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The ptychographic iterative engine (PIE) is an algorithm for coherent lens-less diffraction imaging. It facilitates the
development of low-cost large field of view (FOV) lens-less microscopy, as it can expand the FOV extensively by
moving the light source or the bio-medical pathological sample slide. In a PIE setup, the illumination light needs to
have high/partially coherence. Thus, to get a colorful microscopy image, more than 3 illumination light sources
with different dominant wavelengths are required in a traditional PIE setup. In this manuscript, an improved

PIE based on computational deep learning color-transferring method is proposed to achieve colorful large FOV
lens-less microscopy imaging. In our method, only one high/partially coherent light source is used, where the
image data are three times less than those images under multiple illuminations for colorful PIE microscopy. It
is believable that our colorful PIE microscopy enhanced by the deep color-transferring method would be helpful
for the development of low-cost large FOV lens-less microscopes.

1. Introduction

Large field-of-view (FOV) and high-resolution microscopy imaging
is indispensable for bio-medical pathological slide observing and di-
agnosing. In a research-level biological center or hospital, these mi-
croscopy diagnosis demands would be realized by commercial bench-
top microscopes. However, commercial bench-top microscopes are lim-
ited resources in the villages and remote areas. In recent years, lens-
less microscopy based on coherent diffraction imaging (CDI) [1-6] at-
tracts researchers to develop low-cost portable and light-weight micro-
scopes [7-12]. Under high/partial coherent light illumination, CDI se-
tups would retrieve the complex wavefront, including the amplitude and
the phase. And lenses and complex optical components are not neces-
sary in these setups. Ptychographic iterative engine (PIE) [11,12] lens-
less microscopy is a kind of coherent diffraction imaging (CDI) meth-
ods. In contrast to other CDI algorithms, e.g., Gerchberg-Saxton (G-S)
algorithms [7-10], transport-of-intensity phase retrieval algorithms
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[13] and so on [14-20], PIE would extend the FOV [9,11,12]. In the
aspect of hardware, PIE scans the thin bio-sample slide in a 2-dimension
(2D) plane, which is perpendicular to the optical axis. Simultaneously,
the diffraction images are recorded by a digital CCD/CMOS image sen-
sor. In the aspect of image reconstruction algorithms, the iterative up-
dating computational formulas based on the Fresnel/Fraunhofer angular
spectrum propagation are executed according to the recorded diffrac-
tion images stacks [16-20]. Thus, PIE has an outstanding advantage of
achieving an amazingly large FOV lens-less microscopy, which theoret-
ically has an infinite FOV by extensively scanning the thin bio-sample
slide in a 2D plane. These advantages show the potentials to develop an
extensible large FOV low-cost portable lens-less microscopes.

However, in contrast to the conventional lens-based bench-top
bright-field microscopes, PIE microscopy could not provide a colorful
image under only one high/partially coherent light illumination. To get
a RGB color format image, more than three kinds of light illuminations
are necessary. In clinical bio-medical pathological standard diagnosis

E-mail addresses: edward bayun@163.com (H. Shen), cfkuang@zju.edu.cn (C. Kuang).

https://doi.org/10.1016/j.optlaseng.2021.106843

Received 13 June 2021; Received in revised form 23 September 2021; Accepted 7 October 2021

Available online 16 October 2021
0143-8166/© 2021 Elsevier Ltd. All rights reserved.


https://doi.org/10.1016/j.optlaseng.2021.106843
http://www.ScienceDirect.com
http://www.elsevier.com/locate/optlaseng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optlaseng.2021.106843&domain=pdf
mailto:edward_bayun@163.com
mailto:cfkuang@zju.edu.cn
https://doi.org/10.1016/j.optlaseng.2021.106843

Y. Bian, Y. Jiang, J. Wang et al.

applications, chemical dying has been a popular method to label differ-
ent areas of the tissue/cells. Besides, chemical dying tissue/cells slides
would be sealed by wax for very long time, which could be helpful for
conserving the typical bio-medical pathological samples. Thus, for these
clinical standard diagnosis, RGB colorful microscopy imaging is attrac-
tive to doctors and biological researchers by the using of a low-cost
portable PIE lens-less microscope.

