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Abstract: Segmented primary mirror provides many crucial important advantages for the
construction of extra-large space telescopes. The imaging quality of this class of telescope is
susceptible to phasing error between primary mirror segments. Deep learning has been widely
applied in the field of optical imaging and wavefront sensing, including phasing segmented
mirrors. Compared to other image-based phasing techniques, such as phase retrieval and phase
diversity, deep learning has the advantage of high efficiency and free of stagnation problem.
However, at present deep learning methods are mainly applied to coarse phasing and used to
estimate piston error between segments. In this paper, deep Bi-GRU neural work is introduced
to fine phasing of segmented mirrors, which not only has a much simpler structure than CNN
or LSTM network, but also can effectively solve the gradient vanishing problem in training
due to long term dependencies. By incorporating phasing errors (piston and tip-tilt errors),
some low-order aberrations as well as other practical considerations, Bi-GRU neural work can
effectively be used for fine phasing of segmented mirrors. Simulations and real experiments are
used to demonstrate the accuracy and effectiveness of the proposed methods.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Segmented mirror space telescopes represent the development trend of future extra-large-aperture
astronomical telescopes [1–2]. Segmented primary mirrors are efficient solutions to the problems
with large monolithic primary mirror manufacture and testing, transportation and launch. However,
the imaging quality of segmented-mirror telescopes rely heavily on the system alignment state,
especially the phasing error between of primary mirror segments. To achieve an acceptable
imaging quality, the RMS phasing error between segments should be less than λ/40. Therefore,
segment co-phasing is a crucial technique for the construction of segmented mirror space
telescopes.

Image-based co-phasing error sensing method are most popular, mainly including: phase
retrieval (PR) [3–5], phase diversity (PD) [6,7] and curvature sensing [8]. Both of them use
the diffraction model of the light field, through an iterative algorithm infinitely close to the real
exit pupil plane light field distribution to obtain the true phase. These methods have no special
hardware requirements, and have a high resolution accuracy. However, the iterative optimization
process is usually time-consuming, and it is easy to fall into a local minimum, so that the global
optimal solution cannot be obtained.

In recent years, deep learning has been widely applied for many optical imaging problems,
including Fourier ptychography [9–11], phase unwrapping [12–14], microscopic image en-
hancement [15,16], single-pixel imaging [17,18], optical interferometry [19,20], phase retrieval
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[21–26], and wavefront sensing [27–36]. Most of them use supervised deep learning to establish
a non-linear mapping relationship between phase distribution and intensity image information.
It is shown that the low-order continuous aberrations (mainly including defocus, astigmatism
and coma, et al.) in monolithic mirror systems can be estimated to an acceptable accuracy using
convolutional neural network (CNN) or long short-term memory (LSTM) network. Compared to
traditional PR or PD methods, the neural networks have advantages such as a high efficiency (no
iterative process) and robustness (no local optimal problem).

Deep learning has also been introduced to phasing of segmented telescopes. Li et al. proposed
a CNN-based piston sensing technology (only a rough solution) [37,38]. In their research, five
CNNs are trained to determine the translation error range of each sub-mirror in one wavelength.
Subsequently, Ma et al. have shown that the piston error can be directly estimated from the
intensity image through a sufficiently deep CNN (DCNN) network [39,40]. They discussed that
the piston prediction accuracy is affected by the number and size of the aperture. Hui et al. also
used deep CNN to diagnose piston error with feature images [41]. Their purpose is to let piston
diagnosing approaches get rid of the imaging target of the optical system. In summary, it can be
seen that deep learning has a not bad effect on co-phasing.

However, the current deep learning wavefront sensing methods applied to segmented mirrors
are mainly for coarse phasing, not applicable for fine phasing. Specifically, they only concern
piston error, and other aberrations (tip/tilt and defocus, etc) have not been comprehensively
analyzed. Although deep CNNs are widely used, its unique convolution structure is complicated,
which consumes a lot of computer storage and computing power. In most of these references,
the average RMSE between the real piston value and the predicted piston value of CNNs is
approximately 0.04 waves. When the aperture number or diameter increases, the piston accuracy
become worse. Therefore, the accuracy of co-phasing only meets the requirement of coarse
phasing process, and it does not meet the requirement of fine phasing process. Besides, there are
no experiments to prove its feasibility in the actual environment.

