the adjacent atoms
in the redundant dictionary, when there are two or more
closely separated DOAs in the system, one to one mapping
between the maximum point of (9) and the true value of
DOA is broken. Thus, only the approximate range of DOA
estimation could be given; however, accurate estimation was
not allowed.
Remark 2: With regard to the iterative algorithm (e.g.,

matching pursuit), the later iteration results would be directly
affected by the error of the supporting set selected at the
previous iteration. When it is used for DOA estimation, this
mismatch would lead to estimation bias and even missing
estimation.

Thus, (6) is the fundamental reason why the OMP algo-
rithm fails to break the Rayleigh limit. To improve the angular
resolution of the algorithm, it is necessary to improve the
selection rules of the support set.

C. BREAKING THROUGH THE RAYLEIGH LIMIT
The MP algorithm is designed to sequentially find support
for an unknown signal in the dictionary, and then reconstruct
the signal using the linear combination of the set. The dic-
tionary in the sparse recovery model of DOA estimation in
the literature typically spans the steering vectors throughout
the space. The following lemmas can be obtained using this
sparse model:
Lemma 1: For all sparse recovery algorithms that use the

array manifold matrix to generate a redundant dictionary,
the DOA problem is equivalent to find the correct steering
vector of the system in the dictionary if the grid distribution
is sufficiently detailed to make the true value of DOAs lie on
the grid of the redundant dictionary.

Using Lemma 1, the relationship between the com-
pressed sensing algorithms and the subspace algorithms was
developed.
Remark 3: According to the classic subspace theory,

the space of all steering vectors was the same as the signal
subspace; this scenario was equivalent to reduce the search
scope and to find the steering vectors in the signal subspace
compared to perform that in the full angle space.

Based on the conclusion, the signal subspace was used as
the input of the proposed NSRomp algorithm. Similar ideas
were also used in the L1svd algorithm.
Remark 4: Unlike the subspace algorithm, L1svd decom-

poses array output sample data X in (1) by SVD. When
L � M , using the eigenvalue decomposition of the sample
covariance matrix XXH to replace it can effectively reduce
computation time.

Inspired by the subspace algorithms, the orthogonality
of two subspaces can be used to establish a new support
set selection rule for the MP algorithm. Theorem 1 can be
obtained from Lemma 1.
Theorem 1: If the DOA estimated in an iteration of the

matching pursuit class algorithm is correct, the noise sub-
space and the atom selected at this iteration must be orthog-
onal.

Proof: Let the k -th iteration of the OMP algorithm
obtain the support set as the atom ak in the dictionary. If the
index in the dictionary where ak is located is the exact value
of the DOA, ak is the steering vector. Then, ak must be in the
space A, which is composed of all steering vectors, A is the
same space as the signal subspace VS , and VS is orthogonal
to the noise subspace VN ; thus, ak and VN are orthogonal;

Conversely, if ak and VN are not orthogonal, ak is not in
VS . Therefore, ak is not a steering vector, and the index of ak
in the dictionary is not the exact DOA value. Therefore, ak is
not a steering vector, and the index of ak in the dictionary is
not an accurate DOA value.

Based on [34], the i-th column of the data covariance
matrix Rs can be remodeled as (4):

Rs(:, i) = ri = E
[
X(t)x∗i (t)

]
= 8(θ̄ )bi + σ 2

n ei. (13)

where i = 1, 2, . . . ,N ;bi is a sparse coefficient vector of
ri under dictionary 8(θ̄ ); and ei is a Ns × 1 column vector
with the i-th element being 1 and the remainder being 0.
Changing (13) to matrix form based on all columns of Rs
yields:

Rs = 8(θ̄ )B+ σ 2
n IN . (14)

where B = [b1,b2, . . . ,bN ] and bi(i = 1, 2, . . . ,N ) should
have identical sparse structure (i.e., the nonzero elements of
each ideal should appear in the same rows of B ). Because we
are only interested in sparse distribution, (13) can be consid-
ered to be the same solution, and (14) can be considered an
MMV problem composed of multiple snapshots. Rs in (14)
is a positive definite Hermite matrix n × n. The eigenvalue
decomposition of Rs can be represented as:

