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Abstract: In applications such as carrier attitude control and mobile device navigation, a micro-
electro-mechanical-system (MEMS) gyroscope will inevitably be affected by random vibration, which
significantly affects the performance of the MEMS gyroscope. In order to solve the degradation
of MEMS gyroscope performance in random vibration environments, in this paper, a combined
method of a long short-term memory (LSTM) network and Kalman filter (KF) is proposed for
error compensation, where Kalman filter parameters are iteratively optimized using the Kalman
smoother and expectation-maximization (EM) algorithm. In order to verify the effectiveness of the
proposed method, we performed a linear random vibration test to acquire MEMS gyroscope data.
Subsequently, an analysis of the effects of input data step size and network topology on gyroscope
error compensation performance is presented. Furthermore, the autoregressive moving average-
Kalman filter (ARMA-KF) model, which is commonly used in gyroscope error compensation, was
also combined with the LSTM network as a comparison method. The results show that, for the x-axis
data, the proposed combined method reduces the standard deviation (STD) by 51.58% and 31.92%
compared to the bidirectional LSTM (BiLSTM) network, and EM-KF method, respectively. For the
z-axis data, the proposed combined method reduces the standard deviation by 29.19% and 12.75%
compared to the BiLSTM network and EM-KF method, respectively. Furthermore, for x-axis data and
z-axis data, the proposed combined method reduces the standard deviation by 46.54% and 22.30%
compared to the BiLSTM-ARMA-KF method, respectively, and the output is smoother, proving the
effectiveness of the proposed method.

Keywords: MEMS gyroscope; random vibration environments; long short-term memory network;
Kalman filter; expectation-maximization algorithm

1. Introduction

Fiber optic gyroscopes and laser gyroscopes have excellent performance, but they
are too large and expensive for portable devices [1,2]. Micro-electro-mechanical-system
(MEMS) gyroscopes have, in recent years, been used in low-cost inertial navigation systems
(INS) due to their small size and low cost. However, the MEMS gyroscope has a significant
error due to the manufacturing technology and structural composition [3,4]. The error
of the MEMS gyroscope can be divided into deterministic error and random error. The
deterministic error mainly refers to perturbation errors such as zero offsets and the scale
factor, which can be corrected by a calibration test [5,6]. Random error refers to the random
drift caused by uncertain factors, usually determined by the device’s accuracy level [7],
with no precise repeatability. Therefore, it is difficult to accurately compensate for random
error, which hinders the further improvement of MEMS gyroscope performance.
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In MEMS gyroscope error compensation research, the MEMS gyroscope data are
generally treated as time-series data. Scholars have proposed methods such as the autore-
gressive moving average (ARMA) model, the Allan variance (AV), the wavelet threshold
(WT), the support vector machine (SVM), and the artificial neural network (ANN), and all
of them have achieved excellent results [7–14]. Recently, various variants of the recurrent
neural network (RNN), which has strong processing power for time-series data, have been
shown to be superior to traditional methods in the research of error compensation in MEMS
gyroscopes [15–18].

However, most of the research mentioned above has acquired data by placing the
MEMS gyroscope in a static environment. In practical applications of the MEMS gyroscope,
it is inevitably that it is affected by random vibration [19]. In random vibration environ-
ments, the MEMS gyroscope is interfered with by both internal device noise and external
vibration noise [20], which dramatically affects the performance of the MEMS gyroscope.
The degradation of performance in vibrating environments is a fatal problem for MEMS
gyroscopes [21,22], so it is essential to research error compensation methods in random
vibration environments.

Most of the current research on improving the performance of the MEMS gyroscope
in random vibration environments is to fix the MEMS gyroscope on a vibration isola-
tion platform [23–25]. However, this kind of method is not universal [26]. There is not
much research based on time-series models—the windowed measurement error covariance
(WMEC) method has been applied to compensate for the effects of the vibration environ-
ments [27], singular spectrum analysis (SSA) was proposed to remove the low-frequency
vibration noise perturbations of MEMS accelerometers [28], and the third-order autore-
gressive (AR) model was used to estimate the Kalman filter to compensate for the MEMS
gyroscope’s attitude angle error caused by random vibration [29].

Considering the dramatic perturbation of the MEMS gyroscope in random vibration
environments, in this paper, a combined method of a long short-term memory (LSTM)
network and Kalman filter is proposed for error compensation, with the Kalman smoother
and expectation-maximization (EM) algorithm to dynamically adjust the predicted values
of the LSTM network to improve the performance in error compensation. The main
contributions of this paper are as follows:

(1) The combination of LSTM network and Kalman filter is applied to MEMS gyroscope
error compensation in random vibration environments;

(2) The proper input data step and the network topology are explored, and the error
compensation performance of the bidirectional LSTM (BiLSTM) network and other
recurrent neural network (RNN) variants are compared;

(3) In designing the Kalman filter, the EM algorithm is used to estimate the parameters.
It is compared with the ARMA model, a parameter estimation method commonly
used in research of the MEMS gyroscope error compensation problem.

The remainder of this paper is organized as follows: (1) Section 2 introduces the meth-
ods, including BiLSTM network, Kalman filter, ARMA-KF model, and EM-KF model, and
gives the illustration of this paper proposed method; (2) Section 3 presents the experiment,
results, and comparisons; and (3) the remaining sections are the conclusion, appendix,
and references.

2. Method
2.1. Multi-Layer BiLSTM Network and Kalman Filter

The long short-term memory network is a variant of the recurrent neural network
used to solve the gradient vanishing or gradient explosion problem of RNNs [30,31]. A
detailed description of LSTM units can be found in references [15–18].