In this manuscript, the deep learning color-transferring method
is proposed to enhance the PIE microscopy for virtually colorizing,
only with one high/partially coherent light illumination. Usually, bio-
medical pathological tissues/cells slices are stained by gold-standard
chemically dying. Thus, as limited artificially rendering, the colors of the
chemically stained pathological tissues/cells in RGB images are less and
simpler than those in natural scene digital photos. For example, hema-
toxylin and eosin (H&E) dying is widely adopted in pathological his-
tology rendering and medical diagnosis. In H&E dyed pathological tis-
sues/cells, the purplish-blue appearance regions represent the cell nucle-
uses, and pink appearance regions are the cellular matrix and cytoplasm
parts. This means that color information relates with the morphological
characteristics. Thus, it is probable that the chromatic greyscale PIE im-
ages under only one kind illumination could be virtually translated into
the RGB colorful images, which we call colorful PIE. We believe that
this colorful PIE would promote the development of the low-cost and
portable large FOV lens-less microscopes.

In the following contents, firstly, the material and experimental se-
tups are presented and described. Secondly, computational algorithms,
including PIE and deep leaning image-style-transfer are stated. Thirdly,
the experiments and data are present to show the effectiveness of our
colorful PIE method.

2. Setup and material

As shown in Fig. 1, here we use a Fresnel domain propagation frame-
work to achieve our extensible FOV PIE microscopy. In Fig. 1, partially
coherent quasi-plane visible-light wave illuminates a circular aperture.
The partially coherent light comes from a green (G) LED, which is cou-
pled into a multi-mode quartz optical fiber. The partially coherent light
emits from the other end of the quartz optical fiber. The distance be-
tween the circular aperture and the exit end of optical fiber is ~150 mm,
named as L;. After the circular aperture, the chemically dyed patholog-
ical tissue slides are fixed on a 2D moveable mechanical supporter. Af-
ter the chemically dyed pathological tissue slides, a chromatic digital
CMOS image sensor is used to record the diffraction images. The patho-
logical tissue is fixed on a standard medical glass slide (with the size of
75 mm * 25 mm * 1 mm) and covered by a medical glass coverslip
(with the size of 22 mm * 22 mm*0.1 mm). The medical glass coverslip
is firmly close to the circular aperture. The bottom of the medical glass
slide keeps the distance of ~500 pm, named as L,, from the CMOS im-
age sensor. Thus, the optical distance between the pathological tissue
slice and the CMOS image sensor is ~2 mm. The ratio of L; and L, is
~300, thus the imaging magnification of the recorded hologram over the
pathological tissue slide is ~1. Therefore, the illumination can be regard
as a plane wave. As the diffraction patterns of the circular aperture need
to be recorded totally, the diameter of the circular aperture should be
less than the width of the CMOS image sensor. As shown in Fig. 1(a), the
exit end of the optical fiber and circular aperture is fixed. The core diam-
eter of the optical fiber is 600 pm. The diameter of the circular aperture
is 4.8 mm, which is equivalent to 1000 pixels of the CMOS image sen-
sor. The pathological tissue slide is fixed on a 3D-axial fine mechanical
translation table with the resolution of ~10 pm. And the CMOS image
sensor is also fixed on a 3D-axial fine mechanical translation table with
the resolution of ~10 um. The green LED is with the power of 3 W, pro-
vided by the JUXIANG Technology, CHINA. The green LED’s dominant
wavelength is 550 nm, with the spectral bandwidth of ~40 nm. The
multi-mode quartz optical fiber is the CORE600UM, SHOULIANG Op-
tics, CHINA. The 3D-axial fine mechanical translation table to support
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the pathological tissue slide is the XYZ60MM, JUXIANG Technology,
CHINA. The 3D-axial fine mechanical translation table to support the
CMOS image sensor is the XYZ25MM-C, JUXIANG Technology, CHINA.
The CMOS image sensor is the MV-CB060-10UM-B/C/S, HIKVISION,
CHINA, whose sensor is IMX178, with the pixel size of 2.4 um and the
resolution of 3072 x2048. The pathological tissue slide is biologically
and chemically processed in the bio-medical lab of Suzhou Municipal
Hospital (SMH), following the de-identification of the basic clinical in-
formation, approved and supervised by the Medical Ethic Committee of
SMH. Firstly, the tumor tissues are cut into thin slice with ~ 2-4 um.
Then, these tumor tissue slices are baked at 68 °C for 30 min and de-
paraffinized through xylene, absolute and 95% alcohols to distilled wa-
ter. Thirdly, the sections are dyed with hematoxylin and eosin in turn,
dehydrated through graded ethanol solutions and cleared with xylene.
Finally, these H&E-stained slides are sealed with a half drop of neutral
resin gum and covered with a coverslip.

