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A B S T R A C T

Speckle modulation in the laser beam projection scenarios such as adaptive optics, remote sensing, and
active imaging has been a long-standing challenge that causes intensity fluctuation and further degrades
the performance of the system. Speckle statistical characteristics coupled with the feature of the laser beam
intensity distribution can be obtained by analyzing the speckle variation through a single point detector or an
image sensor. A single point detector has the advantage in high sampling rate but may lose speckle spatial
information, while the image sensor has a high spatial resolution but slow sampling rate. In this paper, we
defined a dynamic speckle metric based on a linear array detector to estimate the encircled energy of the far-
field spot on the diffuse target, which well balanced the trade-off between sampling rate and spatial resolution.
The potential of the metric is analyzed using a physics-based speckle simulation and experimental verification.
Both results agree with each other, showing that the metrics based on the speckle-field spatiotemporal spectrum
analysis are monotonically dependent on the target focused-spot size.
. Introduction

In laser beam projection scenarios typical of remote sensing, adap-
ive optics and directed energy applications, a transmitted laser beam
ropagates through a long-distance toward a remote target, scatters off
he target’s surface [1], and returns to the transceiver plane, which
s referred to as double-pass wave propagation configuration [2]. In
he case of cooperative targets, the standard phase conjugate adaptive
ptics system [3] which uses a Shack-Hartmann wavefront sensor is
radually replaced by the target-in-the-loop (TIL) method which eval-
ates the far-field 𝑆𝑡𝑟𝑒ℎ𝑙 ratio by applying trial dither control voltage
atrix to the deformable mirror randomly and employing a stochastic
arallel gradient descent (SPGD) algorithm to maximize the value of the
ensor metric [4]. Besides, a power-in-the-bucket (PIB) metric sensor,
laced on the target of interest, is usually utilized to serve as the
eedback of the system, ensuring the consistency between the metric
ignal from the observation plane and the PIB sensor metric. However,
he PIB sensor on the target is not always available, especially in

double-pass propagation issue with the uncooperative target. More
ommonly, the light backscattered from the target is the only decisive
riterion of minimizing the size of the hit spot or maximizing the Strehl
atio. In the uncooperative TIL system, the validity and stability of the
IB sensor are compromised by the speckle effects which originate from
he turbulence effect, rough target, or their coupling. Direct observation

∗ Corresponding author.
E-mail address: yuzhan2425@163.com (Z. Yu).

through a telescope [5], on the other hand, is affected by pixelation,
making it difficult to monitor very small or jittery spots on the far-field
target surface.

The scattered light generated by interference between optical fields
from a large number of scatters [6] under coherent light illumination
is stochastic and forms a speckle pattern in a far field. The speckle
field has become available research because the reflected speckle field
not only limits the development of directed energy and adaptive optics
techniques but also carries information about the laser beam parame-
ters of the diffuse object. Based on Goodman’s ideal Gaussian speckle
statistical theory [7], the average speckle size can provide metrics
for estimating the laser beam that concentrates on the remote rough
target surface. With the study of second and forth order statistics of
the received speckle field [8], target-plane beam quality metrics, which
include PIB [9], brightness function [10], the clipped speckle intensity
auto-correlation [11] and cross-correlation function [12], have been
introduced. These dynamic speckles metrics, which are affected by
large fluctuations from the signal’s stochastic nature and described by a
space-time correlation function, require a large number of data sources
to improve accuracy. But it is difficult to measure enough data for a
slow-moving target or slow-deflecting laser beam in a short time while
ensuring accuracy.

In this paper, we proposed a speckle-field based-spectrum metric
evaluating method, which can estimate the target focused-spot size. In
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Fig. 1. The coordinate system of dynamic speckle formation geometry. A Gaussian probe beam is directed onto the fast-moving diffuse surface (𝑥′, 𝑦′) or (𝑟′, 𝜃), offset by axial
isplacement 𝑧 = 𝐿, while the beam focal plane is located at a distance 𝑓 from the transmitter lens. Backscattered light is then collected by the receiver lens to form the speckle
attern which is observed in the observation plane (𝑥, 𝑦) or (𝑟, 𝛼).
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Fig. 2. (a) The surface scatters under illumination experience a random phase modula-
tion due to the optical path difference especially when the rms value of surface height
is larger compared to 𝜆. Under this assumption the phasor is uniformly distributed over
−𝜋,+𝜋]. (b) The six randomly phasors shown in (a) may be interpreted as a random
alk in complex plane.

ection 2.1, the speckle formation geometry is introduced by the scalar
iffraction theory. The characteristics of the speckle are educed by the
pace-time correlation function in Section 2.2. Section 2.3 details the
imulation of the dynamic speckle’s time evolution and the method-
logy on how to obtain the time history of speckle pattern (THSP)
rom the stacked speckle cube. In Section 2.4, the dependency be-
ween speckle metric and beam spot size is analyzed by evaluating the
andwidth of the temporal spectrum and spatial spectrum respectively.
ection 3 presents the experimental results to verify the feasibility of
he speckle metrics. Finally, the conclusions are given in Section 4.