The basic LSTM network only considers the historical and current inputs and ignores
future inputs [32]. Therefore, the LSTM network can perform the reverse operation,
superimpose the forward and reverse information flows, and fully utilize the front and
back inputs at the current time to improve the error compensation performance. In addition,
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the previous hidden layer’s output is used as the input of the following layer to explore
the more in-depth features of the time-series data, thus enhancing the model’s nonlinear
fitting ability. The multi-layer BiLSTM network information flow is shown in Figure 1.
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Figure 1. Information flow of multi-layer bidirectional long short-term memory (BiLSTM) network.
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where h(n−1)
t is the hidden state of the Layer n− 1 at time t. Each hidden state is composed

of forward and reverse superposition. The related equations are denoted as follows:

h(n)t =
→
h
(n)

t ⊕
←
h
(n)

t (2)

The Kalman filter is an optimal state estimation method that can be applied to dy-
namic systems with random disturbances. It estimates the system state based on discrete
measurement that contain noise [33,34]. Suppose the state–space model is built as:

x̂k = Φx̂k−1+Γωk−1 (3)

yk= Hxk+vk (4)

where Φ is the system state transition matrix, Γ is the system noise-driven matrix, H is the
measurement matrix, x̂k is the system state vector, yk is the measurement vector, ωk is the
system noise vector, and vk is the measurement noise vector.

The noise of the system models and measurement models are assumed to have normal
distribution in the Kalman filter, such that [35]:

ωk ∼ N (0, Q) (5)

vk ∼ N (0, R) (6)

where Q is the covariance matrix of the system models and R is the covariance matrix of
measurement models.
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The Kalman filter is composed of two-stage optimization. In the predicted stage, the
current system state vector is predicted based on the system state vector at the previous
time, such that:

x̂k/k−1 = Φx̂k−1 (7)

Pk/k−1 = ΦPk−1ΦT + ΓQΓT (8)

where x̂k/k−1 is the predicted value of the system state vector and Pk/k−1 is the predicted
covariance matrix of the system state vector.

In the updated stage of the Kalman filter, the current system state vector is updated
by using the measurement vector, such that:

Kk = Pk/k−1HT
(

HPk/k−1HT + R
)−1

(9)

x̂k = x̂k/k−1 + Kk(yk − Hx̂k/k−1) (10)

Pk = (I − Kk H)Pk/k−1 (11)

where Kk is the Kalman filter gain matrix and Pk is the updated covariance matrix of the
system state vector.

2.2. Kalman Filter Design with ARMA Model

The autoregressive moving average model is the most widespread model used in
time-series analysis, and it is derived and developed on the basis of the linear regression
model. The ARMA model can be described as [36]:

xt =
p

∑
i=1

ϕixt−i −
q

∑
j=1

θjεt−j + εt, εt ∼ N
(

0, δ2
ε

)
(12)

where p and q are the order of the ARMA model; ϕi and θj are coefficients that satisfy
stationary and invertible conditions, respectively [37]; and εt is white noise, which is an
uncorrelated random variable with mean zero and constant variance. The model expresses
that the measured values of the stochastic process {xt} at time t are correlated with the
previous p measurements and the previous q white noise.

The steps to design a Kalman filter using the ARMA model as follows: (1) test the
stationarity and normality of the measurement data, (2) determine the model type according
to the autocorrelation function and partial autocorrelation function, (3) determine the order
and parameters of the model according to the Akaike information criterion (AIC) [38], and
(4) perform adaptive testing of the designed model.

2.3. Kalman Filter Design with EM Algorithm

The expectation-maximization algorithm is an iterative method proposed by Shumway
and Stoffer to compute maximum likelihood estimates based on incomplete data [39]. It is
convergent and can identify parameters and states in the model [40]. Andrieu and Doucet
introduced the EM algorithm for parameter estimation for linear state–space models was
introduced [41]. The EM algorithm is an iterative numerical algorithm for computing the
maximum likelihood estimation (MLE). The linear Gaussian state–space model used for
the EM algorithm can be expressed as follows [42]:

xk = Φxk−1 + ωk−1 (13)

yk = Hxk + υk (14)
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The conditional probability densities of the state equation and the measurement
equation are obtained from Equations (13) and (14), respectively:

p(xk|xk−1) = exp
{
−1

2
[xk −Φxk−1]

TQ−1[xk −Φxk−1]

}
(2π)−

n
2 |Q|−

1
2 (15)

p(yk|xk) = exp
{
−1

2
[yk − Hxk]

T R−1[yk − Hxk]

}
(2π)−

m
2 |R|−

1
2 (16)

It is assumed that the likelihood of the system state data and the evolution of the states
is Gaussian, which are defined by the following equations [43]:

p(Y, X|Θ) = p(x1)
N

∏
k=1

p(yk|xk)
N

∏
k=2

p(xk|xk−1) (17)

where Y is the measurement data, X is the unknown system state data, and Θ is the
parameter set of linear Gaussian state–space model. Θ can be represented as follows:

Θ = {Φ, H, Q, R} (18)

By taking the log of the likelihood we arrive at the following formula:

ln p(Y, X|Θ) = −1
2

N

∑
k=2

{
ln|Q|+ [xk −Φxk−1]

TQ−1[xk −Φxk−1]
}
− 1

2

N

∑
k=1

{
ln|R|+ [yk − Hxk]

T R−1[yk − Hxk]
}

(19)

Depending on the maximum likelihood method, the linear Gaussian state–space
model can be identified through an EM algorithm [42]. The algorithm alternates between
two steps—the E-step (expectation) and the M-step (maximization) [44]. In general, the
likelihood density function based on the measurement data, denoted by p(Θ|Y), is called
the posterior distribution of the measurement. The EM algorithm aims to compute the
maximum likelihood estimation of p(Θ|Y). Θi is denoted as the estimate of the likelihood
function at the beginning of the ith iteration.