In this paper, we establish a Bilateral-Gated Recurrent Unit (Bi-GRU) network to realize the
sub-aperture fine phasing problem by learning two phase-diversity intensity images to achieve
end-to-end wavefront sensing. We first decompose the pair of point spread function (PSF) images
into a sequence of image blocks. The output of Bi-GRU network is still a sequence. Then we
connect a fully- connected layer behind the Bi-GRU network. This sequence is used as input and
finally we can obtain a set of aberration coefficients. Because there is no complicated operation
of gradual convolution in Bi-GRU, its operation is faster than CNN, it takes up less computer
resources and is easier to implement. Bi-GRU has long-term memory and can recognize and
utilize the inherent relationship between image intensity. Simulations and experiments verify
the effectiveness and accuracy of the method, ensuring that it can be successfully applied to the
co-phasing recovery of segmented telescopes.

This paper is structured as follows: the second section introduces the source and implementation
of Bi-GRU. The third section introduces the image degradation process and how to use Bi-GRU
to achieve the co-phasing of segmented telescopes. The fourth section gives the simulation
results and compares the co-phasing accuracy of different networks. The fifth section verifies the
effectiveness of the method through experiments. Section 6 summarizes the conclusions.

2. Introduction of GRU neural network

GRU network is a variant of recurrent neural network (RNN). The so-called simple RNN
has a recurrent hidden state h⟨t⟩(n-dimensional), which is a non-linear transformation of input
x⟨t⟩(m-dimensional), previous hidden state h⟨t−1⟩ and bias bh through a activation function, as
shown in Eq. (1). Output y⟨t⟩ is dependent on the current hidden state h⟨t⟩ and bias by. Specifically,
in this case, Whx is an n×m vector, Whh is an n×n vector, and bh is an n×1 vector. Then, the total
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parameters in the RNN are equal to n2+nm+ n.

h⟨t⟩ = ψ
(︂
Whxx⟨t⟩ +Whhh⟨t−1⟩ + bh

)︂
,

y⟨t⟩ = Whyh⟨t⟩ + by,
(1)

As shown in Fig. 1, the special feature of RNN is that the hidden layer is a loop structure,
which means that RNN is performing the same operation every time, but input data is different.
This structure enables RNN calculations at the current moment to combine historical input
information, which helps to process sequence-related tasks. However, basic RNN can only
memorize short-term historical input information, and cannot effectively solve the problem of
long-term memory.

Fig. 1. Structure diagram of the unfold basic RNN model

In contrast to basic RNN, GRU network solves the gradient vanishing problem due to long
term dependencies. It mainly refers to when the sequence input is long or the network structure
is deep, the correlation between the data information of the previous and subsequent sequences
decreases or even disappears, which causes the network to fail to learn the preorder important
information on the network layer.

As shown in Fig. 2 (a), the hidden layer structure of the GRU model includes two gates, called
an update gate z⟨t⟩ and a reset gate r ⟨t⟩ . The GRU model is presented in the form:

ĥ⟨t⟩ = ψg

(︂
Whxx⟨t⟩ +Wh

(︂
r ⟨t⟩ ∗ h⟨t−1⟩

)︂
+ bh

)︂
,

h⟨t⟩ =
(︂
1 − z⟨t⟩

)︂
∗ h⟨t−1⟩ + z⟨t⟩ ∗ ĥ⟨t⟩ ,

(2)

and the two gates are presented as:

r ⟨t⟩ = ψg

(︂
Wrxx⟨t⟩ +Wrhh⟨t−1⟩ + br

)︂
,

z⟨t⟩ = ψg

(︂
Wzxx⟨t⟩ +Wzhh⟨t−1⟩ + bz

)︂
,

(3)

where σ represents the sigmoid activation function, tanh is the hyperbolic tangent function, ⊗
is an element multiplication, h⟨t−1⟩ is the hidden state at the previous moment, and x⟨t⟩ is the
current cell’s input.

