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ABSTRACT
Singlet lenses are free from precise assembling, aligning, and testing, which are helpful for the development of portable and low-cost micro-
scopes. However, balancing the spectrum dispersion or chromatic aberrations using a singlet lens made of one material is difficult. Here,
a novel method combining singlet lens microscopy and computational imaging, which is based on deep learning image-style-transfer algo-
rithms, is proposed to overcome this problem in clinical pathological slide microscopy. In this manuscript, a singlet aspheric lens is used,
which has a high cut-off frequency and linear signal properties. Enhanced by a trained deep learning network, it is easy to transfer the
monochromatic gray-scale microscopy picture to a colorful microscopy picture, with only one single-shot recording by a monochromatic
CMOS image sensor. By experiments, data analysis, and discussions, it is proved that our proposed virtual colorization microscope imaging
method is effective for H&E stained tumor tissue slides in singlet microscopy. It is believable that the computational virtual colorization
method for singlet microscopes would promote the low-cost and portable singlet microscopy development in medical pathological label
staining observing (e.g., H&E staining, Gram staining, and fluorescent labeling) biomedical research.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0039206., s

INTRODUCTION

Commercial microscope objective lenses, cell-phone camera
lenses, and other imaging lenses are cheap due to the mass industrial
production. However, as they consist of multiple pieces of lenses,
the cost mainly focuses on the mounting and testing of lenses. In
contrast, singlet lenses are free from precise assembling, aligning,

and testing.1–3 The singlet lenses can reduce time, money, and labor
cost extensively, resulting in a further price and integration revolu-
tion of imaging devices. Many researchers have designed and fabri-
cated to achieve singlet imaging/microscopy, including the graded
index (GRIN) lens,4,5 metalens6,7 based on a metasurface and meta-
material, diffractive optical element,8,9 non-rotational symmetric
freeform surface,1–3 and other aspheric lenses. The GRIN lens can
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eliminate spherical aberrations well, while it cannot overcome the
off-axial aberrations at a large field of view (FOV). The metalens
is thin and light, while it requires time-consuming fabrications and
has difficulties in surface measurements. The metasurfaces are usu-
ally fabricated by Electron Beam Lithography (EBL) and Focused-
Ion-Beam (FIB) etching, which greatly increase the manufacturing
costs. These limitations restrict the usage of metalenses. For non-
rotational symmetric freeform surfaces, they are difficult to design,

mathematically describe, and test. Besides, colorfully imaging these
metalenses and non-rotational symmetric freeform surfaces, made
of one material, with single-shot recording is difficult.

In this manuscript, we propose a method, combining deep
learning virtual colorization and designed singlet lens, to achieve
large FOV singlet colorful microscopy. We use a custom-designed
singlet aspheric lens as the objective lens. The custom-designed sin-
glet aspheric lens aims to obtain a high cut-off spatial frequency

FIG. 1. An overview to achieve the singlet microscopy colorization. (a) Schematic of a singlet microscopy system. (b) Virtually colorizing deep learning training stage. G
means the “generator,” G(x) means the generated image by the “generator,” and D means the “discriminator.” (c) Practical transferring stage: a monochromatic image is
convoluted with the trained “virtually colorizing deep neural network” in (b) directly.
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and keep the imaging system with linear signal properties. The high
cut-off frequency is due to the fact that the computational imag-
ing cannot generate new high-frequency information and can only
optimize the imaging performance based on the originally recorded
images. The reason for the use of linear imaging system is that the
computational imaging can achieve the best results under a linear
system. By computational image-style-transfer methods based on
deep learning, we could achieve colorful microscopy with a single-
shot digital recording. Different from natural scene photographs,
scenes of microscopy images are simpler10–22 because the biosam-
ples, e.g., pathological tissue sections and cells, are usually stained
with a gold-standard dye and fluorescence label. The chemical dyes
and fluorescence labels are always with limited artificial colors.
For example, the pathological tissue sections samples used in this
manuscript are hematoxylin and eosin (H&E) stained, which is one
of the widely used tissue stains in histology and medical diagno-
sis. After H&E staining, cell nuclei will appear purplish-blue, while
the cellular matrix and cytoplasm will appear pink by the H&E
stain.15–19 Based on the two limited artificial colors, all structures
and details of pathological tissue section samples appear as different

shades and hues, which results in easy observation. Thus, we propose
the deep learning image-style-transfer method to translate a chro-
matic grayscale image to a colorful image. Obviously, we provide a
new aspect to achieve colorful microscopy method for all imaging
systems with spectrum dispersion/chromatic aberrations. Our pro-
posed ideas and methods could be introduced into metalens and
designing of other lenses. The virtually colorizing computational
image-style-transfer method could be combined with the all imaging
system with chromatic aberrations.