In the E-step, the expectation for the conditional distribution of ln p(Y, X|Θ) concern-
ing X, is calculated such that:

Ω(Θ|Θi, Y)EX{ln p(Θ|Y, X)|Θi, Y} =
∫
[ln p(Θ|Y, X)](X|Θi, Y)dX (20)

In the M-step, Ω(Θ|Θi, Y) is maximized to find Θi+1 such that:

Ω(Θi+1|Θi, Y) = argmax
Θ

[Ω(Θ|Θi, Y)] (21)

The E-step and the M-step are iterated until,

‖L(Θi+1)− L(Θi)‖ < τ (22)

where τ is the predefined threshold. Equation (22) means that it has satisfied the conver-
gence criterion. The specific process of designing a Kalman filter using the EM algorithm is
given as follows:

The value of Ω(Θ|Θi, Y) is determined by the following [45]:

EX(xk|Y) = x̂k|N (23)

EX

(
xkxT

k−1

∣∣∣Y) = Pk,k−1|N + x̂k|N x̂T
k−1|N (24)

EX

(
xkxT

k

∣∣∣Y) = Pk|N + x̂k|N x̂T
k|N (25)



Sensors 2021, 21, 1181 6 of 21

where x̂k|N is the smoothed value of the system state vector and Pk|N is the smoothed
covariance matrix of the system state vector. Pk,k−1|N is initialized by:

Pk,k−1|k = (I − Kk H)ΦPk−1 (26)

Pk,k−1|N = Pk,k−1|k +
[

Pk|N − Pk

]
P−1

k|k Pk,k−1|k (27)

x̂k|N and Pk|N can be obtained by smoothing the outputs of Kalman filter using
backward-pass methods such as the Rauch–Tung–Striebel (RTS) smoother [46]. This
method is summarized in the following equations:

Jk−1 = Pk−1ΦT P−1
k|k−1 (28)

x̂k−1|N = x̂k−1 + Jk−1

(
x̂k|N − x̂k/k−1

)
(29)

Pk−1|N = Pk−1 − Jk−1

(
Pk|N − Pk|k−1

)
JT
k−1 (30)

Then, the model parameters are re-estimated by maximizing the Ω(Θ|Θi, Y) over Θ
using partial derivatives of Ω(Θ|Θi, Y) and setting them to zero. Solving these equations
yields the updated parameters (in the ith iteration) as follows:

∂L(Θ)

∂Φ
= −

N

∑
k=2

Q−1
(

Pk,k−1|N + x̂k|N x̂T
k|N

)
+

N

∑
k=2

Q−1Φ
(

Pk−1|N + x̂k−1|N x̂T
k−1|N

)
= 0 (31)

Φi+1 =

(
N

∑
k=2

Pk,k−1|N + x̂k|N x̂T
k|N

)(
N

∑
k=2

Pk−1|N + x̂k−1|N x̂T
k−1|N

)−1

(32)

∂L(Θ)

∂H
= −

N

∑
k=1

R−1yk x̂T
k|N +

N

∑
k=1

R−1H
(

Pk|N + x̂k|N x̂T
k|N

)
= 0 (33)

Hi+1 =

(
N

∑
k=1

yk x̂T
k|N

)[
N

∑
k=1

(
Pk|N + x̂k|N x̂T

k|N

)]−1

(34)

∂L(Θ)

∂Q−1 =
N
2

Q− 1
2

N

∑
k=1

(
Pk|N + x̂k|N x̂T

k|N

)
+ Φ

[
1
N

N

∑
k=2

(
Pk,k−1|N + x̂k|N x̂T

k−1|N

)]
= 0 (35)

Qi+1 =
1
N

(
N

∑
k=1

(
Pk|N + x̂k|N x̂T

k|N

)
−Φi+1

N

∑
k=2

(
Pk,k−1|N + x̂k|N x̂T

k−1|N

))
(36)

∂L(Θ)

∂R−1 =
N + 1

2
R−

N

∑
k=1

(
1
2

ykyT
k − Hx̂k|NyT

k +
1
2

H
(

Pk|N + x̂k|N x̂T
k|N

)
HT
)
= 0 (37)

Ri+1 =
1

N + 1

(
N

∑
k=1

ykyT
k

)
− Hi+1

(
1

N + 1

N

∑
k=1

yk x̂k|N

)T

(38)

In this paper, based on the EM algorithm, the proposed LSTM and Kalman filter
combination method is illustrated in Figure 2.
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In this paper, based on the EM algorithm, the proposed LSTM and Kalman filter com-
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3. Experiments and Results

In this section, the designed experiments and the analysis of the results are presented
to verify the effectiveness of the proposed method.

3.1. Data Acquisition

The MSI320H MEMS Inertial Measurement Unit (IMU) was employed for experiments.
This consists of a three-axis MEMS gyroscope and a three-axis MEMS accelerometer. The
real picture and the gyroscope specifications of MSI320H are shown in Figure 3a and Table 1,
respectively. The MSI320H was fixed on the vibration table. A picture of the vibration table
is shown in Figure 3b. The data acquisition procedure of the MSI320H is shown in Figure 3c.
Data from the MSI320H was sent to the xPC via the RS422 communication interface with a
Baud of 921,600 bps. The xPC decoded the gyroscope data and sent it to the host computer
via the network cable. The MSI320H was preheated at room temperature with power for
20 minutes. Then, linear vibration experiments were performed. The vibration direction of
the vibration table is the y-axis of the gyroscope, and the power spectral density (PSD) of
the linear random vibration loads is shown in Figure 3d.

