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ABSTRACT
Singlet microscopy is very attractive for the development of cost-effective and portable microscopes. In contrast to conventional microscope
objectives, which consist of multiple lenses, the manufacturing process for singlet lenses is done without extensive assembling and aligning.
In this manuscript, we report a novel singlet virtual Zernike phase contrast microscopy setup for unstained pathological tumor tissue slides.
In this setup, the objective consists of only one lens. There is no need for the inset Zernike phase plate, which is even more expensive than
a whole brightfield microscopy setup. The Zernike phase contrast is virtually achieved by the deep learning computational imaging method.
For the practical virtual Zernike phase contrast microscopy setup, the computational time is less than 100 ms, which is far less than that of
other computational quantitative phase imaging algorithms. With a conceptual demo experimental setup, we proved our proposed method to
be competitive with a research-level conventional Zernike phase contrast microscope and effective for the unstained transparent pathological
tumor tissue slides. It is believed that our deep learning singlet virtual phase contrast microscopy is potential for the development of low-cost
and portable microscopes and benefits resource-limited areas.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0053946

INTRODUCTION

In contrast to conventional microscope objectives, which
consist of multiple lenses, the manufacturing process of singlet
lenses is done without precise assembling and testing.1–6 Thus,
singlet microscopy setups are very potential for low-cost and
portable microscopes, which are very useful in resource-limited
areas and Internet mobile medicine. In addition, in conventional
brightfield microscopy, the pathological tissue slices and cells are
usually chemically dyed. Chemical dyeing and fluorescent label-
ing are very attractive to medical and biological researchers, as
details of tissues/cells are labeled as different colors. Under basic

brightfield microscopes, these color differences are observed eas-
ily. However, on one hand, chemical dyeing and fluorescent label-
ing would make the tissues and cells inactive. On the other hand,
they also require many resources, including time, reagent, precise
instruments, and labor. To overcome these problems, phase imag-
ing microscopy7–11 is used for observing biological tissues and cells
in vitro. Without chemical dyeing and fluorescent labeling, trans-
parent and weakly scattering biological tissues/cells are imaged as
the relative/quantitative phase information distribution. Conven-
tional phase contrast microscopes consist of extensive, precise, and
clean optical elements, which limits their usage in the research-
level clean room, such as Zernike phase contrast (ZPC) microscopes,
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quantitative phase imaging (QPI) microscopes, and Michelson
interferometer holography microscopes. Recently reported quan-
titative phase imaging (QPI) microscopy methods,7,8 e.g., Fourier
ptychographic microscopy (FPM),9,10 ptychographical iterative
engine (PIE),12 and deep learning methods,8,11 have simple and
robust configurations. With less computational time and mul-
tiple images, deep learning microscopy for transparent undyed
bio-samples8,13–15 shows superiorities over other computational
methods.

In this manuscript, we propose to combine an aspheric sin-
glet lens and the deep learning computational imaging method to
construct a novel singlet phase contrast microscopy setup. In this
setup, the circular quasi-monochromatic illumination part provides
oblique propagation light, instead of brightfield illumination. A sin-
glet microscope objective lens is custom-designed by ourselves. The
field-of-view (FOV) of this designed singlet lens is competitive with
those of the commercial same-magnification microscope objectives.
In addition, the singlet lens has perfect linear-signal-transfer prop-
erties, which requires the same signal modulation transfer func-
tion (MTF) across the wide FOV. The pathological tissue slices/cells
would be placed at the objective plane, and the CMOS image sen-
sor is at the conjugate focal plane in the imaging space to record the
digital image. After digital recording, the oblique illuminated image
would be transferred into the ZPC microscope using our deep learn-
ing computational imaging algorithm. In the following, first, the
principle and description about our singlet virtual ZPC microscopy
setup are given. Second, the description, designing, and manufactur-
ing information about the linearly signal-transferring singlet lens are

presented. Third, details about the virtual ZPC imaging deep learn-
ing convolution network are provided. Finally, the experimental
results, data analysis, and discussions are presented.