. Theoretical work

.1. Speckle formation geometry

The speckle formation geometry in a TIL system is shown in Fig. 1.
n the particular free-space geometry, Fresnel integral based on scalar
iffraction theory is utilized to build the model of speckle formation,
hich represents the value of the complex field at point (𝑟, 𝛼) as a

sum of many random phasors. Under a Huygens approximation, each
phasor can be considered as a spherical wave scattering outward from
diffuse scatters with specific magnitude and phase. These wavefronts
constructively and destructively interfere at point (𝑟, 𝛼), yielding a
consequent speckle pattern which can be expressed as a random work
in the complex plane shown in Fig. 2b.
 s

2

The complex field at observation plane 𝐸(𝑟) can be mathematically
expressed [13]

𝐸(𝑟) = 𝑒𝑖𝑘

𝑖𝜆𝑧
𝑒
𝑖𝑘𝑟2
2𝑧

∬

+∞

−∞
𝐸𝑠(𝑟′, 𝜃)𝑒

𝑖𝑘𝑟′2
2𝑧 𝑒−

𝑖𝑘
𝑧 [𝑟𝑟′ cos(𝛼−𝜃)]𝑟′𝑑𝑟′𝑑𝜃 (1)

where 𝜆 is the light wavelength and 𝑘 = 2𝜋∕𝜆 is the wavenumber.
Note that Eq. (1) may be interpreted as a Fourier-transformation for the
spatial frequency 𝑓𝑟 = 𝑟∕𝜆𝑧, which is the foundation of simulation. The
backscattered field 𝐸𝑠(𝑟′) in Eq. (1) is the product of illumination over
the diffuse surface and a phase variation arising from the realization
of surface roughness. In most cases, the Gaussian mode coherent beam
may be taken as prober and a dynamic deep random phase screen is
typically adapted assuming the scattering surface moves in-plane in the
𝑟′-direction at speed 𝑣. Under these assumptions, the field 𝐸𝑠(𝑟′) can be
given as

𝐸𝑠(𝑟′) =
𝜔0
𝜔

exp
[

−
(

1
𝜔2

+ 𝑖𝑘
2𝜌

)

𝑟′2 − 𝑖𝑘(𝑧 − 𝑓 )
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Gaussian beam illumination

× exp[𝑖𝜙(𝑟′ + 𝑣𝑡)]
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

surface-induced phase

(2)

where

𝜔 = 𝜔0

[

1 +
(𝑧 − 𝑓 )2

𝑎2

]1∕2

(3)

with a Rayleigh length 𝑎 = 𝜋𝜔2
0∕𝜆, is the radius of illuminated beam

spot on the scattering surface which is determined by the beam waist
(𝜔0) and the focal length of the focusing optics (𝑓 ). And

𝜌 = (𝑧 − 𝑓 )
[

1 + 𝑎2

(𝑧 − 𝑓 )2

]

(4)

s the beam radius of curvature at the incident point. The rough surface-
nduced phase variation 𝜙 is realized by an idealization of Gaussian
ough surface, called deep random-phase screen, which treats the wave-
ength of light and the surface height as the function’s variable under
he assumption that the RMS value of the surface height is relatively
arger than the light wavelength. Generally, a white noise process is
dopted for the generation of the surface-induced phase variation 𝜙
hich is a uniform random distribution over the interval [−𝜋, +𝜋],

nsuring a fully-developed speckle formation.

.2. Correlation function of dynamic speckles

Speckle dynamics characterize the variation of the speckle’s spatial
attern with respect to time, whose statistical properties are mostly de-
cribed by the space-time correlation function [13,14]. The normalized
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correlation function [13,15] is expressed as