Table 1. Specifications of MSI320H gyroscope.

GYRO

Input range ±1800◦/s
Bias instability (Allan variance) 36◦/h
Angular random walk (Allan variance) 0.4◦/

√
h

Bandwidth (−3 dB) ≥220 Hz

GENERAL

Sample rate 100∼1000 Hz
Weight ≤25 g
Supply voltage 5.0 ± 0.5 V
RS422 transmission bit rate 921600 bps
Mechanical shock, any direction ≥20,000 g
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Figure 3. Experimental system. (a) MSI3200H inertial measurement unit, (b) vibration table, (c) data acquisition procedure,
and (d) power spectral density of linear random vibration loads.

As illustrated in Figure 3d, the acceleration of the applied vibration loads can be
expressed as follows:

av(t) = ξv sin(ωvt), ωv ∈ [20·2π, 2000·2π] (39)

where ξv = 6 g. The sample rate was set to 200 Hz, and approximately 60,000 data were
acquired in the random vibration environment. The variation of gyroscope x-axis signal
affected by random vibration is shown in Figure 4, and the error of the gyroscope increased
significantly in random vibration environments.
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3.2. Comparison of BiLSTM and Other RNN Variants

The outliers of the acquired data in random vibration environments were eliminated
using the Puata criterion [47]. Because the linear random vibration test’s direction was
the y-axis of the gyroscope, the x-axis and z-axis directions were in a random vibration
environment. For the consideration of model generality, we took the last 80% of the
processed x-axis data as the training set and the first 20% of the x-axis and z-axis data were
used as the testing set.

If the hidden layer structure of the designed network is too simple, it is not easy
to characterize the time-series model of gyroscope data. Conversely, it increases the
complexity of the network, reduces the learning speed of the network, and tends to fall
into local minima during the learning process. With the above considerations, in this paper,
the proposed BiLSTM network is shown in Figure 5. The dense layer transformed the
high-dimensional stacked sequence of the hidden layer into an output sequence with the
same shape as the input sequence. Moreover, considering a large number of network
parameters, dropout was set in the dense layer to prevent the overfitting phenomenon [48].

Sensors 2021, 21, x FOR PEER REVIEW 9 of 21 
 

 

 

Figure 5. Multi-layer BiLSTM network. 

The adaptive moment estimation (Adam) optimization algorithm was used to update 

the network parameters [49]. The Adam algorithm uses default parameters. The activation 

function of the Dense layer is rectified linear unit (ReLU). The specifications used for net-

work training are illustrated in Table 2. Moreover, the root mean square error (RMSE) was 

used as the loss function. The network training was performed on Tensorflow 2.0.0 and 

Keras 2.3.1 over the Ubuntu 16.04-LTS-x86 64 operating system. The heterogeneous com-

puting platform was equipped with Intel Xeon E5-1620 and GeForce RTX-2080Ti GPUs. 

Table 2. Specifications used for network training. 

The output dimension of dense layer 1 

Activation function of dense layer ReLU 

Dropout rate 0.5 

Batch size 256 

Training epoch 50 

Learning rate 0.001 

In order to verify the performance of BiLSTM for gyroscope error compensation in 

random vibration environments, proper values for the input data step size, the number of 

hidden units, and the number of hidden layers was first explored using the x -axis testing 

set. Subsequently, training was performed using the identified values. The BiLSTM net-

work results were compared with the LSTM network, gated recurrent unit (GRU) net-

work, and bidirectional GRU (BiGRU) network using the x-axis and z-axis testing sets, 

respectively. 

As shown in Tables 3–5, when the input data step size and the number of hidden 

layers are more extensive, the training time per epoch will be longer. So we needed to 

make a trade-off between the results and the computational performance. According to 

the results, the best results were obtained when taking the input data step of 20, the num-

ber of hidden units of 128, and the number of hidden layers of 10. Although it does not 

indicate that this is the optimal parameter for the network, it will be the proper value to 

be obtained considering the computational resources. 

  

BiLSTM Layer n

BiLSTM Layer 2

BiLSTM Layer 1

...

...

...

...

...

...

...

...

...

Dense

Output

... ... ...Input

Dense Layer

Output

𝐋𝐒𝐓𝐌
𝟐

(𝟐𝒇)
 𝐋𝐒𝐓𝐌

𝟏

(𝟐𝒇)
 

𝐋𝐒𝐓𝐌𝟐

(𝟐𝒃)
 𝐋𝐒𝐓𝐌𝟏

(𝟐𝒃)
 

𝐋𝐒𝐓𝐌𝟏

(𝟏𝒃)
 𝐋𝐒𝐓𝐌𝟐

(𝟏𝒃)
 

𝐋𝐒𝐓𝐌
𝟐

(𝟏𝒇)
 𝐋𝐒𝐓𝐌

𝟏

(𝟏𝒇)
 

𝐋𝐒𝐓𝐌𝒎
(𝟐𝒇)

 

𝐋𝐒𝐓𝐌𝒎
(𝟐𝒃)

 

𝐋𝐒𝐓𝐌𝒎
(𝟏𝒇)

 

𝐋𝐒𝐓𝐌𝒎
(𝟏𝒃)

 

𝐋𝐒𝐓𝐌𝒎
(𝒏𝒇)

 

𝐋𝐒𝐓𝐌𝒎
(𝒏𝒃)

 𝐋𝐒𝐓𝐌𝟐
(𝒏𝒃)

 

𝐋𝐒𝐓𝐌𝟐
(𝒏𝒇)

 𝐋𝐒𝐓𝐌𝒏
(𝒏𝒇)

 

𝐋𝐒𝐓𝐌𝒏
(𝒏𝒃)

 

Figure 5. Multi-layer BiLSTM network.