Rs = U3V = US3SUH
S + VN3NVH

N . (15)
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where US ∈ CN×K denotes the signal subspace collected
from the eigenvectors of the K largest eigenvalues contained
in the diagonal of 3S . The remaining N − K eigenvalues of
Rs in the diagonal of 3N form the noise subspace VN .
Combining the relationship shown in (14) and (15) a new

signal output equation can be obtained as:

Xs = 8(θ̄ )B+ NL . (16)

where NL = 1R − VN3NVH
N is the noise error term; 1R

is the error caused by approximating R̂s =
L∑
t=1

x(t)x(t)H

with Rs; and Xs = US3SUH
S − σ

2
nIN is the signal subspace

component.
Remark 5: Intuitively, using (16) to instead of (1) can

reduce the number of snapshots from L to K .
Equation (16) can be expressed as

Bk = argmin
B

∥∥Xs −8(θ̄ )B
∥∥2
F ,Rk = Xs −8(θ̄ )Bk

and can be solved by MMVOMP [21], where the subscript
k presents the k-th iteration and Rk represents the residual
signal matrix of the k-th iteration.

D. MINIMUM NORM METHOD
In this subsection, we optimize the noise subspace VN into
a vector, which can improve the computing efficiency of the
proposed algorithm. Theorem 1 proposes another condition to
ensure that the correct DOA can be found at each iteration of
OMP. VN is a high matrix (i.e., the number of rows is greater
than the number of columns, and the column is full rank).
All noise vectors VN (:, i), i = k + 1, . . . ,N of the space
constitute a set of complete orthogonal bases of VN .

Therefore, any vectorω =
N∑

i=k+1
βiVi composed of these

orthogonal bases in VN must also be orthogonal to a
(
θ̃i

)
because 1R and receiver noise will lead to a certain esti-
mation error of VN . Based on linear algebra theory, the least
norm solution ωmin of VN is the least sensitive to 1VN .
Solving ωmin = argmin

ω∈F
ωHω, where F =

{
ω : ωT a(

θ̃i

)
= 0 and ω(0) = 1

}
, it is assumed that for any vector,

the following is true:

ω =

N∑
i=k+1

βiVi. (17)

Any two vi(i = k + 1, · · · ,N ) are orthogonal, then

ωHω =

N∑
i=k+1

β2i . (18)

The conditions of the minimum norm solution ω(0) = 1
that we are interested in can be expressed as follows:

N∑
i=k+1

βiv∗i (0) = 1. (19)

Therefore, the minimum ωHω under the constraints of
〈ak ,ω〉 = 0,ω(0) = 1 is equivalent to the nonconditional
extreme-value for the following:

f (αi, λ) =
N∑

i=k+1

β2i + λ

 N∑
i=k+1

βiv∗i (0)− 1

 . (20)

If:
∂f
∂β
= 0, i = k + 1, · · · ,N . (21)

then:

2βi + λv∗i (0) = 0, i = k + 1, · · · ,N . (22)

Substituting (22) into (17), we have

ωmin = −
λ

2

N∑
i=k+1

v∗i (0)Vi. (23)

From the constraints ω(0) = 1:

λ = −2

 MN∑
i=k+1

|vi(0)|2

−1 . (24)

Substituting (24) into (23), we have

ωmin =

N∑
i=k+1

v∗i (0)vi

N∑
i=k+1

|vi(0)|2
. (25)

where the eigenvector ωmin is a linear combination of the
orthogonal basis vi, with i = k+1, · · · ,N in the noise vector
subspace VN . Thus, the eigenvector ω must be located in the
noise vector subspace VN , and:

< a
(
θ̄i
)
,ωmin ≥ 0. (26)

We use (26) to reweight (6) in different angle direc-
tions to improve the performance of the proposed algorithm.
The minimum norm method can improve the using effi-
ciency of noise subspace information and reduce the weight
calculation.

E. IMPLEMENTATION OF NSRomp
The NSRomp algorithm is developed by using (26) to modify
the OMP algorithm. The specific process is presented as
Algorithm 1.