𝜇𝐼 (𝛥𝑟, 𝜏) =
⟨𝐈1𝐈2⟩
⟨𝐈1⟩ ⟨𝐈2⟩

= 1 +

⟨

𝐄1𝐄∗
2
⟩

(⟨

|

|

𝐄1
|

|

2
⟩⟨

|

|

𝐄2
|

|

2
⟩)1∕2

(5)

here ⟨𝐈1𝐈2⟩ = ⟨𝐈(𝑟, 𝑡)𝐈(𝑟 + 𝛥𝑟, 𝑡 + 𝜏)⟩ describes the similarity between
he light intensity 𝐈1 at time 𝑡 and the intensity 𝐈2 at time 𝑡 + 𝜏, ⟨… ⟩

epresents an ensemble average.
Substituting Eqs. (1) and (2) into Eq. (5) and calculating the integral

ormula to get

𝐼 (𝛥𝑟, 𝜏) − 1 = exp
(

−𝑣2𝜏2

𝜔2

)

exp

⎧

⎪

⎨

⎪

⎩

−

[

𝛥𝑟 −
(

1 + 𝑧
𝜌

)

𝑣𝜏
]2

𝑟2𝑠

⎫

⎪

⎬

⎪

⎭

(6)

where 𝑟𝑠 indicates the average radius of the individual speckle lobe,
which defines the speckle pattern’s correlation length in the observation
plane, given by

𝑟𝑠 =
𝜆𝑧
𝜋𝜔

(7)

As the scattering surface gradually deviates from its original po-
sition, the micro-scatters contributed to the diffraction process are
updated gradually, resulting in that the speckles diverge from the
initial pattern with the correlation function becoming less correlated.
As indicated in the first term in Eq. (6), the speckle pattern significantly
changes only if the scatters are shifted by a large part of beamwidth. In-
tuitively, once the relative displacement between the scattering surface
and laser beam exceeds the beam size, expressed as

𝑣𝜏 > 𝜔 (8)

the correlation function drops below 𝑒−1, we say that the speckle loses
coherence. The spatial correlation properties of the speckle are shown
by the second term in Eq. (6), where the value of the correlation
function reaches a maximum as the speckle translation length (defined
in Ref. [13]) satisfies

𝛥𝑟 =
(

1 + 𝑧
𝜌

)

𝜔 (9)

Note that the movement of the speckle pattern does not simply re-
flect the scattering surface motion. Instead, it strongly depends on
the coordinate system and optical configuration, which can be fully
characterized by the illuminated beam spot 𝜔, offset distance 𝑧, and
beam radius of curvature 𝜌.

And the correlation function 𝜇(𝜏) of the speckle-field intensity fluc-
tuation in the receiver area can be defined as

𝜇(𝜏) = ∫ 𝑃
(

r1
)

𝑃
(

r2
)

𝜇𝛿𝐼 (𝛥r, 𝜏)d2𝑟1 d2𝑟2

= 𝐶 ∫ 𝐼𝑠(r)𝐼𝑠 (r + v𝜏) d2𝑟
(10)

where 𝑃 (𝑟) is the pupil function of telescope receiver. In the case of a
circular aperture with radius 𝑎𝑅, the pupil function can be described
s 𝑃 (𝑟) = 1 for |𝑟| ≤ 𝑎𝑅, and 𝑃 (𝑟) = 0 otherwise. Moreover, 𝐶 =

𝑀0[𝑘∕(2𝜋𝐿)]4, 𝑀0 = ∫ 𝑃 (𝑟1)𝑃 (𝑟1+𝛥r)𝑑2𝐫 and the intensity of the target
hit spot is 𝐼𝑠(𝐫). So the power spectrum 𝐺𝛿𝐼 of speckle-field is given by

𝐺𝛿𝐼 (𝜛) = 1
𝜋 ∫

∞

0
𝜇(𝜏) cos(𝜛𝜏)𝑑𝜏

= 𝐶
𝜋 ∫

∞

0 ∫ cos(𝜛𝜏)𝐼𝑠(𝐫)𝐼𝑠 (𝐫 + 𝐯𝜏) 𝑑2𝐫𝑑𝜏
(11)

Correspondingly, the intensity of the target hit spot 𝐼𝑠(𝐫) satisfies
a Gaussian distribution 𝐼𝑠(𝐫) = 𝐼 exp

(

−𝑟2∕𝜔2), the power spectrum
𝐺𝛿𝐼 (𝜛) can be defined as:

𝐺𝛿𝐼 (𝜛) = 𝐺𝛿𝐼 (0) exp

[

− 𝜛2
(

𝜛𝛿𝐼
)2

]

(12)

where 𝜛𝛿𝐼 = 𝑣∕𝜔 is the characteristic frequency spectrum bandwidth
of speckle field, note that the power spectrum bandwidth (cutoff)
3

Fig. 3. Speckle pattern generated under different optical configurations. Under the
simulation geometry, the transmission distance z is set to be fixed while the focal
length of the transmitting lens is changed to achieve a varying focusing state: 𝑓 =
5.01 m corresponding to a collimated beam, 𝑓 = 10 m corresponding to a divergent
beam.

frequency increases with surface velocity and decreases with the target
hit-spot size 𝜔. The characteristic width of the spectrum reveals the size
of the target focused spot, this property is the basis for the TIL speckle
metrics.