The adaptive moment estimation (Adam) optimization algorithm was used to update
the network parameters [49]. The Adam algorithm uses default parameters. The activation
function of the Dense layer is rectified linear unit (ReLU). The specifications used for
network training are illustrated in Table 2. Moreover, the root mean square error (RMSE)
was used as the loss function. The network training was performed on Tensorflow 2.0.0
and Keras 2.3.1 over the Ubuntu 16.04-LTS-x86 64 operating system. The heterogeneous
computing platform was equipped with Intel Xeon E5-1620 and GeForce RTX-2080Ti GPUs.

Table 2. Specifications used for network training.

The output dimension of dense layer 1
Activation function of dense layer ReLU

Dropout rate 0.5
Batch size 256

Training epoch 50
Learning rate 0.001
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In order to verify the performance of BiLSTM for gyroscope error compensation in
random vibration environments, proper values for the input data step size, the number of
hidden units, and the number of hidden layers was first explored using the x-axis testing set.
Subsequently, training was performed using the identified values. The BiLSTM network
results were compared with the LSTM network, gated recurrent unit (GRU) network, and
bidirectional GRU (BiGRU) network using the x-axis and z-axis testing sets, respectively.

As shown in Tables 3–5, when the input data step size and the number of hidden
layers are more extensive, the training time per epoch will be longer. So we needed to
make a trade-off between the results and the computational performance. According to the
results, the best results were obtained when taking the input data step of 20, the number of
hidden units of 128, and the number of hidden layers of 10. Although it does not indicate
that this is the optimal parameter for the network, it will be the proper value to be obtained
considering the computational resources.

Table 3. Performance with varying values of the input data step.

Number of
Hidden Layers

Number of
Hidden Units Input Data Step STD (◦/s) Time/Epoch

10 64 5 0.1551 23 s
10 64 10 0.1481 38 s
10 64 15 0.1483 60 s
10 64 20 0.1346 82 s
10 64 25 0.1368 98 s
10 64 30 0.1501 115 s

Table 4. Performance with varying values of the number of hidden units.

Number of
Hidden Layers

Number of
Hidden Units Input Data Step STD (◦/s) Time/Epoch

10 8 20 0.1504 82 s
10 16 20 0.1459 82 s
10 32 20 0.1559 81 s
10 64 20 0.1346 82 s
10 128 20 0.1326 81 s
10 256 20 0.1468 88 s

Table 5. Performance with varying values of the number of hidden layers.

Number of
Hidden Layers

Number of
Hidden Units Input Data Step STD (◦/s) Time/Epoch

1 128 20 0.1493 10 s
2 128 20 0.1513 19 s
3 128 20 0.1597 27 s
4 128 20 0.1557 34 s
5 128 20 0.1658 42 s
6 128 20 0.1505 50 s
7 128 20 0.1470 58 s
8 128 20 0.1459 66 s
9 128 20 0.1542 75 s
10 128 20 0.1326 81 s
11 128 20 0.1405 90 s
12 128 20 0.1393 98 s

The results are shown in Figures 6 and 7 and Tables 6 and 7. Figure 6 shows the training
loss within 50 epochs, and convergence was achieved for all networks. Tables 6 and 7 show
that the standard deviations of the BiLSTM network results for the x-axis and z-axis were
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reduced by 46.81% and 43.63%, respectively, compared to the raw data, proving that
the BiLSTM network is feasible for the application in the research of MEMS gyroscope
error compensation. Furthermore, compared with the results of the LSTM network, the
BiGRU network, and the GRU network, the standard deviation values of BiLSTM results
in the x-axis were reduced by 14.06%, 11.66%, and 17.33%, respectively, and the standard
deviation values of BiLSTM results in the z-axis were reduced by 12.71%, 10.04%, and
14.04%, respectively. This indicates that the error compensation performance of the BiLSTM
network is better than these three networks.
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Figure 7. Comparison of error compensation performance of BiLSTM, LSTM, BiGRU, and GRU. (a) Part of the x-axis data
zoomed-in and (b) part of the z-axis data zoomed-in.

Table 6. Comparison of raw data, BiLSTM, LSTM, BiGRU, and GRU standard deviation values for
x-axis data.

x-axis STD (◦/s) Percentage

Raw data 0.2493 −
BiLSTM 0.1326 53.19%
LSTM 0.1543 61.89%
BiGRU 0.1501 60.21%
GRU 0.1604 64.34%
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Table 7. Comparison of raw data, BiLSTM, LSTM, BiGRU, and GRU standard deviation values for
z-axis data.

z-axis STD (◦/s) Percentage

Raw data 0.2400 −
BiLSTM 0.1353 56.38%
LSTM 0.1550 64.58%
BiGRU 0.1504 62.67%
GRU 0.1574 65.58%

3.3. Comparison of LSTM-EM-KF and LSTM-ARMA-KF

In this section, the raw data and BiLSTM network results of the x-axis and z-axis are
used as the measurement, respectively. The Kalman filter parameters are estimated by the
ARMA model and EM algorithm, and the filter results are compared.

3.3.1. Estimating Kalman Filter Parameters Using the ARMA Model

When modeling time-series data using the ARMA model, the time-series data must
meet stationarity and normality requirements. Therefore, a polynomial fitting method was
used to eliminate the trend term before modeling. In this paper, the stationarity was tested
using the run test, and the normality was tested by calculating the skewness, ξ, and the
kurtosis, υ.