Figure 1 shows the overview to achieve the singlet microscopy
colorization. Figure 1(a) shows the schematic of a singlet microscopy
experimental setup. It is very simple and constructed easily. The
singlet lens is presented in Fig. 2. Also, our singlet lens could be
replaced by a meta-surface lens and other singlet lens. In Fig. 1(a),
the pathological tissue slide is illuminated by a mono-chromatic
light, which could be a cheap blue (B) light-emitting diode (LED),
green (G) LED, and red (R) LED. The slide is also at the object
plane of the singlet aspheric lens, and a mono-CMOS image sen-
sor (MTR3CMOS2000KMA, TOUPVIEW, China) is at the conjunct
imaging plane of the singlet aspheric lens. The LED, biosample slide,

FIG. 2. Custom-designed singlet aspheric lens and its MTF curves. (a) Our singlet lens made of E48R. (b) MTF curves across the FOV of 0 mm–2.5 mm at the wavelength
of 486 nm. (c) MTF curves across the FOV of 0 mm–2.5 mm at the wavelength of 530 nm. (d) MTF curves across the FOV of 0 mm–2.5 mm at the wavelength of 620 nm.
(b)–(d) all show that the singlet aspheric lens in (a) has a high cut-off frequency under a chromatic wavelength illumination and good linear signal properties.
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singlet aspheric lens, and mono-CMOS image sensor are all along
the optical axis. When the monochromatic light is in the “ON” state,
a grayscale image is recorded by the mono-CMOS image sensor.
Figure 1(b) contains two data processing stages, i.e., the deep learn-
ing training stage (the blue dot line arrow) and the practical transfer-
ring stage (the red dotted line arrow). In the deep learning training
stage, the input data are the grayscale monochromatic images and
the conventional RGB microscopy images. The conventional RGB
microscopy images are collected by using the research-level com-
mercial microscope (NIB900, NOVEL, China) and a RGB CMOS
image sensor (MTR3CMOS2000KPA, TOUPVIEW, China). The
virtual colorization kernel between the grayscale monochromatic
images and the RGB colorful images would be iteratively trained by
a style-transfer generative adversarial network (GAN),10–22 which is
explained in Fig. 3. Once the virtual colorization kernel is obtained,
in practical use of the stage in Figs. 1(c) and 1(a), the grayscale sin-
glet microscopy image would be translated into a colorful image
after convoluted by the trained virtual colorization deep neural
network.

SINGLET LENS

The singlet lens and its modulation transfer function (MTF)
curves are presented in Fig. 2. The singlet lens consists of two
even aspheric surfaces, which can be expressed by the following
equation:23

z =
cr2

1 +
√

1 − (1 + k)c2r2
+ α1r2 + α2r4 + α3r6 +⋯ + α7r14, (1)

where c is the curvature (1/R), k is the aspheric coefficient, and α
are high order terms coefficients. The first aspheric surface, i.e., the
parameters of S1 and S2 are presented in Table I. The lens material
is the optics cyclic olefin polymer of E48R (ZEON, JAPAN) and it
is manufactured by Nanjing University of Science and Technology
(NUST).

The designed objective working distance is 27 mm, and the con-
junct imaging working distance depends on the illumination wave-
length as the axial chromatic aberration/spectrum dispersions, i.e.,
161.7 mm under the blue LED illumination, 175.7 mm under the

FIG. 3. Deep learning virtually colorizing GAN frameworks. (a) Generator: a designed U-NET-like deep convolution neural network. (b) Discriminator: a convolution neural
network to calculate a probability, distinguishing “true” or “fake” image data.
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TABLE I. Surface parameters of S1 and S2.