The Fig. 2(a) is the schematic of our PIE lens-less microscopy. Dif-
ferent from Fraunhofer-diffraction PIE, our PIE lens-less microscopy
is based on the Fresnel-diffraction. The gap between the pathological
slide and the CMOS image sensor is only ~0.5-1 mm. The x-y coor-
dinate/positions of the circular aperture and the CMOS image sensor
are fixed. While the pathological tissue slide is precisely shifted along
the x-y axis. These x-y shifts could be equivalent to the shifts of the
circular aperture, which is presented in Fig. 2(b). The area overlap of
each adjacent aperture couple is 80%. When the equivalent aperture is
at the first position, the CMOS image sensor is moved along the z-axis
as ~50 um to record 2 different defocusing holograms, which are to
execute the Transport-of-Intensity equation (TIE) solving for a complex-
value initialization of PIE. Then, when the equivalent aperture is moved
to a new x-y position, the related Fresnel-diffraction pattern is recorded
by the CMOS image sensor. In the following part, we would introduce
the computational algorithms to reconstruct a colorful PIE lens-less mi-
croscopy image.

3. Computational algorithm
3.1. PIE based on fresnel propagation

Flow charts of colorful PIE microcopy computational algorithms are
shown in Fig. 3. The circular aperture is close to the pathological tissue
slide, and the passed light after the circular aperture is named as a probe,
which would be expressed as a complex-value function P(r — R,
where r represents r(x, y), which means the objective point coordinates
on the pathological tissue slide; R,(;, is the relative shift between the il-
lumination area and the j-th shifted sample. The object is expressed as a
complex-value function O(r). The output wave’s complex-value function
is @,(r, Ry(j)) = P(r — Ry;)) - O(r). The propagated diffraction wavefront
is Fresnel{g,(r, Ry;)),z}. The CMOS image sensor records the diffrac-
tion image, which is named as I;), where I is the s(j)-th recorded
Fresnel diffraction pattern, and proportional to the squared modulus of
the propagated diffraction wavefront, I,;) o |Fresnel{g,(r, Ry, z}
Afterwards, the chemically dyed pathological tissue slide is moved to a
new position. At this new position, another part of the pathological tis-
sue slide is illuminated and the intensity of the relative diffracted wave-
front is recorded by the CMOS image sensor. In this manuscript, R;;,
is the relative vector shift between the pathological tissue slide and the
probe. Based on the recorded diffracted images and computationally it-
eratively phase retrieval algorithm, the high-resolution microscopy im-
age of the pathological tissue slide would be reconstructed. Different
from the Fraunhofer diffraction, our computational iterations are based
on the Fresnel diffraction. Besides, the initial guess of Oy(r) could be
provided by the TIE solving, based on two axial shift diffraction images
[9-12]. The algorithms of the deep learning colorful PIE lens-less mi-
croscopy could be described in following steps:
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Fig. 1. The 3D structure of PIE lens-less mi-
croscopy experimental setup with an extensive
field-of-view (FOV).
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Fig. 2. Illumination ways of our PIE lens-less microscopy setup. (a) A 2D-schematic illustration about our PIE lens-less microscopy. (b) The equivalent aperture-shift
illustration, where in practice the aperture and CMOS image sensor is fixed and the pathological tissue slide is moved.
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Fig. 3. Flow charts of computational algorithms for colorful PIE microcopy with only one kind illumination.