There are three gates and one memory cell in a LSTM block, which is shown in Fig. 2 (b).
Input gate I ⟨t⟩ , forget gate F ⟨t⟩ and output gate O⟨t⟩ separately control the data flow from input,
memory and output. The activations of input gate, forget gate and output gate depend on current
input, previous memory and previous or current output. Thus, the total number of parameters
(represented as matrices and bias vectors) for the 3 gates and the memory cell structure are four
groups (Wx, Wh, b), which are equal to 4×(n2+nm+ n).
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Fig. 2. Structure diagrams of gated recurrent unit (GRU) network (a) and long short-term
memory (LSTM) network (b)

However, in GRU, the number of gates is reduced to two (z⟨t⟩ ,r ⟨t⟩), and GRU gets rid of the
cell state and uses the hidden state to transmit information. The activations of gates in GRU
only depends on current input and previous output. In essence, the GRU has 3-folds increase
in parameters in comparison to the simple RNN. Specifically, the total parameters in the GRU
equals are equal to 3×(n2+nm+ n).

Therefore, GRU has a simpler network structure, which not only reduces the risk of overfitting,
but also converges quickly and requires less training time [42–44]. Most importantly, GRU can
achieve the same training accuracy as LSTM. Therefore, we decide to construct and train a GRU
network. For a particular image pattern, the intensity of pixels is not independent, and they
have inherent relations. GRU network can make full use of these relations, when the images are
decomposed into a series of small blocks and processed as a sequence.

In order to better correlate the sequence information, this paper applies the Bidirectional
GRU (Bi-GRU) network model. The bidirectional GRU is composed of two GRUs in opposite
directions, and a hidden layer is added. The structure is showed in Fig. 3. This structure provides
the output layer with complete past and future information of each point in the input sequence,
which can better identify the characteristics of the image.
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Fig. 3. Structure diagram of Bidirectional GRU model

3. Co-phasing of segmented telescopes using Bi-GRU neural work

3.1. Co-phasing using Bi-GRU neural work

As shown in Fig. 4, we showed the application procedure of how to use the Bi-GRU network
to co-phasing of segmented telescopes. Specifically, for certain aberration coefficient ranges, a
large number sets of aberration coefficients are randomly generated on each segmented mirror.
We can use Fourier optics to calculate the corresponding PSFs at the defocused image plane (see
section 3.2 for specific operations). The generated aberration coefficients and the defocused PSF
images compose the output data sets and input data sets, respectively. The Bi-GRU network can
then be trained using these data sets. After the Bi-GRU network is well trained, we can obtain the
optimal weight value, bias value and save the network structure to test the distorted aberration in
the real scene.

Fig. 4. Sketch map of co-phasing approach using Bi-GRU network

Note that Bi-GRU networks are mainly used to process sequences and the obtained defocused
PSF images cannot directly be taken as the input. Therefore, we need decompose two PSF images
into a series of patches which can be regarded as a sequence. Specifically, stitch two defocused
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images of size N×N into an image of N×2N, and then split the stitch image into 2n n-dimensional
vectors in rows. These vectors can be regarded as 2n interrelated timing inputs, and these split
vectors are sequentially input into the network. The output of the Bi-GRU networks is still a
sequence. This sequence is then taken as a vector, which serves as the input of a fully-connected
layer and finally we can obtain a set of aberration coefficients through the Bi-GRU network. We
use the aberration coefficients predicted by the Bi-GRU network to recover the wavefront, and
the residual root-mean-square errors (RMSEs) between the recovered phase and original phase
are used as the evaluation criteria.