The minimum norm method is used to combine all noise
vectors in the space VN into a vector, which reduces the
calculations required for the NSRomp algorithm and the
effect of calculation error from the noise singular vector.
For M array elements and K signal sources, L snapshot
estimation processing is performed. The number of atoms
in the dictionary is N , and the number of steps for peak
searching of themusic algorithm isN . Due to the large burden
number of calculations, complex multiplication is considered
emphatically.With regard to the computational complexity of
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TABLE 1. Simulation parameters of experiments 1-4.

Algorithm 1 Noise Subspace Projection Orthogonal Match-
ing Pursuit (NSRomp)

1) Initialization: residual R0 = Xs, index set 30 = {0}
and sparse representation matrix 90 = 0.

2) At the k-th iteration:
a) Choose the atom, which satisfies:

λk = arg max
j=1,2...,Ns

 ‖zk‖q∣∣∣ωTmina
(
θ̃j

)∣∣∣
 . (27)

where zk = RT
k−1a

(
θ̃j

)
and q ≥ 1.

b) Update the index set and sparse representation
matrix:

3k = 3k−1 ∪ {λk} ,9k =

[
9k−1, a

(
θ̃λk

)]
c) Reconstructing target signal: Bk = 9kXs
d) Update residual:

Rk = XS −9
†
kBk ,

where 9†
k is the pseudoinverse of 9k .

TABLE 2. Comparision of computation cost and time consumption of 3
types OMP, MUSIC and L1svd.

NSRomp, the calculation of R̃s, its eigenvalue decomposition
(EVD) in (15) requires O

(
LM2)

+ O
(
M3
)
, and solving

(16) requires O
[
MN

(
K2
+ 1

)]
. Table 2 shows that the new

algorithm performs a moderate computational cost among
the 3 types of OMP algorithms. The hardware environment
used in this study includes an Intel i7-3770 CPU operating at
3.4 GHz and 16 GB of RAM.

III. SIMULATION RESULTS
In this section, we evaluate the performance of NSRomp
for DOA estimation based on a 10-element uniform linear
array with half-wavelength element spacing; however, the

FIGURE 1. Normalized space spectra of three algorithms including
MMVOMP [24], SSVOMP and proposed NSRomp.

proposed algorithm is also applicable to an arbitrary array.
This simulation is developed under the test condition that the
DOAs of signals are just in the direction grid. Table 1 shows
the simulation parameters of experiments 1-4.
Experiment 1 (Estimation Performance of NSRomp): In

this experiment, we validate the effectiveness of the proposed
NSRomp for DOA estimation and compare it with 3 types
of OMPs, including MMVOMP [24], SSVOMP and propose
NSRomp. To analyze the influence of the noise subspace and
signal subspace on the algorithm, we call the algorithm using
the signal subspace to reconstruct the signal (16) SSVOMP.
When the SNR is 5 dB, the beam width of the 10-element
ULA is 10.2◦. Considering a set of typical DOAs(a pair
of DOAs distributed in the same beam width and a DOA
distributed marginally farther away), there are K = 3 uncor-
related farfield targets located at [45◦, 50◦, 60◦]. Fig. 1 shows
the normalized spatial spectrum of the three algorithms with
multiple snapshots (L = 50).

The termination conditions of the three algorithms are
identical: the residual energy is 20 dB below the initial signal
energy, and the maximum number of iterations is M. In the
Fig. 1, NSRomp and SSVOMP require three iterations to suc-
cessfully reach the termination condition, while MMVOMP
requires four iterations. For the [45◦, 50◦] signal source pairs
that are relatively close, only the NSRomp yields accurate
estimations; another twomethods produced estimation errors.
Thus, this experiment indicates that the proposed algorithm
yields superior performance compared to the other two algo-
rithms in terms of signal source resolution.
Experiment 2 (Angular Separation Experiment): In this

experiment, we explore the resolution of the proposed
NSRomp algorithm for DOA estimation. The angular
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FIGURE 2. Bias versus angular separation. (a) NSRomp. (b) MMVOMP. (c) rootMUSIC. (d) SSVOMP.