Step 1: The pathological tissue slide is initialized as Oy(r) by the
TIE solving; and the illumination probe on the pathological tis-
sue slide, named as the object function, is initially guessed as
P(r — Ry)). The initial guess of P(r — Rq,) is roughly the x-y re-
gion size of the illumination on the pathological tissue slide sur-
face. The diffraction images of the pathological tissue slide are
addressed in a stack s(j).

Step 2: Beginning with the diffraction pattern s(0), at the exit posi-
tion after the pathological tissue slide, the complex initialization
is the Eq. (1).

@a(r Ryjy) = 0,() X P(r—Ry;), M

where O,(r) is the object function, P(r — Ry 7)) s the equivalent shifted
illumination probe guess.

Step 3: The complex-value ¢,(r, R;)) is computationally propagated
to the CMOS image sensor plane, as the Eq. (2).

v, (4, Ry;)) = Fresnel{o,(r,Ry;). 2}, 2)

where the Fresnel{*, z} denotes the Fresnel wavefront propagation. The
z at every position is determined by the computationally autofocusing
method. The steps of computationally autofocusing are necessary and
important, as the z-shift-errors occur when the pathological slide moves.
And the Eq. (2) can be re-expressed as Eq. (3).

(s Ry) = |wa (1 Ryp) )eXP 76, (. Ryiy)]- Q)

Step 4: The amplitude (real-value) of the v, (u, Ry;) in Step (3) is
substituted by the square root of the recorded diffracted pattern,
while the phase information is kept. The Eq. (4) would be got
from Eq. (3),

Wen(u: Ry)) = \V Iyjyexp [0 (1. Rs(j))] , @

Step 5: The Eq. (4) would be back-propagated to the object function,
expressed as the Eq. (5)

Pen (r, R:(/)) = Fresnel_l{ylc,n (u, Rs(j)), z}. 5)

Step 6: The object function O, (r), and the illumination probe func-
tion P, (r) are updated as Eq. (6) and Eq. (7), respectively.

Pl (r=Ry;)

0,1 = 0;(N +a— —(@cn = @0)s ©6)
|Rl(r_ RS(‘l)) max
O’.‘(r+Rs . )
Pla(r) = Py(r) + f—2 O (@en— ), %)

2
|0;(r+ Ryy)

max

where « and § are the adjustable iteration step parameters for conver-
gence. The O, (r) is viewed as the newly updated ‘guessed’ object func-
tion, and P;,(r) is viewed as the newly updated ‘guessed’ illumination
probe function. Then, they are repeatedly executed as the Step (1) to the
Step (6), based on the recorded diffraction pattern s(1), s(2),..., s(j), un-
til all recorded diffraction patterns have been used to update the object
and the probe guess. Up to now, one PIE iteration cycle is completed.

Step 7: Here we define a normalized RMS error metric function to
measure the iteration as Eq. (8).

2
p Z 2 IS(j)_V’n(u’RS(j)))

! DUD I F

®)

When the E,, is less than a given value, the iterations would be stopped.
Otherwise, the iterations would be continued.
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Trained GN1: PtoR
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Fig. 4. A GAN framework to achieve deep-color transferring for PIE microscopy.

3.2. Deep learning color-transfer

Transferring photos in one picture style onto another picture style by
computational deep learning methods, has been developed by several
research groups [21-28]. These computational image-style-transferring
methods have shown potentials for creating virtual oil artistic painting,
virtual comic cartoon pictures/movies and virtual chemically dying. In-
spired by these references [29-34], we design a deep learning network
frame to achieve colorful PIE microscopy imaging under only one kind
of illumination. Firstly, the images information is formated into YCbCr
color space for deep-color transferring. Based on the idea of zero-sum
competition game, we design a generative adversarial network (GAN)
framework, as shown in Fig. 4. This GAN framework contains two kinds
of interactive networks, i.e., the generator network (GN) and the dis-
criminator network (DN). The input/output of the GN is matrix data
with 3 channels as the picture format in YCbCr color space, which is