3.2. Image degradation model for segmented telescopes

In this paper, the mathematic model of the segmented telescope’s primary mirror refers to the
JWST telescope, which is composed of 6 smaller-diameter hexagonal sub-mirrors arranged in a
certain order in space. The position of each sub-mirror is adjusted by a precise driving device to
achieve optical co-phasing. The structure is shown in Fig. 5. This paper numbers each sub-mirror
and takes the center of the primary mirror as the origin, establishes the corresponding rectangular
coordinate system.

Fig. 5. Structural diagram of 6-segmented primary mirror mathematical model

As shown in Fig. 5, d is the width of each sub-mirror, −→rj is the center position of the jth
sub-mirror. According to the arrangement rule of the segmented sub-mirrors in the Fig. 5, the
coordinates of the center position −→rj is as follows:

xj =

√
3d
2

· lx, yj =
d
2
· ly. (4)

Among them, lx and ly are integers, and their values satisfy two conditions: lx + ly is an even
number; 0<l2x + l2y<4.

The generalized pupil function of the segmented primary mirror can be written as

P(x, y) =
N∑︂

j=1
Pj(x − xj, y − yj) exp[iϕj(x − xj, y − yj)], (5)
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(x, y) are pupil coordinates of the telescope,(xj, yj) are the pupil center coordinates of each
sub-mirror. Pj(x − xj, y − yj) is the shape function of the submirror and can be given by

Pj(x − xj, y − yj) = δ(x − xj, y − yj) =
⎧⎪⎪⎨⎪⎪⎩

1, inside the jth hexagon

0, outside the jth hexagon
, (6)

ϕj(x − xj, y − yj) is the aberration corresponding to the jth submirror and can be expressed as a
linear combination of Zernike polynomials. When considering the aberration of piston, tip/tilt in
both directions and other high order aberrations, can be written as

ϕj(x − xj, y − yj) =
2π
λ
(αj1Zj1 + αj2Zj2 + αj3Zj3 + · · · + αjnZjn). (7)

In the above Eq. (7), Zj1 is the piston error of the jth sub-mirror along the optical axis, Zj2
and Zj3 are the tilt errors of the jth sub-mirror around the X axis and Y axis, and some high
order aberrations Zjn are added. αjn is the corresponding aberration coefficient. Therefore, the
generalized pupil function of the segmented primary mirror can be written as

P(x, y) =
N∑︂

j=1
Pj(x − xj, y − yj) exp

[︃
i
2π
λ
(αj1Zj1 + αj2Zj2 + αj3Zj3 + · · · + αjnZjn)

]︃
. (8)

In the optical system, the point spread function corresponding to the intensity distribution of
the ideal focal plane image can be obtained by the inverse Fourier transform of the generalized
pupil function:

PSF(x, y) = |FT−[P(x, y)]|2. (9)

Similarly, the point spread function corresponding to the defocus plane can be expressed as:

PSFd(x, y) = |FT−[Pd(x, y)]|2,

Pd(x, y) =
N∑︂

j=1
Pj(x − xj, y − yj) exp{i[ϕj(x − xj, y − yj) + ϕd(x − xj, y − yj)]},

ϕd(x, y) = α4Z4.

(10)

In the above Eq. (10), FT− is a two-dimensional inverse Fourier transform operation. ϕd(x, y)
is the introduced known defocus amount, which can be expressed by the fourth term representing
the defocus amount in the Zernike polynomial.

4. Simulations

In this section, according to the principle of Fourier optics, MATLAB is used to model the
imaging system, generate a training set, and verify the effectiveness of the Bi-GRU network.
Then we compare the nonlinear fitting capabilities of Bi-GRU networks and other networks.

4.1. Generation of data set and Bi-GRU implementation

The application procedure of the deep learning fine phasing approach presented above is presented
below:

(1) Determination of the system parameters and generation PSF images

System parameters are the premise for us to generate the data set needed for training the
network. In this paper, we set the aperture of the main mirror to 1 m, the target image size to
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64×64 pixels, the observation wavelength to 632 nm, the focal length to 10 m, the CCD pixel
size to be 5.5um, and 5 mm defocus distance between two PSFs.