According to the test, after eliminating the trend term, the raw data and BiLSTM
network results of the x-axis and z-axis met the stationarity and normality requirements.
The test process is shown in Appendix A. Moreover, as illustrated in Figure A1, the
autocorrelation function and partial autocorrelation function diagrams exhibit trailing
properties, and all models can be identified as an ARMA (p, q) model.

The next step is to determine the order of the model. If the order is increased, the
identified model will be more realistic, but the computational difficulty will also increase
as the order increases. Therefore, the maximum order was set to 3, which means the
maximum value of p and q was set to 3. Furthermore, the Akaike information criterion
(AIC) was used for determining model order. Determining the model order process and
the Durbin–Watson test results are shown in Appendix B.

For x-axis raw data, the model identified is identified as ARMA(3,3):
xn = −0.3126xn−1 + 0.8168xn−2 + 0.1520xn−3 + εn + 0.6885εn−1 − 0.3241εn−2 − 0.0366εn−3 (40)

For x-axis BiLSTM network results, the model is identified as ARMA(3,3):
xn = 0.8505xn−1 + 0.8891xn−2 − 0.7745xn−3 + εn + 0.1354εn−1 − 0.8476εn−2 − 0.0815εn−3 (41)

For z-axis raw data, the model identified is identified as ARMA(1,3):

xn = 0.8593xn−1 + εn − 0.51915εn−1 + 0.0328εn−2 − 0.0236εn−3 (42)

For z-axis BiLSTM network results, the model identified is identified as ARMA(3,3):
xn = 2.0000xn−1 − 1.2268xn−2 + 0.2031xn−3 + εn − 1.0446εn−1 − 0.0809εn−2 − 0.1086εn−3 (43)

where xn is the output of the ARMA model, εn is the driving white noise (with mean,
0, and variance, δ̂2

ε ). The Kalman filter parameters are presented in Table 8. The value of R
is the variance of the measurement. The initial value of the Kalman filter is set as follows:
x1 = [0; 0; 0; 0], and P1 is the fourth-order identity matrix.
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Table 8. Kalman filter parameters of all measurements.

Φ Γ H Q R

x-axis raw
data

 −0.3126 0.8168 0.1520 0
1 0 0 0
0 1 0 0
0 0 1 0


 1 0.6885 −0.3241 −0.0366

0 0 0 0
0 0 0 0
0 0 0 0

 [ 1 0 0 0 ]

 0.0370 0 0 0
0 0.0370 0 0
0 0 0.0370 0
0 0 0 0.0370

0.0604

x-axis
BiLSTM

 0.8505 0.8891 −0.7745 0
1 0 0 0
0 1 0 0
0 0 1 0


 1 0.1354 −0.8476 −0.0815

0 0 0 0
0 0 0 0
0 0 0 0

 [ 1 0 0 0 ]

 0.0036 0 0 0
0 0.0036 0 0
0 0 0.0036 0
0 0 0 0.0036

0.0175

z-axis raw
data

 0.8593 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0


 1 −0.5191 0.0328 0.0236

0 0 0 0
0 0 0 0
0 0 0 0

 [ 1 0 0 0 ]

 0.0405 0 0 0
0 0.0405 0 0
0 0 0.0405 0
0 0 0 0.0405

0.0596

z-axis
BiLSTM

 2.0000 −1.2268 0.2031 0
1 0 0 0
0 1 0 0
0 0 1 0


 1 −1.0446 0.0809 0.1086

0 0 0 0
0 0 0 0
0 0 0 0

 [ 1 0 0 0 ]

 0.0043 0 0 0
0 0.0043 0 0
0 0 0.0043 0
0 0 0 0.0043

0.0183

3.3.2. Estimating Kalman Filter Parameters Using the EM Algorithm

When using the EM algorithm to estimate the Kalman filter parameters, only the iteration
convergence conditions and initial parameters need to be set. The M-step convergence
constant τ in Equation (22) was set to 0.1. The Kalman filter’s initial values were set to
x1 = 0 and P1 = 1, and the Kalman filter’s initial parameters were set to Φ1 = 1, H1 = 1,
Q1 = 1, and R1 = 1. The change of the log-likelihood function during the iteration of the EM
algorithm is shown in Figure 8. The parameter estimation results are presented in Table 9.
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Table 9. The parameter estimation results.

Φ H Q R

x-axis raw data 0.9723 0.1350 0.0016 0.1181
x-axis BiLSTM 0.9738 0.3422 0.0016 0.2852
z-axis raw data 0.9471 0.1327 0.0065 0.1155
z-axis BiLSTM 0.9530 0.2983 0.0044 0.2430

3.3.3. Kalman Filtering Results

The results are illustrated in Tables 10 and 11. For the x-axis data, the standard
deviation of the BiLSTM-EM-KF results was reduced by 51.58% and 31.92% compared to
the BiLSTM network and EM-KF, respectively. For the z-axis data, the standard deviation
of the BiLSTM-EM-KF results was reduced by 29.19% and 12.75% compared to the BiLSTM
network and EM-KF, respectively. Therefore, the combined method proposed in this paper
can be demonstrated to improve the gyroscope error compensation performance of the
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BiLSTM network and EM algorithm. Moreover, compared with BiLSTM-ARMA-KF results,
the standard deviation of the BiLSTM-EM-KF was reduced by 46.54% and 22.30% in x-axis
and z-axis, respectively. It indicates the proposed method’s superior performance to that
of BiLSTM-ARMA-KF. Furthermore, according to Figure 9, the curves of BiLSTM-EM-KF
results are smoother, which proves that the proposed combined method is effective.
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Figure 9. Comparison of error compensation performance of BiLSTM-EM-KF and BiLSTM-ARMA-KF. (a) Part of the x-axis
data zoomed-in and (b) part of the z-axis data zoomed-in.