named as the GN images. While the function of DN is to discriminate
the GN images and the ‘real’ images. The input data of the DN are the
‘real’ images and the GN images, namely output data of the GN. The
‘real’ images are adopted by the commercial bench-top brightfield mi-
croscope (NIB9OOL, NOVEL, CHINA). By zero-sum-competition game to
minimize both differences of colors and texture details, the DN would
enforce the GN to generate images with both the desired textures and the
desired colors, on the basis of gray-scale PIE lens-less microscopy ampli-
tude images. The framework looks like a traditional Chinese Grate Ulti-
mate/Taiji, combining two totally opposite into a harmony circle. In this
manuscript, one is the gray-scale PIE lens-less microscopy image data,
while the other is the real RGB conventional bright-field microscopy im-
age data. In the training stage (Fig. 4), there are two training cycle to
compete each other in a zero-sum-competing game. One is the ‘Cyclel:
P to R to P’, where ‘P’ means the PIE lens-less microscopy images, and ‘R’
means the RGB conventional bright-field microscopy images. The other
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is the ‘Cycle2: R to P to R’, where ‘R’ and ‘P’ are the same meaning in the
Cycle 1. For each generator network of Cyclel and Cycle2, there is an
independent discriminator network. As shown in Fig. 4, the Discrimina-
tor P aims to distinguish the generated images by the ‘GN1: PtoR’ with
the unpaired real RGB images; while the Discriminator R aims to distin-
guish the generated images by the ‘GN2: RtoP’ with the unpaired real
PIE lens-less microscopy images. In all generators, the architectures are
the same, which have 8 layers including: Input Layer, Convolution Layer
(stride 1, pad 3), Convolution Layer (stride 2, pad 1), Convolution Layer
(stride 2, pad 1), 9 Consecutive Residual Blocks, Transpose Convolution
Layer (stride 2, pad 1, out_pad 1), Transpose Convolution Layer (stride
2, pad 1, out_pad 1), and Convolution Layer (stride 1, pad 3). In all dis-
criminators, the architectures are also the same, including: Input Layer,
Convolution Layer (stride 2, pad 1), Convolution Layer (stride 2, pad 1),
Convolution Layer (stride 2, pad 1), Convolution Layer (stride 1, pad 1),
and Convolution Layer (stride 1, pad 1). Above architectures and layers
are construct by the python language and TensorFlow (TF) framework
version 2.1, under the Anaconda software environment (open source).

There is an advantage in our deep color-transferring GAN, where the
digital image registration is not necessary. Thus, in the data prepara-
tory stage, there are no computational image rescaling, computational
image rotation and computational image registration, although the two
image stacks data are from totally different optical imaging systems and
digital image sensors. To keep the color information and the image tex-
ture details together harmoniously, like a traditional Chinese Grate Ul-
timate/Taiji, we designed a loss function as Eq. (9) to reserve the color
and image texture and structural feature information.

Loss = L(GN1 : PtoR)+ L(GN2 : RtoP)+ L(cycle)
+0.1(1 = msSSIM(GN1,R))+0.1(1 - msSSIM(GN2,P)), (9)

where L(GN1 : PtoR)and L(GN?2 : RtoP) are the loss function for each
couple of GN-DN respectively. L(cycle) is the total cycle consistency
loss. The ‘msSSIM’ represents the multiscale structural similarity index
(SSIM) of the green channel. The last two expressions aim to keep struc-
tural and texture detail information [35]. In the color-transfer GAN, an
adaptive moment estimation (Adam) optimizer was to update the net-
work learnable parameters.
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Fig. 5. A reconstructed colorful PIE mi-
croscopy image with a large FOV (12 mm *
7.9 mm). The yellow color scalebar is ~1.5 mm.