2.3. Simulation of dynamic speckle

To numerically illustrate the speckle pattern, we straightly simulate
the observation plane field 𝐸(𝑟) scattered from a fast-moving diffusor
according to Eq. (1). First, a deep random phase screen of 15 mm
×15 mm size is discretized into a 256 × 256 pixel grid, whose value
is assigned with a uniform distribution between [−𝜋,+𝜋]. And the
RMS value of surface height is set to 10*𝜆. Then, the phase screen
is multiplied by a Gaussian illumination function with a 1∕𝑒2 diame-
ter (𝜔0) of 500 μm, yielding the scattered field 𝐸𝑠(𝑟′). The scattered
field is finally propagated to the observation plane via a Fourier-
transform [16]. As pictured in Fig. 1, a continuous-varying focusing
state of the Gaussian beam is realized by varying the value of focal
length 𝑓 with respect to a fixed propagation distance 𝑧 = 5 m, which
results in a varying hit spot size. Three different optical configurations
are implemented to demonstrate the dependencies of speckle grain’s
size on the illumination beam radius, with simulation results shown in
Fig. 3. It is agreed with Eq. (7) that the simulated speckle size decreases
as the illumination area increases due to the focal plane away from the
target.

In order to simulate speckle dynamics, for one-time step iteration,
the discretized random phase screen 𝜙(𝑟′) is shifted in the 𝑟′-direction
by a fixed step offset, which is divided by the variable time step to
quantify the speed of moving diffusor. As the cumulative displacement
of the phase screen under the illumination increases, the speckle pat-
tern evolves with respect to time. The visualizations of the speckle
dynamics corresponding to the configurations shown in Fig. 3 visual-
ize these speckle field evolutions, which describe the speckle boiling,
speckle translation and a combination of boiling and translation respec-
tively [17]. These visualized videos provide an intuitive understanding
of speckle dynamics why a boiling dominated speckle behavior is
observed when the scattering diffusor is near to the laser beam focal
plane. These speckle dynamics result from laser beam dithering or
surface motion physically but result in temporal intensity fluctuations
of the speckle field.

To better demonstrate the 3D Spatio-temporal characteristics of
speckles, the varying speckle patterns are stacked to form a speckle
cube as shown in Fig. 4a, which represents the evolution of the
256 × 256 speckle pattern during the observation. The 𝑥–𝑦 plane of the
speckle cube (the speckle pattern) only contains the spatial information
of the speckle, while the 𝑥 − 𝑡 plane of the speckle cube, also called
time history of speckle pattern (THSP), implies not only space but also
time information. As shown in Fig. 4b, the THSP is obtained by slicing
through the center column in the speckle cube. The horizontal length of
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Fig. 4. (a) Speckle cube. (b) Slice through the center column in the speckle cube
representing the time history of the speckle pattern (THSP). The horizontal length of
the speckle lobe demonstrates the space property in single dimension while the length
of speckle lobe in time scale indicates the lifetime of the speckle.

Fig. 5. The normalized speckle-field intensity fluctuation signal is obtained by
averaging several columns in Fig. 4b, and the time series is extended to 5000.

the speckle lobe demonstrates the space property in a single dimension
while the vertical length of the speckle lobe in time scale indicates
the lifetime of the speckle. Therefore, the THSP array processing can
effectively cover the Spatio-temporal information of the speckle and
can reduce the complexity caused by the cube calculation. In the next
section, we will give a methodology on how to extract effective speckle
metrics from the obtained THSP to evaluate the beam focus quality and
the feasibility of using it as a closed-loop control feedback factor.

2.4. Speckle metrics for beam focusing state based on spectrum analysis

Using Eq. (9), the speckle-field realizations inside non-overlapping
areas separated by the speckle translation length 𝛥𝑟 can be consid-
red as statistically independent. Sensing of the speckle-field intensity
istributions in the receiver areas 𝑎𝑅 can be performed by operating

in parallel speckle metric sensors such as a line scan camera. And
the evolution of speckle-field intensity fluctuation signal obtained by
some pixels in the receiver is shown in Fig. 5, which is linked with
temporal PIB fluctuations by the Fourier transform relationship. On the
other hand, the spatial power spectrum can be obtained by the Fourier
transform of the speckle-field spatial intensity fluctuations (the rows in
Fig. 4b).