SINGLET VIRTUAL ZPC MICROSCOPY

Figure 1 shows the hardware schematic of our deep learning
singlet virtual ZPC microscopy setup. In Fig. 1(a), a conventional
ZPC microscope16 is simplified. Quasi-chromatic light emits from a
light source, which could be a traditional halogen lamp or a light
emitting diode (LED) chip. The light would be condensed by a
designed optical structure, e.g., Kohler illumination. Then, the light
passes through an annular stop. After the annular stop, there is
another condenser lens. The annular stop is at the front focal plane
of this condenser. The pathological slide is placed at the back focal
plane of this condenser. The structural and transmission informa-
tion is modulated onto the optical wavefront, which includes phase
retardation and diffraction. Most unstained/unlabeled thin patho-
logical tissue slices are transparent. The background light is very
strong, which would depress the efficient diffracted signal light.
Thus, under a novel bright-field microscope objective lens, the effi-
cient diffracted signal light would not be observed clearly. However,
in the ZPC microscopy setup, as shown in Fig. 1(a), a Zernike phase
plate is added at the Fourier spectrum plane. The Zernike phase plate
and the annular stop are usually designed as a pair. Focusing with
a tube lens, the ZPC microscopy image would be clearly recorded
with a digital CCD/CMOS image sensor. In this manuscript, we pro-
pose a singlet objective lens to achieve a virtual ZPC microscopy

FIG. 1. Schematic of our deep learning
singlet virtual ZPC microscopy setup: (a)
conventional ZPC microscope, (b) pro-
posed singlet microscope under circular
illumination, and (c) deep learning frame-
work to achieve virtual ZPC microscopy
imaging.
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setup based on the deep learning computational imaging method,
whose hardware structure is illustrated in Fig. 1(b). The circular illu-
mination part is still Kohler illumination modulated by an annular
stop. However, instead of conventional microscope objectives con-
sisting of multiple lenses, we use a customized aspheric singlet lens
here. Our singlet lens is designed as a 4×-magnification imaging
lens with a finite conjugate imaging length. The pathological tissue
slide is at the objective plane, while a digital CMOS image sen-
sor is at the conjugate imaging plane. By comparison, it is found
that the optical structure in Fig. 1(b) is far more cost-effective and
simpler than that in Fig. 1(a). However, only with the optical hard-
ware in Fig. 1(b), we could not obtain a ZPC microscopy image
of the transparent pathological tissue slice. We need to computa-
tionally process the directly recorded image by the deep learning
ZPC-transfer method. In Fig. 1(c), the “using stage” of our sin-
glet virtual ZPC microscopy setup is presented. Before the “using
stage,” the ZPC-transfer deep neural network (DNN) kernel would
be deeply trained in the “training stage,” which would be described
in detail in the section titled Virtual deep ZPC-transfer. When the
digital CMOS image senor records an image, this image would be
convoluted with the ZPC-transfer DNN kernel. Then, the visual
contrast of the microscopy image would be improved. The above
method is named as deep learning singlet virtual phase contrast
microscopy.

SINGLET MICROSCOPY OBJECTIVE LENS

In an imaging system, the normalized modulation transfer
function (NMTF) could quantitatively describe the signal transfer-
ring abilities.17–20 The spatial resolution ability is commonly limited
by the imaging system’s cut-off spatial frequency. Here, we designed
and manufactured an aspheric singlet lens with the finite conjugate
imaging length. When designing, we inversed the imaging system,
where the CMOS image sensor is viewed as the objective plane and
the pathological tissue slide is viewed as the imaging plane, shown
in Fig. 2(a). The FOV in the space of the pathological tissue slide is
±2.5 mm. The numerical aperture (NA) in the space of the patho-
logical tissue slide is 0.1. The effective focal length is 10 mm. The
manufactured aspherical lens is shown in Fig. 2(b). The surface data
are expressed as the mathematic polynomial of the high order even
aspherical surface20 as follows:

Z = cr2

1 +
√

1 − (1 + k)c2r2
+ α1r2 + α2r4 + ⋅ ⋅ ⋅ + α8r16, (1)

FIG. 2. Singlet microscopy objective lens: (a) schematic of inverse optics designing
and (b) photograph of our aspheric singlet lens.

where c is the curvature (1/R), k is the aspheric coefficient, and α is
the high order term coefficient. Even aspherical parameters S1 and
S2 are presented in Table I.

In conclusion, our designed aspherical singlet lens has a high
cut-off spatial frequency in the pathological tissue slide space,
which is 350 lp/mm, under the quasi-chromatic illumination. The
lens maintained almost the same NMTFs across the FOV of
(−2.5, 2.5 mm), which would strengthen the performance of point-
of-function (PSF) deconvolution algorithms and virtual deep ZPC-
transfer algorithms.