4. Results

Throughout experiments, diffraction pattern recording, PIE recon-
struction and deep color transferring, the colorful PIE microscopy re-
sults are presented in Figs. 5-7. In computational environments, the
deep learning virtually colorizing is processed on a desktop computer,
which is with a Windows 10 operating system (Microsoft), a Core i7-
7700 K CPU @ 4.2 GHz (Intel) and 64GB of RAM and dual GeForce
GTX 1080Ti GPUs (NVIDA). The GAN is constructed by using Tensor-
Flow (TF) framework version 2.1 and Python version 3.7. The learning
rate is set as of 5 x 10~ for the generator, in both the ‘Cyclel: P to R
to P’ and the ‘Cycle2: R to P to R’. In both independent discriminators,
the learning rate is set as 1 x 107°. In the training stage, the images
are all cropped into the digital size of 512x512 pixels. For training, we
used 2048 unpaired image couples, and for testing, we used 256 un-
paired image couples. The training convergences data are presented in
the Table 1. The training time is ~40 h, where ~1.6 h are enough to
get a good convergence (at the iteration of 200 in Table 1). In the usage
stage, to transfer the cropped PIE lens-less microscopy image with the
digital size of 512x512 pixels into a RGB colorful image, only ~7 ms
are used in the same bench-top computer. Finally, the transferred col-
orful PIE lens-less microscopy images are matched together into a large
resolution colorful PIE lens-less microscopy image.

In Fig. 5, it presents a reconstructed colorful PIE microscopy im-
age with a large FOV (12 mm * 7.9 mm), while the resolution abil-
ity is ~3 um. The FOV could be further improved. In our colorful PIE
microscopy imaging, the diffraction patterns are collected under only
G LED illumination. In Fig. 6, some colorful PIE microscopy images of
randomly selected regions are presented. Each pair is ranged in the dash
line rectangle: the left one is the original PIE microscopy image, which
is greyscale; the middle one is the deep-learning colorful PIE microscopy
image; the right one is the colorful brightfield microscopy image. The
results show that our deep color-transferring method keep the details
well for PIE microscopy imaging. In Fig. 7, the comparison stacks of the
colorful PIE microscopy images and conventional RGB brightfield im-
ages. Based on 256 comparison pairs, we calculate the average value
of the <DELTA E(94)> [36,37] performances, which is used as eval-
uate the color differences. The average value of the <DELTA E(94)>,
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Fig. 6. Images pairs of origin greyscale PIE microscopy, colorful PIE microscopy and conventional RGB brightfield. The top-left black scale bar is about 200 pm. The

amplitude images are with the greyscale of [0, 255].

Table 1

Training convergence data in the deep training stage.

Epoch 1 10 50 100

200 500 1000 5000

Loss 0.751  0.206  0.1272  0.1253

0.1241 0.1241 0.1241 0.1241

between our colorful PIE images and the conventional RGB brightfield
images, is 2.7105, which means the color difference is narrow [,37].
After deep trained, the deep color-transferring is very fast, which is
~7 ms under our bench-top computer. However, the execution time of
PIE process is very long, whose total computational time is ~30 min,

where includes autofocusing, TIE and PIE. All of their algorithms have
a lot of Fourier transforms, iterations and maximum/minimum local
researching methods. Thus, our deep color-transferring methods al-
most do not aggravate the burden of the total PIE microscopy imaging
time.
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4

Fig. 7. Vision comparisons of colorful PIE microscopy images and conventional RGB brightfield images. The top-left black scale bar is about 200 um.

5. Conclusion

In this manuscript, a computational color-transfer method based on
deep learning, is proposed to enhance the PIE lens-less microscopy. The
PIE lens-less microscopy setup under only one quasi-chromatic light il-
lumination, would achieve colorfully microscopy imaging. In the tradi-
tional colorful PIE microscopy setups, more than three kinds of differ-
ent wavelengths are used to get a RGB image. This deep color-transfer
method broadens the attractiveness and application of the PIE lens-less
microscopy, which would benefit the development of low-cost large FOV
microscopes. Our color-transfer deep learning network is trained on the
basis of the H&E-stained pathological tissue slides. The deep learning
color-transfer method would work for other staining medical diagnosis,
e.g., fluorescent staining, Sudan staining and so on. By the experiments
and data, we present that the deep learning color-transfer method work
well on a PIE lens-less microscopy setup under only G LED illumination,
which proves the effectiveness and robustness of the proposed concept.
Thus, it is believable that our colorful PIE microscopy enhanced by the

deep learning color-transfer method would be helpful for the develop-
ment of low-cost large FOV lens-less microscopes. We also believe our
deep color-transfer method also is fit for other quasi-chromatic illumi-
nation microscopy setups.
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