Table 10. Comparison of raw data, BiLSTM, ARMA-KF, EM-KF, BiLSTM-ARMA-KF, and BiLSTM-
EM-KF standard deviation values for x-axis data.

x-axis STD (◦/s) Percentage

Raw data 0.2493 −
BiLSTM 0.1326 53.19%

ARMA-KF 0.1618 64.90%
EM-KF 0.0943 37.83%

BiLSTM-ARMA-KF 0.1201 48.17%
BiLSTM-EM-KF 0.0642 25.75%

Table 11. Comparison of raw data, BiLSTM, ARMA-KF, EM-KF, BiLSTM-ARMA-KF, and BiLSTM-
EM-KF standard deviation values for z-axis data.

z-axis STD (◦/s) Percentage

Raw data 0.2400 −
BiLSTM 0.1353 56.38%

ARMA-KF 0.1853 77.21%
EM-KF 0.1098 45.75%

BiLSTM-ARMA-KF 0.1233 51.38%
BiLSTM-EM-KF 0.0958 39.92%

4. Conclusions

In this paper, a combined method of an LSTM network and Kalman filter is proposed
for MEMS gyroscope error compensation in random vibration environments. Through the
results, the following conclusions were obtained:

(1) After exploring proper input data step size and network topology, the network was
trained, and the test results showed that the BiLSTM network outperformed the LSTM
network, the GRU network, and the BiGRU network in gyroscope error compensation;
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(2) Combining the BiLSTM network with the EM-KF method can improve their gyro-
scopic error compensation performance;

(3) In the classical gyroscope error compensation method, the ARMA-KF method, tedious
data testing and model checking are required. In contrast, the EM-KF method only
needs to set the initial parameters and the convergence value, which is much easier
to apply. Moreover, the ARMA-KF method parameters cannot be updated through
the filtering process, which means that satisfactory results cannot be obtained if the
parameters are not defined correctly before the filtering process. From the filtering
results, compared with BiLSTM-ARMA-KF, the standard deviation of the BiLSTM-EM-
KF results were 46.54% and 22.30% lower, in x-axis and z-axis, and the output curve
was smoother, which proves the effectiveness of the proposed method in this paper.

Future work should include conducting dynamic field experiments to obtain MEMS
gyroscope outputs, as well as combining neural networks with more state-of-the-art
Kalman filter methods for MEMS gyroscope error compensation and using fiber optic
gyroscopes or laser gyroscopes as benchmarks for comparison.
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Appendix A. Stationarity and Normality Tests

For stationarity, the most common test method is the run test. It was divided equally
into 20 groups {X1, X2, · · · , X20}, and the mean square value of each group was σi where
i ∈ [1, 20]. The mean of {σi} was σmean, and the difference between each σi and σmean
formed {σai}:

σai = σi − σmean (A1)

The total number of positive values in {σai} was recorded as n1, and the total number
of negative values in {σai} was recorded as n2. The number of positive and negative
alternations in order and plus 1 more was the Run r. According to the run test table, whether
r was within the confidence interval was determined at the significance level α = 0.05.

After eliminating the trend term, the raw data and BiLSTM network results of the x-axis
and z-axis met the stationarity requirements. The test process is presented in Tables 1–4.

Table 1. Run test process of x-axis raw data.

σmean = 0.0604, n1 = 8, n2 = 12, r = 14, Significance Level α = 0.05, Confidence Interval [6, 16].

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
σi 0.0615 0.0583 0.0516 0.0621 0.0664 0.0572 0.0640 0.0545 0.0571 0.0628
σai 0.0011 −0.0021 −0.0088 0.0017 0.0060 −0.0032 0.0036 −0.0059 −0.0033 0.0024
r 1 2 3 4 5 6 7

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20
σi 0.0601 0.0602 0.0565 0.0743 0.0585 0.0655 0.0532 0.0693 0.0588 0.0557
σai −0.0003 −0.0002 −0.0039 0.0139 −0.0019 0.0051 −0.0072 0.0089 −0.0016 −0.0047
r 8 9 10 11 12 13 14
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Table 2. Run test process of x-axis BiLSTM network results.

σmean = 0.0175, n1 = 11, n2 = 9, r = 14, Significance Level α = 0.05, Confidence Interval [6, 16].

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
σi 0.0189 0.0177 0.0144 0.0192 0.0198 0.0163 0.0191 0.0154 0.0159 0.0192
σai 0.0014 0.0002 −0.0031 0.0017 0.0023 −0.0012 0.0016 −0.0022 −0.0016 0.0017
r 1 2 3 4 5 6 7

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20
σi 0.0176 0.0178 0.0159 0.0224 0.0149 0.0191 0.0144 0.0205 0.0166 0.0150
σai 0.0001 0.0003 −0.0016 0.0049 −0.0026 0.0016 −0.0031 0.0030 −0.0009 −0.0025
r 8 9 10 11 12 13 14

Table 3. Run test process of z-axis raw data.

σmean = 0.0596, n1 = 10, n2 = 10, r = 10, Significance Level α = 0.05, Confidence Interval [6, 16].