An important property of both correlation function and power
spectrum is that it depends on the target focused spot intensity dis-
tribution 𝐼𝑟 as shown in Eqs. (10) and (12). This property allows one
o obtain speckle metrics for monitoring the energy of far-field target
it-spot. Note that the low-frequency spectral components cause large
luctuations in short sampling time 𝑇 . To reduce the large estimation
ias existing in the calculation results, we perform spectral filtering on
he signal. Eq. (13) shows the speckle metric 𝐽 obtained by integrating

he power spectrum 𝐺𝛿𝐼 (𝜛) only within one spectral region, where the

4

Fig. 6. The power spectrums and the normalized speckle metrics 𝐽𝑡𝑖𝑚𝑒 are obtained by
temporal spectrums. And the target hit-spot size is changed by moving the focal length
from 2 m to 8 m with 𝛥𝑓 = 0.12 m. The speckle metrics 𝐽𝑡𝑖𝑚𝑒 have a maximum at the
focal point (𝑓 = 5 m) corresponding to the smallest possible beam size on the target.

Fig. 7. The power spectrums and normalized speckle metrics 𝐽𝑠𝑝𝑎𝑐𝑒 are obtained by
ultiple spatial spectrums. The speckle metrics 𝐽𝑠𝑝𝑎𝑐𝑒 have a minimum at the focal
oint (𝑓 = 5 m) corresponding to the smallest possible beam size on the target.

ccuracy in determining the signal spectral components is high.

=
𝑛
∑

𝑖=1
𝛽𝑖𝐺𝛿𝐼

(

𝜛𝑖, 𝛥
)

(13)

here 𝛽𝑖 = 1∕(𝑛 − 𝑖) is the weighting coefficient. And divide the
pectrum equally into (𝑛−1) parts. 𝛥 is the width of each spectral band
nd 𝜛𝑖 is the center frequency corresponding to each spectral region.
he accuracy of the speckle metric 𝐽 mainly depends on the weight
arameter 𝛽𝑖.

The space and time scales to fulfill the speckle-averaging condition
re shown in Table 1. For computing speckle metric 𝐽𝑡𝑖𝑚𝑒 obtained
y space-averaging the temporal power spectrum, the space inter-
al 𝛥𝑟𝑠𝑝𝑎𝑐𝑒 between temporal spectrums should exceed the speckle
ranslation length 𝛥𝑟, that is 𝛥𝑟𝑠𝑝𝑎𝑐𝑒 >

(

1 + 𝑧
𝜌

)

𝜔, to obtain statisti-
cally independent speckle pattern realizations. 𝛥𝜏 is the time interval
between subsequent measurements, the complete update of surface
roughness realizations occurs at the time scale 𝜏𝑠 = 𝜔∕𝑣. And the
characteristic time 𝜏𝑎𝑡 represents the phase distortion change time,
which commonly varies from 10−1 to 10−3 s or even considerably
less when tracking fast-moving targets. Correspondingly, the total time
required for the speckle metric measurement is 𝑇 = 𝑁𝜏 ∗ 𝛥𝜏, where 𝑁𝜏
is the number of instantaneous speckle-field intensity distributions. So
the measurement time 𝑇 need long enough to retrieve the temporal sta-
tistical properties (𝑇 ≫ 𝜏𝑠 > 𝛥𝜏). On the other hand, the measurement
must be less than the characteristic time 𝜏 in an adaptive TIL system,
𝑎𝑡
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Fig. 8. Experimental setup for defining the relationship between focusing status and speckle metric.
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Table 1
The speckle-averaging condition.

Speckle metric Space scale Time scale

𝐽𝑡𝑖𝑚𝑒 𝛥𝑟𝑠𝑝𝑎𝑐𝑒 > 𝛥𝑟 𝛥𝜏 < 𝜏𝑠 ≪ 𝑇 < 𝜏𝑎𝑡
𝐽𝑠𝑝𝑎𝑐𝑒 𝑁𝑠 < 𝑁𝑝𝑖𝑥𝑒𝑙𝑠 ∗ 𝛥𝑟𝑠𝑝𝑎𝑐𝑒∕𝑟𝑠 𝛥𝜏 < 𝜏𝑐

which means the speckle metric 𝐽𝑡𝑖𝑚𝑒 will be limited by the condition
f target speed, that is 𝑣 > 𝜔∕(𝑇 ⋅ 𝜏𝑎𝑡).