We then use MATLAB to model the optical system. A pair of defocus PSF images can be
generated according to the principle of Fourier optics. Common phase error considered here
are simply 1nd∼3th Fringe Zernike coefficients corresponding to piston and tip-tilt, which are
randomly generated within the range of [-0.5λ, 0.5λ]. The size of each PSF image is 64×64.
After a large number of the repetition of the above process, we generate 10,000 pairs of degraded
PSF images and their corresponding aberration coefficients as the input data set and output data
set.

(2) Addition of noise and other aberration errors caused by environmental disturbances

In order to approximate the actual imaging environment, 40 dB noise is randomly introduced
into the simulated PSF image (the evaluation standard is PSNR, see below). Besides, in order to
get closer to the actual wavefront, some high-order aberrations are added within the range of
[-0.2λ, 0.2λ].

To simulate noise, we model each image to have Gaussian CCD read noise with a standard
deviation of 15 e- and a dark current of 0.1 e- /s over a 1s integration time. The photon noise
which is dependent on intensity follows a Poisson distribution. The peak pixel signal-to-noise
ratio (PSNR) is defined as:

PSNR = 20log10
⎛⎜⎜⎝

Speak√︂
Speak + σ

2
read + σ

2
dark

⎞⎟⎟⎠ , (11)

where Speak is the peak pixel value of the noise-free image, σ2
read and σ2

dark are the variances
associated with the readout noise and the dark current noise at each pixel, respectively. The
peak value of the PSF is set to 10,000 photons, which is limited to the number of fully trapped
electrons. Then the final peak pixel PSNR is approximately equal to 40 dB.

(3) Training of the Bi-GRU network

Then, we input the above 1W training sets into the Bi-GRU network, and set the following
network parameters: initial learning rate is 0.0003, learning rate attenuation is 0.99, optimization
algorithm is Adam algorithm, hidden layer node number is 128, batch size is 200, and the network
loss function adopts RMSE, that is, the root mean square error between the output aberration
value and the true value, and L2 regularization is added. The CPU used for network training is
Intel Core i7-8700, the frequency is 3.20 GHz, and the GPU is NVIDIA Quadro P2000. The
software version of Tensorflow is tensorlow-gpu-1.14.1, and the software version of Python is
3.6.

(4) Testing of the effectiveness of the Bi-GRU network

After training, we use MATLAB again to randomly generate 1W test sets according to the above
optical system parameters to test the network performance. Under the above same environment
and parameters, the network calculates the absolute error between the network output value and
the true value for 10,000 sets of test set data, and the average RMSE is 0.0065λ. The histogram
is shown in Fig. 6 (a). We can see that the trained Bi-GRU network can accurately establish the
non-linear mapping between pairs of degraded PSF images and corresponding phase aberrations.

4.2. Comparison between Bi-GRU network and other networks as fine phasing tool

In this paper, Bi-GRU network is selected as a mathematical tool to predict the wavefront
aberration coefficients of the segmented telescope. In fact, other neural networks can also do this



Research Article Vol. 29, No. 16 / 2 August 2021 / Optics Express 25968

Fig. 6. Comparison of RMSE distribution of each network for test sets of 6-aperture imaging
system. We can see that (a) Bi-GRU and (c) deep LSTM can accurately fit the non-linear
mapping between the pairs of PSF image and the phase aberrations. The fitting accuracy
of (b) standard RNN and (d) deep CNN is much less than Bi-GRU for predicting phase
distribution in this paper.

job. The reason why we choose Bi-GRU network as a nonlinear fitting tool is mainly because in
response to the problems encountered in this article, the Bi-GRU network not only has higher
nonlinear fitting accuracy than other network models, but also has a simpler network structure
and the convergence speed is faster.

We compare the fitting accuracy of Bi-GRU, standard RNN, deep Long Short-Term Memory
(LSTM, another common variant of RNN) and CNN for the fitting problem of this paper. The
number of training sets and test sets for all networks are 10,000 groups. Other conditions for
training the network are the same as training Bi-GRU network. Bi-GRU, RNN, and Bi-LSTM
all use the single Layer network structure, have the same number of neurons, and the activation
functions are all tanh functions. The number of network layers of CNN is 9, including input layer,
convolutional layer, pooling layer and fully-connected layer. The activation function uses the relu
function (a commonly used activation function for CNN).