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
σi 0.0673 0.0565 0.0639 0.0694 0.0611 0.0570 0.0489 0.0533 0.0556 0.0539
σai 0.0077 −0.0031 0.0043 0.0098 0.0015 −0.0026 −0.0107 −0.0063 −0.0040 −0.0057
r 1 2 3 4

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20
σi 0.0577 0.0671 0.0642 0.0645 0.0585 0.0619 0.0516 0.0622 0.0620 0.0560
σai −0.0019 0.0075 0.0046 0.0049 −0.0011 0.0023 −0.0080 0.0026 0.0024 −0.0036
r 5 6 7 8 9 10

Table 4. Run test process of z-axis BiLSTM network results.

σmean = 0.0183, n1 = 9, n2 = 11, r = 10, Significance Level α = 0.05, Confidence Interval [6, 16].

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
σi 0.0216 0.0159 0.0200 0.0227 0.0180 0.0168 0.0139 0.0160 0.0158 0.0158
σai 0.0033 −0.0024 0.0017 0.0044 −0.0003 −0.0015 −0.0044 −0.0023 −0.0025 −0.0025
r 1 2 3 4

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20
σi 0.0173 0.0217 0.0213 0.0208 0.0175 0.0197 0.0154 0.0199 0.0191 0.0162
σai −0.0010 0.0034 0.0030 0.0025 −0.0008 0.0014 −0.0029 0.0016 0.0008 −0.0021
r 5 6 7 8 9 10

For normality, the most common test method is calculating skewness, ξ, and kurtosis,
υ. When the calculated ξ is close to 0, and υ is close to 3, the data are considered to satisfy
normality. For the valuation of ξ and υ:

ξ = E

[(
xN − ex

σx

)3
]
=

E
[
(xN − ex)

3
]

{
E
[
(xN − ex)

2
]} 3

2
=

1
N ∑N

n=1(xN − ex)
3[

1
N ∑N

n=1(xN − ex)
2
] 3

2
(A2)

υ = E

[(
xN − ex

σx

)4
]
=

E
[
(xN − ex)

4
]

{
E
[
(xN − ex)

2
]}2 =

1
N ∑N

n=1(xN − ex)
4[

1
N ∑N

n=1(xN − ex)
2
]2 (A3)

where ex and σx are the mean and standard deviation of the data, respectively.
After eliminating the trend term, the raw data and BiLSTM network results of the

x-axis and z-axis met the normality requirements. The results are presented in Table 5.
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Table 5. The normality test results.

x-axis Raw Data
x-axis BiLSTM

Network
Results

z-axis Raw Data
z-axis BiLSTM

Network
Results

Skewness ξ 2.8329 2.7283 2.7294 2.8156
Kurtosis υ 0.0177 −0.1077 −0.0631 −0.0170

B. Determine the ARMA Model Order
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Figure A1. Autocorrelation function and partial autocorrelation function diagram. (a,b) x-axis raw data, (c,d) x-axis BiLSTM
network results, (e,f) z-axis raw data, and (g,h) z-axis BiLSTM network results.

The Akaike information criterion can be expressed as follows:

AIC(p, q) = N ln
(

δ2(p, q)
)
+ 2(p + q + 1) (A4)

where δ2 is the variance of driving white noise under each order and N is the total number
of data samples. When AIC obtains the minimum value, the fitted model is the optimal
model. In the case that the maximum values of p and q are set to 3, the AIC values at each
order are shown in Tables A6–A9.

Table A6. AIC values of x-axis raw data at each order.

p = 0 p = 1 p = 2 p = 3

q = 0 − −4350.7006 −5373.4026 −5483.9134
q = 1 −2378.8661 −5480.4267 −5503.6485 −5503.2634
q = 2 −3784.2642 −5501.9738 −5502.2446 −5501.9462
q = 3 −4524.5464 −5504.1306 −5502.9798 −5514.9860
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Table A7. AIC values of x-axis BiLSTM network results at each order.

p = 0 p = 1 p = 2 p = 3

q = 0 − −33245.8540 −33390.6679 −33390.1658
q = 1 −24407.6844 −33392.3127 −33390.3534 −33387.4822
q = 2 −28837.8009 −33390.3543 −33391.2919 −33390.0297
q = 3 −30742.3669 −33388.3649 −33390.0548 −33456.4704

Table A8. AIC values of z-axis raw data at each order.

p = 0 p = 1 p = 2 p = 3

q = 0 − −3384.5655 −4241.9726 −4367.2696
q = 1 −1992.4063 −4410.0138 −4414.9553 −4417.2529
q = 2 −3107.6730 −4414.3979 −4414.5702 −4415.3240
q = 3 −3612.4223 −4417.6140 −4415.7666 −4414.6351

Table A9. AIC values of z-axis BiLSTM network results at each order.

p = 0 p = 1 p = 2 p = 3

q = 0 − −31059.1193 −31186.5670 −31212.5235
q = 1 −23478.3934 −31198.8844 −31202.3767 −31212.2053
q = 2 −27430.5011 −31206.1886 −31221.9048 −31228.0632
q = 3 −29112.3646 −31212.9557 −31211.5881 −31262.0166

The first-order autocorrelation of the identified model residuals {ωt} was tested by
the Durbin–Watson method. Assuming that the first-order correlation of {ωt} can be
defined as:

ωt = ρωt−1 + vt (A5)

when ρ = 0, there is no first-order autocorrelation in {ωt}. Then the Durbin–Watson test
value d:

d =
∑N

n=2(ωn −ωn−1)
2

∑N
n=1 ω2

n
≈ 2(1− ρ) (A6)

The identified model’s Durbin–Watson test value is shown in Table A10, indicating
that the estimated model satisfies the requirements.

Table A10. D-W test results.

x-axis Raw Data
x-axis BiLSTM

Network
Results

z-axis Raw Data
z-axis BiLSTM

Network
Results

Durbin–Watson
test value 1.9997 2.0064 1.9998 1.9903
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