separation experiment used in [34] is introduced. Assuming
two equal-power uncorrelated signals arrive from Angle1 =
−50◦ and Angle2= −50◦+1, where1 is varied from 1◦ to
50◦ in 1◦ steps, the SNR is 0 dB, and the number of snapshots
is 500. The bias curves of the four algorithms in Fig. 2 are
obtained via 100 Monte Carlo trials and are defined on the
Y-axis:

Bias (θk) =
1
N

N∑
n=1

(
θ̂nk − θk

)
, k = 1, 2. (28)

where N is the number of Monte Carlo experiments, and θk
and θ̂nk are the true and estimated values of the k-th DOA
signal in the n-th Monte Carlo experiment, respectively.

By comparing Fig. 2 (a), (d) to (b), (c), the DOA estimation
using signal subspace data, such as NSRomp and SSVOMP,
exhibits a smaller angular bias when the SNR is relatively
low, and the DOA of the signal is closed, which improves
the estimation accuracy compared to using full-space data
directly. The common feature of the NSRomp and rootMU-
SIC [36] algorithms is the use of noise subspace data, which
tends to bias these algorithms when 1 is greater than 5◦.
However, the MMVOMP and SSVOMP are biased when 1
is below 15◦.
By comparing Fig. 2 (a), (c) with (b), (d), the noise sub-

space data can alleviate the sensitivity of the algorithm to
closer DOAs from signal sources.

Fig. 2 shows that the noise subspace information
improves the angular resolution of the OMP algo-
rithm from 15◦ to below 5◦. The results of Experiment
2 show that the proposed NSRomp considers both the
angular resolution and the estimation accuracy at low
SNRs.
Experiment 3 (Snapshot Experiment): In this experiment,

the estimation accuracy versus snapshots of the proposed
algorithm is investigated and compared to MMVOMP [24],
rootMUSIC [36], TLSESPRIT [37], and FOMP [38]. Two
typical DOAs of signals are estimated in this experiment:

• [−20◦, 20◦, 60◦]: the distance between adjacent signal
sources is greater than 15◦, and relative scattered signal
sources are utilized;

• [45◦, 50◦, 55◦]: the distance between adjacent signal
sources is below one beam width, and relative close
signal sources are utilized.

Each set of values is tested at a low SNR = 1 and a high
SNR = 10, respectively. Because the number of snapshots
required to estimate the typical value of the first group is
lower, the number of snapshots increases from 10 to 100 times
in intervals of 10. Also, the number of snapshots required to
estimate the typical value of the second group is large. Thus,
the number of snapshots increases from 100 to 1000 times
in intervals of 100. 100 Monte Carlo experiments are also
performed under each snapshot number, and the RMSE is
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FIGURE 3. RMSE versus snapshots. (a) SNR = 1, doa=−20, 20, 60. (b) SNR = 10, doa=−20, 20, 60.
(c) SNR = 1, doa=45, 50, 55. (d) SNR = 10, doa=45, 50, 55.

defined as

RMSE(θ ) =

√√√√ 1
NK

K∑
k=1

N∑
n=1

(∣∣∣θ̂nk − θk ∣∣∣2). (29)

where N is the number of Monte Carlo experiments, and θk
and θ̂nk are the true and estimated values of the k-th DOA sig-
nal in the n-th Monte Carlo experiment, respectively. Results
are shown in Fig. 3.

When estimating typical values in the first group, the
signal source distribution is scattered. The four types of
algorithms in the experiment can all obtain high-precision
estimation results within 100 snapshots. Among them, the
MMVOMP algorithm does not use covariance data and does
not need the perform subspace decomposition. The advan-
tage of the MP class algorithm in the low snapshot envi-
ronment is thus fully embodied. Other three algorithms that
require subspace decomposition, when the snapshot number
is below 30, the accuracy of the algorithm proposed in this
paper is marginally higher than that of the TLSESPRIT and
rootMUSIC algorithms at both low and high SNRs.