Comparing Fig. 6(b), (d) with Fig. 6(a), we can see that the RMSE of using Bi-GRU network is
an order of magnitude smaller than that of using standard RNN or CNN network. CNN network
has the worst fitting accuracy. The underlying reason may be that the PSF image in this paper
contains some sparse and scattered points and it may be a bit difficult to further extract features
through convolution. The down-sampling operation of the pooling layer causes the loss of a
large amount of valuable original information; and the accuracy of aberration fitting will be
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limited. Comparing Fig. 6(c) with Fig. 6(a), we can see that the residual fitting error of using
LSTM network is not much different from that of using Bi-GRU network. However, because
Bi-GRU has a simpler network structure, its network training convergence speed is much faster
than LSTM. Specifically, for the test set in Fig. 6(b)(c)(d), the average absolute error between the
network’s output and the real value is 0.0733λ, 0.0074λ, and 0.0401λ, respectively.

5. Experiments

In this part, we verify the effectiveness of the proposed method through experiments. The sketch
of the experimental setup is shown in Fig. 7. A collimator is used to generate parallel light,
which passes through the optical system and a PSF can be obtained with a detector. The optical
system is composed of a primary mirror, a secondary mirror and a set of lenses (not shown in
Fig. 7) used to expand the field of view of the system. The primary mirror contains three mirror
segments. The primary mirror and secondary mirror are placed on PI hexapods which are used to
accurately adjust the position and pose of the primary mirror segments and secondary mirror to
the accuracy of micron. Piezoelectric ceramics are further used to adjust the position of primary
segments to the accuracy of nanometer, and therefore they can be used to correct phasing errors.
The optical system is well aligned before this experiment and in each experiment coarse phasing
is performed using dispersed fringe sensing before deep learning is applied to fine phasing.
Meanwhile, two defocused PSF images serve as the input of Bi-GRU neural network (one PSF is
collected before the focus, and the other is collected after the focus), and the defocusing length
between two PSF images is 2 mm. In this work, we mainly solve the phasing error between two
segments (in other words, in this experiment we only use two mirror segments). Some other
parameters of this experimental system are shown in Table 1, which are needed when generating
data set for training the Bi-GRU network.

Fig. 7. Sketch map of the experimental setup
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Table 1. Some parameters of the experimental system

Parameter Value

Entrance pupil diameter Pupil_size= 200mm

Focal length f= 2000mm

Central wavelength λ= 550nm

Defocusing length Delta_z= 2mm

CCD pixel size Pixel_size= 5.5um

According to the system parameters shown in Table 1, we simulate and get 10000 images
for training and 10000 images for testing. Then a Bi-GRU neural network can be trained for
detecting the phasing error between two mirror segments. The training result for the test set
is shown in Fig. 8, and it can be recognized that the average RMS error between the predicted
value and the actual input value is about 0.00293 λ. This result demonstrates that the Bi-GRU
network can accurately establish the non-linear mapping between defocused images and phasing
error. Note that the influence of airflow and vibration during the experiment cannot be neglected.
Therefore, when generating the data set for training the Bi-GRU network, some additional random
high-order aberration terms should also be added into the image degradation model (apart from
the phasing error).

Fig. 8. RMSE distribution for test sets simulated with the experimental system parameters
after training

After obtaining a Bi-GRU network through training, it is applied to correct the phasing error
between two mirror segments. Three procedures are conducted to demonstrate the effectiveness
of the proposed fine phasing approach using Bi-GRU network.

(1) Reconstruct the input defocused images.