For targets with static or slowly moving surface motion, time-
veraging speckle metric 𝐽𝑠𝑝𝑎𝑐𝑒 can be performed by calculating the
ynamic speckle spatial power spectrum. In this case, the characteristic
ntensity temporal correlation time 𝜏𝑐 can be estimated as the time re-
uired for a speckle to cross the observation point 𝜏𝑐 = 𝑟𝑠∕𝑣. So the time

interval 𝛥𝜏 need smaller than the life of speckle 𝛥𝜏 < 𝜏𝑐 , which means
the frequency condition of line scan camera is 𝑓 > 𝑣𝜋𝜔∕𝜆𝑧. Moreover,
it is necessary to ensure that the number 𝑁𝑠 inside non-overlapping
areas of speckle spatial is sufficient. Because 𝑁𝑠 = 𝑁𝑝𝑖𝑥𝑒𝑙𝑠 ∗ 𝛥𝑟𝑠𝑝𝑎𝑐𝑒∕𝑟𝑠,
where 𝑁𝑝𝑖𝑥𝑒𝑙𝑠 ∗ 𝛥𝑟𝑠𝑝𝑎𝑐𝑒 is the space detection distance and 𝑟𝑠 = 𝜆𝑧∕𝜋𝜔.
Therefore, the smaller target hit-spot may cause an insufficient speckle
number, leading an unstable metrics 𝐽𝑠𝑝𝑎𝑐𝑒.

2.4.1. Speckle metric 𝐽𝑡𝑖𝑚𝑒 based on temporal spectrum analysis
The speckle-field temporal-spectrum signals are obtained by extract-

ing and calculating the columns of the time history of speckle pattern
(THSP), as shown in Fig. 4b. In this space-averaging approach, speckle
metric 𝐽𝑡𝑖𝑚𝑒 is obtained by integrating multiple temporal spectrums,
where 𝑁𝜏 is 103, 𝛥𝑟𝑠𝑝𝑎𝑐𝑒 is 30 and 𝑁𝑝𝑖𝑥𝑒𝑙𝑠 is 8. The metric 𝐽𝑡𝑖𝑚𝑒 is
available if the following conditions are satisfied. One is that the
measurement time T is long enough to retrieve the temporal statistical
properties. The other is to ensure the space interval of each temporal
spectrum is larger than the maximum spatial correlation distance. The
above data satisfies these time-space scales. The hit-spot size on the
target surface is varied by moving the focal length 𝑓 with 𝛥𝑓 = 0.12 m.
Fig. 6 shows the simulation curves of the temporal spectrum varying
with the target spot size. It is clear that the bandwidth of temporal
spectrum increase as the focused spot size decreases and the averaged
results of the speckle metrics 𝐽𝑡𝑖𝑚𝑒 have a maximum at the focal point (𝑓
= 5 m) corresponding to the smallest possible beam size on the target. It
is verified that the speckle metric 𝐽𝑡𝑖𝑚𝑒 obtained by temporal spectrum
can feedback the size of the focused spot, which is consistent with the
theory as Eq. (12).

2.4.2. Speckle metric 𝐽𝑠𝑝𝑎𝑐𝑒 based on spatial spectrum analysis
To calculate the speckle metric 𝐽𝑠𝑝𝑎𝑐𝑒 based on multiple sets of

spatial spectrums, we sample 256 × 50 spatial spectrum signals by
slicing the vertical axis of the THSP as shown in Fig. 4b, where 𝑁𝜏 is
50 and 𝑁𝑝𝑖𝑥𝑒𝑙𝑠 is 256. This metric 𝐽𝑠𝑝𝑎𝑐𝑒 can be used as a performance
metric in TIL system if the following condition is fulfilled: the time in-
terval is smaller than the lifetime of the speckle. Therefore, this metric
can quickly feedback the information of the slower target hit-spot but

requires a high frequency line scan camera. The simulation curves of

5

dynamic speckle spatial spectrums are shown in Fig. 7. It is obvious
that the height of the power spectrum decreases with the decrease of
the target spot and the time-averaging speckle metrics 𝐽𝑠𝑝𝑎𝑐𝑒 have a
minimum at the focal point (𝑓 = 5 m) corresponding to the smallest
possible beam size on the target. It validates the theoretical Eq. (7),
and verifies the feasibility of the speckle metric 𝐽𝑠𝑝𝑎𝑐𝑒 to monitor the
ocused effect of target spot, which is inversely proportional to the spot
ize.