R k α2 α3 α4 α5 α6 α7

S1 8.240 −1 1.864× 10−4 1.011× 10−5 −8.274× 10−7 4.675× 10−8 −1.316× 10−9 1.443× 10−11

S2 11.101 −1 6.558× 10−4 −7.207× 10−5 3.043× 10−5 −4.466× 10−6 2.971× 10−7 −7.36× 10−9

green LED illumination, and 181.7 mm under the red LED illumi-
nation. Figure 2(b) shows the MTF curves across the objective FOV
of 0 mm–2.5 mm at the wavelength of 486 nm, Fig. 2(c) shows
the MTF curves across the objective FOV of 0 mm–2.5 mm at the
wavelength of 530 nm, and Fig. 2(d) shows the MTF curves across
the objective FOV of 0 mm–2.5 mm at the wavelength of 620 nm.
In Figs. 2(b)–2(d), the MTF curves show that our singlet aspheric
lens keeps good linear signal properties across the objective FOV of
0 mm–2.5 mm under a chromatic wavelength illumination. Our sin-
glet aspheric lens has a high cut-off frequency under a chromatic
wavelength illumination, which is up to 350 lp/mm. These good
linear signal properties help greatly for the computational imaging
algorithms.

DEEP LEARNING VIRTUALLY COLORIZING

We trained the virtual colorization kernels three times under
the blue LED illumination, the green LED illumination, and the red
LED illumination. Here, we state the process of deep learning vir-
tually colorizing algorithms using the example under the blue LED
illumination. We are not the first to apply the GANs methods to
transfer the image style in microscopy. Prior and concurrent works
have done so. Our frameworks and data differ greatly in the H&E
staining singlet microscopy applications. In algorithm details, we
also designed a “U-Net”-like generator network architecture. Before
transferring the image style, we used a deep learning deconvolution
method to improve the resolution and image contrast.23 In other
image style transfer (Refs. 24–26), such as photograph-to-comics,
photograph-to-painting, and day-to-night, the visual feelings are
focused, while the texture details are not important. However, in
biomedical observation, we hope to keep the image texture and high-
resolution-content features in the virtually colorized images. Thus,
we add a mass of a direct skip connection in the “U-NET”-like gen-
erator network. In this network, the generator would strongly keep
the high-resolution-content features of the original grayscale images.
Even in the worst deep learning training, the generator should return
the original input. The loss function contains two aims, which are
similar to Refs. 13, 14, and 20: one is to achieve the style transfer-
ring and the other is to keep the high-resolution-content features. In
computational environments, the deep learning virtual colorization
is processed on a desktop computer, which has a Windows 10 oper-
ating system (Microsoft), a Core i7-7700K CPU @ 4.2 GHz (Intel),
64 GB of RAM, and dual GeForce GTX 1080Ti GPUs (NVIDIA).
The GAN is constructed by using TensorFlow (TF) framework ver-
sion 2.1 and Python version 3.7. In GAN deep learning, 1024 pairs of
images are for training and 256 pairs of images are for testing. Each
image is with the size of 256 × 256 pixels2 in the format of “JPEG”
(24 Bit Depth). In the network framework, the batch size is 4, the
learning rate is 0.0002, and the epochs are 10 000. The deep training

costs ∼20 h, while for practical usage, the virtually colorizing time is
∼7 ms.