With the two defocused PSF images serving as the input, the Bi-GRU neural network can
output the wavefront (containing phasing error) corresponding to each PSF image. We can use
the recovered aberration coefficients to re-generate a pair of defocused PSF images according to
Fourier optics. As shown in Fig. 9, the first column presents those actually collected defocused
PSF images, and the second column provides the reconstructed defocused PSF images using
Bi-GRU network. We can intuitively recognize the consistency between the collected PSF images
and reconstructed PSF images, which qualitatively demonstrate effectiveness of the Bi-GRU
network in phasing error sensing.

(2) Analyze the focal plane PSF images after correcting phasing error.
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Fig. 9. Four independent sets of experimental data ((a)∼(d)) for demonstrating the
effectiveness of the proposed phasing error sensing approach using Bi-GRU network. The
consistency between the original defocused PSF images (first column) and the reconstructed
images (second column) indicates that Bi-GRU network can accurately predict phase
aberrations. The in-focus PSF images (last column) after correcting phasing error using
actuators become much sharper than original in-focus PSF images (third column), which
further demonstrate the effectiveness of the proposed approach in phasing error sensing.

Since the we can sense the phasing error between two mirror segments using Bi-GRU network,
we can then correct this error using the actuator (piezoelectric ceramics) under each mirror
segment. The focal plane PSF images after correcting phasing error with actuator is shown in the
last column of Fig. 9. Comparing the last column of Fig. 9 with the third column which presents
those focal plane PSFs before correcting phasing error, we can see that the PSFs becomes much
shaper after correcting phasing errors. The Strehl ratio of the original in-focus image is (a)
0.3457, (b) 0.4388, (c) 0.3689 and (d) 0.3017 respectively. After correcting phasing error with
actuator, the Strehl ratio of the corrected in-focus image is (a) 0.7116, (b) 0.6482, (c) 0.6989 and
(d) 0.6034 respectively, which indicates the wavefront error of the optical system is effectively
reduced.

(3) Test the wavefront error of the segmented optical system using interferometer.

The pose of the fold mirror above secondary mirror can be automatically adjusted. When it is
horizontally positioned, the wavefront of the optical system can be measured using interferometer,
as shown in Fig. 10. The results of the interferometer corresponding to the four sets of experimental
data are shown in Fig. 11. It can be seen that the RMS wavefront errors after correcting phasing
error are below 0.1 waves, and the residual wavefront errors are mainly higher order components
due to manufacture or initial alignment. While single wavelength interferometer cannot break 2π
ambiguity, it can still serve as a side validation for the effectiveness of the proposed approach.
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Fig. 10. Autocollimation interference optical path used to test the wavefront error the
optical system.
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Fig. 11. Wavefront maps for the four cases shown in Fig. 9 after correcting the phasing
errors between two mirror segments. We can recognize that the phasing error between two
segments are effectively reduced and residual wavefront error are high-order sub-aperture
aberrations due to mirror figure manufacture.
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6. Other discussions

In this section, we will further discuss phasing error sensing for the case of segmented primary
mirror composed of 18 sub-mirrors using the four different kinds of networks, and study the
influence of training conditions on the accuracy of the recovered phasing errors. We model an
18-aperture imaging system using Fourier optics, which is shown in Fig. 12. It should be extra
explained that the exit pupil diameter of the system is kept unchanged, and the spacing between
the sub-apertures is kept constant when the diameter of each-aperture is reduced proportionally.

Fig. 12. Structural diagram of 18-segmented primary mirror mathematical model

Specifically, we consider 2 cases: First, we test whether the Bi-GRU model could be used
for the fine phasing of the 18-aperture imaging system under the condition that the size of the
data set does not change. We collected 10,000 PSF images for training and another 10,000 for
testing. We use the same four network structures as above for training, and the phase prediction
accuracy is shown on the left side of Fig. 13. On the other hand, we will further qualitatively
discuss the impact of increasing the data set and network depth on the accuracy of the restoration
of aberration coefficients. Specifically, we use four PSFs image-phase training pairs, and collect
50,000 training data sets for training, and another 10,000 sets for testing.