. Experiment

The scheme of experimental setup is illustrated in Fig. 8. A polarized
aser beam from an Nd:YVO4 laser (𝜆 = 0.532 μm) is expanded to

a diameter of 10 mm for filling or overfilling the pupil size of the
piezoelectric deformable mirror (DM). The piezoelectric deformable
mirror(from Thorlabs, Inc. DMP40 series) is comprised of a thin glass
protected-silver-coated disk glued to a circular piezoelectric disk. The
electrode attached to the back of the disk is divided into 40 single
voltage-controlled segments arranged in a circular keystone pattern. In
the experiment, let these 40 actuators work in a defocus aberration cor-
rection mode, where the physical stroke ranges from -6.5 μm to +6.5 μm

hen applied a 0–200 V voltage. It is used for fine-tuning focusing
o that the target spot is optimally focused. Then, the light is focused
nto the diffuse surface of an extended target located approximately
.5 m from the telescope. The speckle field scattered off the diffusor is
egistered by the receiver system, which consists of a lens and a digital
-bit DALSA COMS linear scan camera with a 1 × 2048 pixel resolution
nd 18 kHz sampling frequency.

To analyze the relationship between the spatio-temporal statistical
haracteristics of dynamic speckle and the target spot size, the THSP
btained by a line scan camera at different target speeds corresponding
o two hit-spot sizes on the target surface is shown in Fig. 9. The first
olumn in this figure shows that the target beam detected by beam
rofiler with 𝜔 = 1.95 mm and 𝜔 = 6.12 mm. The corresponding THSPs
re arranged horizontally in this picture with a gradually increasing
arget speed. It is agreed with Eq. (7) and Fig. 3 that the experiment
peckle size increases as the illumination area decreases. The exper-
mental results of two metrics calculated by 500 × 2000 pixel THSP
re shown in the third row of pictures. What is more, the metric 𝐽𝑡𝑖𝑚𝑒
ith 𝛥𝑟𝑠𝑝𝑎𝑐𝑒 = 1.4 mm increases the accuracy (without increasing the

measurement time T) by increasing the velocity of the target, due to the
lifetime of dynamic speckle gradually decreases with the increase of the
target speed as 𝜏𝑐 = 𝜆𝑧∕𝜋𝜔𝑣. Although the speckle spatial coherence
length 𝑟𝑠 is not affected by the target speed as shown in Eq. (7), the
experiment results of the metric 𝐽𝑠𝑝𝑎𝑐𝑒 also gradually reduce the error
as the target speed increases. Because the shorter speckle lifetime cause
more statistically independent speckle pattern realizations when the
measurement time 𝑇 is constant. Meanwhile, a longer measurement
time 𝑇 will increases the accuracy of this metric when 𝑣 is constant,
as shown in Fig. 10.

Consider a more detailed analysis of the speckle metric’s depen-

dence on the target spot size, we control the voltage of the deformation
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Fig. 9. The THSP obtained by a line scan camera are arranged horizontally in the picture with a gradually increasing target speed. The lifetime of dynamic speckle gradually
ecreases with the increase of target speed or hit-spot size, while the speckle spatial coherence length is only affected by the target hit-spot size without the speed. The metric
𝑡𝑖𝑚𝑒 obtained by a 5 × 2000 pixel THSP and 𝐽𝑠𝑝𝑎𝑐𝑒 obtained by a 500 × 80 pixel THSP both reduce the error as the target speed increases.
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Fig. 10. The metric 𝐽𝑠𝑝𝑎𝑐𝑒 with different number of sampling times 𝑁𝑇 when 𝑣 = 0.807
∕s.

irror in the experiments to obtain a continuously varying target spot
ize with a physical stroke interval of 0.65 μm. Table 2 describes in
etail the data of two metrics obtained by speckle spectrum. And
he frequency of line scan camera satisfies this time scale (18 kHz >
𝜋𝜔∕𝜆𝑧). The experimental speckle spectrum changes with the target
eam size as shown in Fig. 11, which visually shows the relationship be-
ween the bandwidth frequency and the target beam size. The vertical
xis represents the time-frequency spectrum of the speckle signal, note
hat the yellow area in each column represents the bandwidth of the
pectrum. Obviously, the bandwidth frequency of temporal spectrum is
aximized at the smallest possible beam size on the target surface as

hown in Fig. 11a, while Fig. 11b shows the cutoff frequency of spatial
pectrum is minimized at the smallest target beam size. This verifies the
bove conclusion. Moreover, the sharpness function boundary curve of
he temporal spectrum has a better-localized extremum than the spa-
ial spectrum corresponding to the minimum target hit-spot. Because
he small target beam size more affects the speckle spatial spectrum
ith a short measurement time and causes a decrease in the number

nside non-overlapping areas of spatial signals. However, the temporal
pectrum is not always good as the boundary curve may blur when the
 a

6

Fig. 11. The experimental results of temporal and spatial spectrum are calculated from
the speckle-field intensity signals. The defocus of the DM mirror is used as a controlling
parameter. And beam size on the target changed from 𝜔 = 5.85 mm (𝑓 = −6.5 mm)
to the sharply focused beam with 𝜔 = 0.76 mm for f=0 mm and further to the highly
defocused beam 𝜔 = 6.12 mm (𝑓 = 6.5 𝑚𝑚) with the indicated control voltage change.
It can be approximated as far-field for the experimental conditions due to these small
spot sizes. (a) The temporal spectrum; (b) The spatial spectrum.