When estimating the second group of typical values, the
signal source distribution is concentrated. The MMVOMP
algorithm cannot calculate accurate estimations at high or low
SNRs, and the results are consistent with those in experiment
2. The other three algorithms also require more snapshots.
At a high SNR, their estimation accuracies are similar. When
the SNR is low, and the number of snapshots is below 400,

the accuracy of the proposed algorithm is marginally higher
than that of the other two algorithms.

The results of Experiment 3 show that the proposed algo-
rithm exhibits characteristics of the greedy algorithm (e.g.,
high estimation accuracy, even at low snapshot counts) and
of subspace based algorithms (e.g., high angular resolution).
Therefore, the proposed algorithm excels when the number
of snapshots is low, and the signal source is concentrated.
Experiment 4 (SNR Experiment): This experiment is

designed to analyze the relationship between estimation accu-
racy and SNR. The number of snapshots L is set as 100, and
the other experimental conditions are the same as those in
Experiment 1. Due to the concentrated spatial distribution
of signal sources, the MMVOMP and SSVOMP algorithms
are invalid. Experiment 4 ignores these two algorithms and
compared the performance of the proposed algorithm with
rootMUSIC, TLSESPRIT, L1svd [13] and the stochastic
Cramér-Rao lower bound (CRLB). 100 Monte Carlo exper-
iments were performed for each SNR, and the results are
shown in Fig. 4. The RMSE is defined as:

RMSE (θk) =

√√√√ 1
N

N∑
n=1

(∣∣∣θ̂nk − θk ∣∣∣2). (30)

where N is the number of Monte Carlo experiments, and θk
and θ̂nk are the true and estimated values of the k-th DOA
signal in the n-th Monte Carlo experiment, respectively.
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FIGURE 4. RMSE versus SNR. (a) RMSE(θ1). (b) RMSE(θ2). (c) RMSE(θ3).
(d) RMSE(θ).

The covariance error is large because an insufficient num-
ber of snapshots is available, and the estimation accuracy of
traditional subspace algorithms is markedly affected at a low
SNR. The structure of the algorithm proposed in this paper is
developed based on the MP algorithm and uses the minimum
norm eigenvector which is the least sensitive to errors when
applying noisy subspace data. Thus, the proposed algorithm

is robust to the covariance matrix estimation error. The results
of experiment 4 show that by comparing (c) with (a) and
(b) in Fig. 4 with θ3, whose spatial distribution is far from
the other two signal sources, the estimation accuracy of the
4 types of algorithms is significantly higher than that of θ1, θ2
whose relative distance is short. When the number of snap-
shots is relatively small, and the position of the signal source
is relatively concentrated, the estimation accuracies of the two
algorithms rootMUSIC and TLSESPRIT are nearly identical
but marginally better than that of the L1svd algorithm. These
three algorithms use only one aspect of the noise subspace or
signal subspace information, while the proposed algorithm
uses information from both subspaces. Experiment 4 also
demonstrates that the proposed estimation algorithm yields
lower MSE at most SNRs compared to existing methods.

IV. CONCLUSION
In this paper, a novel OMP algorithm for DOA estimation
using subspace information is proposed. The signal subspace
is used to reduce the DOA estimation problem. Compared to
the multiple-snapshot OMP algorithm using full-space data
(e.g., MMVOMP), the proposed algorithm reduces compu-
tation cost, improves estimation accuracy, and modifies the
support set selection rule via the minimum norm eigenvector
of the noise subspace. Compared to general matching pursuit
algorithm that uses the highest matching degree as the support
set selection criterion, the angular resolution of the algorithm
is markedly improved, particularly at low SNRs. In contrast
to the classic subspace algorithm, the proposed algorithm has
the advantages of the MP class algorithm (e.g., short compu-
tation time and excellent performance with insufficient snap-
shots). The proposed algorithm also yields a better angular
resolution than the MP algorithm for DOA estimation. With a
concentrated signal source and few snapshots, the estimation
accuracy of the proposed algorithm is higher than that of
the L1svd algorithm, which requires more calculation. The
proposed algorithm does not rely on the array flow pattern
matrix which is valid for any array structure. Thus, it is
potential to implement the MP algorithm in the field of DOA
estimation in the future. The array structures in [39], [40] will
be studied and compared in our future work.
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