Considering that the aberration nonlinear mapping relationship established for the 18-aperture
imaging system network is much complicated, we further improve the Bi-GRU network by
stacking the basic Bi-GRU network repeatedly, and we call it a deep Bi-GRU network. The
deep Bi-GRU network can better extract the deep information of the PSF images. After a large
number of simulation tests, this paper chooses to use a three-layer stacking method. This paper
also made the same improvement to the RNN and LSTM network. For CNN, we increase the
number of convolutional layers and neurons in each layer to increase the depth of the network.
Bi-GRU, RNN, and Bi-LSTM all use a 3-layer network stack structure, have the same number of
neurons, and the activation functions are all tanh functions. CNN also increased the number of
network layers accordingly, with the number of network layers being 15. The activation function
is the relu function. The co-phasing error accuracy is shown on the right side of Fig. 13, and we
compared the performance of the four networks at the same time.

The following conclusions can be drawn from Fig. 13:

(1) Under the same training conditions as the 6-aperture imaging system, the proposed co-
phasing error sensing method based on the Bi-GRU network does not have high prediction
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Fig. 13. Comparison of RMSE distribution between different deep learning methods for
18-aperture imaging system under two different training conditions (Case 1 and Case 2). In
Case 1, we use two defocused PSF images and collect 10,000 training data sets for training.
In Case 2, we increase the data set by using four defocused PSF images and collecting 50,000
training data sets for training. Besides, we also deepen the corresponding each network
depth. Result clearly demonstrates that by increasing the data set and network depth, the fine
phasing accuracy of the 18-aperture imaging system is effectively improved.
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accuracy in the 18-aperture imaging system. The nonlinear mapping relationship between
the PSF images and the phase aberration become more complicated when the number of
aperture increases, and more aberration coefficients need to be predicted.

(2) By increasing the data set and network depth, the fine phasing accuracy of the 18-aperture
imaging system with the application of the different type of networks is effectively improved.
As shown in the column of Case 2. the RMSE between the outputs of the Bi-GRU network
and the true aberration value is 0.02953λ. This paper also tested RNN, LSTM and CNN
networks, and the RMSE is 0.03842λ, 0.02564λ and 0.05113λ, respectively.

(3) Bi-GRU network still has advantages over other networks in terms of fitting accuracy and
training speed. Compared with CNN network, RNN network can predict the phase error
more effectively. Besides, the training time of the CNN network is twice that of the RNN
network. As two variants of RNN, GRU and LSTM can effectively solve the problem of
gradient disappearance caused by long-term dependence of RNN. Therefore, it can be
seen that the phase fitting residuals of the Bi-GRU network and the LSTM network are
much better than the RNN network. The predicted phase accuracy of these two networks
is not much different. However, due to the simpler structure of the GRU network, GRU
consumes less computer resources and converges faster in network training than LSTM
under the same conditions.

7. Conclusion

This paper systematically discusses the application of Bi-GRU network to fine phasing of
segmented mirrors, including the introduction of Bi-GRU network, the application procedure of
using Bi-GRU network for phasing error sensing, and the validation for the effectiveness of the
Bi-GRU network (simulations and experiments). Some other discussions are also presented for
the case of 18-aperture segmented systems. Some conclusions are presented below:

(1) Bi-GRU network is superior to other networks in fitting accuracy and training speed. We
compare the fitting accuracy of Bi-GRU, standard RNN, deep LSTM and deep CNN for
fine phasing problem encountered in this paper under the same conditions. The result
show that the former has a higher fitting accuracy and need less training time.

(2) Real experiments are performed to verify that Bi-GRU network can be used for phasing error
sensing and realize end-to-end wavefront sensing and control for segmented telescopes.
Even in the presence of some residual higher-order aberrations due to manufacture or
initial alignment, the RMS wavefront errors after correcting phasing error are below 0.1
waves.

(3) The Bi-GRU network can be successfully applied to the co-phasing error sensing of
18-aperture segmented mirrors. By increasing the data set and network depth, we have
effectively improved the fine phasing accuracy of the Bi-GRU network on the 18-aperture
imaging system.

This work will contribute to the application of deep learning to image-based wavefront sensing
and high-resolution imaging.
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