VIRTUAL DEEP ZPC-TRANSFER

There are two stages in the singlet virtual deep ZPC-transfer
computational microscopy method, as shown in Fig. 3: the “training
stage” [Fig. 3(a)] and the “using stage” [Fig. 3(b)]. In the “training
stage,” two data stacks of unregistered images are input to the DNN
to train the parameters. One of the image data stacks is the PSF-
deconvoluted singlet microscopy images, named as DA in Fig. 3(a).
The other is the commercial research-level ZPC microscopy images
under a 4×-magnification standard objective (0.12 NA), named as
DB in Fig. 3(a). In the “using stage,” after the ZPC-transfer DNN
kernel parameters are trained, the input singlet images are convo-
luted with the trained ZPC-transfer DNN kernel. Then, the output
image is the desired virtual ZPC microscopy image. The “training

TABLE I. Even aspherical parameters (S1 and S2).

R k α2 α3

S1 8.244 −1 1.986 × 10−4 8.481 × 10−5

S2 11.117 −1 6.557 × 10−4 −3.289 × 10−5

α4 α5 α6 α7 α8

−7.485 × 10−7 4.82 × 10−8 −1.564 × 10−9 2.142 × 10−11 −5.421 × 10−14

9.938 × 10−6 1.37 × 10−7 −2.272 × 10−7 2.235 × 10−8 −6.649 × 10−10
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FIG. 3. Two stages in the proposed deep learning virtual ZPC imaging for singlet
microscopy: (a) training stage to obtain a deep ZPC-transfer network by a zero-
sum competition deep computational training and (b) using stage to transfer the
singlet image to a virtual ZPC image.

stage” is very important to obtain the ZPC-transfer DNN kernel
parameters mapping the singlet circular illumination microscopy
image with the ZPC microscopy image, which is presented in Fig. 4.

As shown in Fig. 4, a ZPC-transfer DNN based on the gener-
ative adversarial network (GAN)21–27 is adopted for virtual singlet
ZPC microscopy imaging. There are two training cycles to go on
a zero-sum competition.21–24 The framework seems a Taiji (or the
Great Ultimate), which would combine two different things into
a united harmony. Here, the “two different things” are the singlet
circular illumination microscopy image stack and the conventional
Zernike phase contrast microscopy image stack. In the generator
GN1:S to Z, the singlet circular illumination microscopy images
are the input data. The aim of GN1:S to Z is to create “fake data,”
i.e., a “fake” ZPC-style image. Approximately, the aim of GN1:Z

FIG. 4. Framework to train a deep ZPC-transfer network.

to S is to create “fake data,” i.e., a “fake” circular illumination
microscopy image, where the input data are the ZPC microscopy
image. For the generator networks of Cycle 1 and Cycle 2, they
have their own discriminator networks (DNs). Specifically, Discrim-
inator Z aims to distinguish the “fake” ZPC-style image from the
“real” conventional ZPC microscopy image, and Discriminator S
aims to distinguish the “fake” singlet (S) image from the “real” sin-
glet (S) microscopy image. In our deep ZPC-transfer DNN, digital
image registration algorithms are not necessary. Thus, although the
singlet circular illumination microscopy image stack and the con-
ventional ZPC microscopy image stack are recorded using differ-
ent digital CMOS cameras, there are no processes about computa-
tional imaging rotation, registration, and rescaling. To combine the
singlet circular illumination microscopy image stack and the con-
ventional ZPC microscopy image stack into a united harmony like
a Taiji (or the Great Ultimate), we also design the following loss
function:

Loss = L(GN1 : S to Z) + L(GN2 : Z to S)
+ L(cycle) + 0.1(1 −msSSIM(GN1, Z))
+ 0.1(1 −msSSIM(GN2, S)), (2)

where L(GN1 : S to Z) and L(GN2 : Z to S) are the loss functions
for each couple of GN-DN. L(cycle) is the total cycle consistency
loss. The last two terms are to maintain the image texture and struc-
tural information.22,23 In brief, the loss function, i.e., Eq. (2), should
aim to reserve the color and feature information.