EXPERIMENTS

The pathological tumor tissue slides were obtained from the
Suzhou Municipal Hospital (SMH), which were prepared from
existing specimens and followed the basic clinical information
de-identification. All processing of tumor biosamples has been
approved and supervised by the Medical Ethics Committee of SHM.
These tumor tissue biosamples were baked at 68 ○C for 30 min.
Then, they were deparaffinized through xylene and absolute and
95% alcohols to distilled water. After preparation, the sections
were dyed with hematoxylin and eosin in turn, dehydrated through
graded ethanol solutions, and cleared with xylene. Finally, the H&E
stained slides were sealed with a half drop of neutral resin gum
and covered with a coverslip. In the singlet data collection process,
the image data are recorded at three wavelength LEDs, respectively.
The blue LED is with the dominant wavelength of 485 nm and the
full width at half maximum (FWHM) of ∼40 nm. The green LED
is with the dominant wavelength of 530 nm and the FWHM of
∼20 nm. The red LED is with the dominant wavelength of 620 nm
and the FWHM of ∼30 nm. The pathological tissue slide is put at
the objective working length of 27 mm. When the blue LED illu-
minates, the monochromatic CMOS image sensor is at the con-
junct imaging position of 161.7 mm and a set of blue LED illumi-
nating images are recorded. When the green LED illuminates, the
monochromatic CMOS image sensor is moved to 175.7 mm and a
set of green LED illuminating images are recorded. Finally, when
the red LED illuminates, the monochromatic CMOS image sensor
is moved to 181.7 mm and a set of red LED illuminating images
are recorded. These singlet microscopy image data are the input
data to be virtually colorized by the style-transfer GAN deep learn-
ing. In the “ground-truth” data collection, a research-level com-
mercial microscope (NIB900, NOVEL, China) is used under the
10X (NA0.25) magnification objective lens, which is with a halo-
gen lamp. We tried to best align/register the commercial microscopy
images with the collected singlet microscopy images by precisely
and manually moving the biosample stage, which would help the
afterward digital registration greatly. In the deep training stage, the
virtual colorization kernels are trained. In this manuscript, we com-
pare the virtual colorization results of blue-LED-illumination sin-
glet microscopy images, green-LED-illumination singlet microscopy
images, and red-LED-illumination singlet microscopy images.

Throughout experiments, data collection, deconvolution for
a better image contrast, digital registration, and deep training,
the virtual colorization results and comparisons are presented in
Figs. 4 and 5. In Fig. 4, the blue LED illuminated grayscale image, the
green LED illuminated grayscale image, and the red LED illuminated
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FIG. 4. An example of virtual colorization by deep learning. Differences are presented and zoomed in.

FIG. 5. 200 group images under B/G/R illumination to evaluate the average PSNRs and SSIMs of virtually colorized microscopy images.
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TABLE II. PSNRs and SSIMs under the illumination of B LED, G LED, and R LED.

PSNR SSIM

B LED 25.906 0.87
G LED 27.590 0.92
R LED 28.610 0.91

grayscale image are presented, which are digitally registered and
deconvoluted by the deep learning method23 to improve the image
resolution and image contrast. Comparing the “deep learning vir-
tually colorized images” and the “conventional RGB image/ground
truth,” we thought our virtually colorizing deep learning network
framework works well. However, in the grayscale images, the dif-
ferent LED illuminated images have different spectral transmis-
sion. For example, the red LED illuminated cell nuclear parts are
much darker than those in blue LED illuminated images. These
differences in spectral transmission caused the image texture differ-
ences in grayscale images. Hence, which kind of LED is the best?
Thus, we did the comparison data in Fig. 5. In Fig. 5, we tested
200 groups images to calculate the average peak signal noise ratio
(PSNR) and structure similarity index measure (SSIM).13,14,20 The
conventional RGB images are viewed as the criterion when calcu-
lating PNSRs and SSIMs, which are presented in Table II. Under
blue LED illumination, the PSNR is 25.906 and the SSIM is 0.87.
Under green LED illumination, the PNSR is 27.590 and the SSIM is
0.92. Under red LED illumination, the PNSR is 28.610 and the SSIM
is 0.91.

In this manuscript, we show a virtual colorful singlet
microscopy for H&E stained biosample slides. In the hardware, the
illumination is provided by a quasi-chromatic LED, and a singlet
aspheric lens is used, which has linear signal properties across all
FOVs. In the algorithms, we designed a deep learning GAN frame-
work to achieve virtual colorization. Besides, we compared the vir-
tual colorizing results by transferring three kinds of quasi-chromatic
grayscale images. For H&E stained pathological tissue slides, the
green LED illumination and the red LED illumination would pro-
vide a better PSNR and SSIM than the blue LED illumination. Fur-
thermore, the virtual colorizing methods are also fit for other sin-
glet microscopy situations and other chromatic aberration imag-
ing systems, such as a conventional spheric lens, diffractive lens,
and meta-surface lens. Besides, in other chromatic/quasi-chromatic
illumination biomedical microscopy imaging applications,27–33 such
as LED-illumination Fourier ptychographic microscopy (FPM)30,31

and laser-illumination quantitative phase microscopy,28,29,32,33 our
deep learning virtual colorization method could also have the poten-
tial to transfer grayscale images to visually comfortable RGB color
images.
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