Table 2
The time and space scales of experiment.

Speckle metric 𝑣 (m/s) 𝑁𝑝𝑖𝑥𝑒𝑙 𝛥𝑟𝑠𝑝𝑎𝑐𝑒 (μm) 𝑁𝜏 T (ms) frequency (Hz)

𝐽𝑡𝑖𝑚𝑒 6.03 50 700 1000 56 18
𝐽𝑠𝑝𝑎𝑐𝑒 6.03 1 14 50 2.8 357

target spot size is too large, due to the increased roughness update time
and small speckle size could cause insensitivity to the detection signal.

The experimental discrimination scatterplots of speckle metrics 𝐽𝑡𝑖𝑚𝑒
nd 𝐽𝑠𝑝𝑎𝑐𝑒 obtained according to above scales are illustrated in Fig. 12.
sing Eq. (13), the normalized results marked by "×" corresponding to

peckle metrics 𝐽𝑡𝑖𝑚𝑒 are obtained by space-averaging temporal spec-
rums, and the results marked by ‘‘+ ’’ corresponding to speckle metric
𝑠𝑝𝑎𝑐𝑒 are obtained by time-averaging temporal spectrums. Both metrics
ave their extrema (maximum for 𝐽𝑡𝑖𝑚𝑒 and minimum for 𝐽𝑠𝑝𝑎𝑐𝑒) at
pproximately the same defocus corresponding to the smallest possible
eam size on the target surface. It is no doubt that the trend of
etric curves is consistent with the bandwidth boundary curve of

ime-frequency spectrum as Fig. 11. By comparing the data in Tab.
, although the metric 𝐽𝑡𝑖𝑚𝑒 is limited by the long measurement time
nd high speed of target, it is more sensitive to the small target beam
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Fig. 12. The defocus position 𝑓 = 0 corresponds to the minimum beam size on the
arget surface. And both metrics have their extrema (maximum for 𝐽𝑡𝑖𝑚𝑒 and minimum
or 𝐽𝑠𝑝𝑎𝑐𝑒) at approximately the same defocus corresponding to the smallest target beam
ize. And the frequency of metric 𝐽𝑡𝑖𝑚𝑒 and 𝐽𝑠𝑝𝑎𝑐𝑒 are 18 Hz and 357 Hz respectively.

ize. On the other hand, the metric 𝐽𝑠𝑝𝑎𝑐𝑒 has a high bandwidth to be
pplied in an adaptive TIL system, and the lack of determining the
inimum target spot can be improved by increasing the measurement

ime. Therefore, these metrics have a monotonic dependence on the
arget hit-spot size. This approach of using speckle metrics to monitor
he target spot can quickly determine the relative optimal value of
arget beam size within a certain range instead of the absolute value.

hat is more, the presence of well-localized extrema on the speckle
etric curves that coincide with the extremum for the focused spot

ize is exactly the property required for adaptive control in TIL projec-
ion systems. As a result, the experiment confirms the theoretical and
imulation analysis.

. Conclusion

In this work, we have introduced the speckle formation geometry,
hen developed a numerical model to demonstrate the 3D Spatio-
emporal characteristics of speckles, which represents the time history
f the speckle pattern during the observation (THSP). Considering only
he movement of the scattering center, the model reproduces reason-
bly well the expected first and second order spatial and temporal
tatistics of the dynamic speckle, which is useful to evaluate novel data
nalysis in dynamic speckle. Also, we provided a feasible method to
eedback the beam size on the target surface by rapid estimation of
he speckle-field statistical properties. This application of using line
can camera to obtain the dynamic speckle spectrum can well-balanced
rade-off between sampling time and calculation accuracy. And the
xperimental and simulation results demonstrate that both metrics
alculated in a short time have a well-localized extremum (maximum
or 𝐽𝑡𝑖𝑚𝑒 and minimum for 𝐽𝑠𝑝𝑎𝑐𝑒) for the smallest possible beam size on
he target surface. What is more, the metric 𝐽𝑠𝑝𝑎𝑐𝑒 is more suitable in an
daptive TIL system, which has a higher frequency and low requirement
or target speed than 𝐽𝑡𝑖𝑚𝑒. This work provides the basis for applying
ynamic speckles to monitor the variation of the beam size on the
ar-field target surface.
7
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