MATERIAL

The raw material of our singlet is E48R (ZEON Corp, JAPAN).
The lens was obtained from the Nanjing University of Science and
Technology (NJUST). For both high-order even aspherical surfaces,
their root-mean-square (rms) surface errors are controlled better
than λ/3, where the optical shop testing wavelength is (λ = 632 nm).
To maintain good coaxiality, the centration error between the two
aspheric surfaces should be better than 1 arc min. Both surface qual-
ities, which describe flaws, dust, and so on, should be better than
60/30 scratch/dig. The root-mean-square roughness of both aspheric
surfaces should be better than 5 nm. The quasi-monochromatic illu-
mination LED is a green LED with the power of 3 W. The patho-
logical tissue slide is held on a 3D printed plastic structure. The 3D
printed plastic structure is fixed on a 3D-axial adjuster (XR25C/M,
ZHISHUN, China). The resolution of this 3D-axial adjuster is better
than 10 μm. It is a green LED, which is at the dominant wavelength
of 532 nm with the spectrum width of ∼20 nm (FHWM). The work-
ing power is 3 W. The commercial Zernike phase contrast micro-
scope, which consists of a digital CMOS image sensor, is NIB900L
(NOVEL, Ningbo, China). The digital CMOS image sensor in the
singlet microscopy setup is from HIKVISION, Hangzhou, China
(MV-CE200-10GM). The pathological tissue slide is biologically and
chemically processed in the medical lab of Suzhou Municipal Hos-
pital (SMH). The pathological tissues are from human tumor tis-
sues, which are sliced into standard sections (∼2 to 4 μm thickness).
These tumor tissues are following de-identification of the basic clin-
ical information, which is supervised by the Medical and Biological
Ethical Committee of the SMH. After slicing, these thin sections
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FIG. 5. Virtual ZPC imaging example for
singlet microscopy. (a) ZPC image cap-
tured using the conventional ZPC micro-
scope. The yellow scalar bar is ∼100
μm. The blue scalar bar is ∼20 μm. (b)
Deconvoluted image captured using by
our singlet microscope. (c) Virtual ZPC
image based on the deconvoluted sin-
glet microscopy image captured by our
deep learning method. (d) Image cap-
tured using the brightfield microscope.

would be baked for half an hour at 68 ○C. This process is to pre-
vent falling. Afterward, these sections are deparaffinized with xylene
and distilled water by 95% alcohols. Finally, the pathological tissue
slides are sealed with neutral resin gum and a coverslip glass. For
deep training a ZPC-transfer DNN kernel, our training process is
executed using Python 3.7 and TensorFlow framework version 2.1.
About the computational hardware, we use a bench-top computer,
which is mainly equipped with a Core i7-7700K central processing
unit (CPU) (Intel), 64GB of RAM (Kingston), and a piece of NVIDA
GPU module, i.e., GeForce GTX 1080Ti GPU module.

EXPERIMENTAL DATA

In the singlet microscopy experimental setup, first, a stack of
grayscale images is recorded under the annular illumination of the
green LED by the digital CMOS image sensor. Second, the same
set of unstained pathological tissue slides is placed under the com-
mercial microscope objective with the same magnification. The ZPC
microscopy images are also recorded. It is not necessary to record the
same areas of the pathological tissue slides in these two recording
processes. Third, the singlet microscopy images are deep learning
deconvoluted for a higher image contrast. Fourth, the images are all
cropped into the digital size of 512 ∗ 512 pixel2. Finally, the cropped
images are executed to train the deep learning ZPC-style transferring
process as illustrated in the section titled Virtual deep ZPC-transfer.
For training, we used 2048 unpaired image couples, and for testing,
we used 256 unpaired image couples. In the network framework, the
batch size is 4, the learning rate is 0.0002, and the epochs are 10 000.

Figure 5 shows experimental data comparison, where the
unstained pathological sliced tumor tissue slide is adopted as a trans-
parent bio-sample. Figure 5(a) shows the “real” ZPC image captured
using the conventional ZPC microscope. Figure 5(b) shows the sin-
glet image under quasi-chromatic circular illumination. Figure 5(c)
shows the virtual ZPC image based on the deep learning computa-
tional imaging method. Figure 5(d) shows the conventional bright-
field microscopy image. From the vision comparison of Figs. 5(b)
and 5(c), it is found that that the image contrast is improved much.
From the quantitative data comparison, the SSIM between Figs. 5(b)

and 5(a) is 0.53, while the SSIM between Figs. 5(c) and 5(a) is
improved up to 0.85.

CONCLUSION

In this manuscript, we constructed the simplest ZPC
microscopy setup among all known ZPC microscopes. Our sim-
plest ZPC microscopy setup is based on two highlights. One is our
designed aspherical singlet objective, which is free from extensive
assembling and aligning, and the other is the deep learning ZPC
computational imaging method. This means that there is no need for
the inset Zernike phase plate in our singlet microscopy setup. For the
practical virtual phase contrast microscopy setup, the computational
time is less than 100 ms, which is far less than that of other compu-
tational quantitative phase imaging algorithms. Through imaging,
deep training, and data comparison, it is shown that our methods
are effective for transparent undyed sliced pathological tumor tis-
sue slides. Our deep learning transfer methods are also fit for other
rapid phase imaging methods, e.g., transport-of-intensity-equation
(TIE),28 PIE,29 and FPM.30,31 We believe that our deep learning
singlet virtual phase contrast microscopy offers the potential for
the development of low-cost and portable microscopes and benefits
resource-limited areas.
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