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Abstract
Many classic chirp signal processing algorithms may show significant performance 
degradation when the signal-to-noise ratio (SNR) is low. To address this problem, 
this paper proposes a pre-filtering method in time-domain based on deep learning. 
Different from traditional signal filtering methods, the proposed denoising convo-
lutional neural network (DCNN) is trained to recover the pure signal from the noisy 
signal as much as possible. Following denoising, we use two classic chirp signal 
parameter estimation algorithms to estimate the parameters of the DCNN output. 
The simulation results show that, compared with no DCNN processing, the parame-
ter estimation accuracy is significantly improved. This is mainly due to the powerful 
pure signal extraction ability of DCNN, which can significantly improve the SNR 
and the accuracy of signal parameter estimation.

Keywords Deep leaning · Denoising · Chirp · Parameter estimation

 * Guangli Ben 
 g2009051126@163.com

 Xifeng Zheng 
 zhengxf@ccxida.com

 Yongcheng Wang 
 wyc_dyy@sina.com

 Xin Zhang 
 zhangxin162@mails.ucas.ac.cn

 Ning Zhang 
 zhangning171@mails.ucas.ac.cn

1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, 
Changchun 130033, China

http://orcid.org/0000-0002-9418-0641
http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-021-01727-4&domain=pdf


5469Circuits, Systems, and Signal Processing (2021) 40:5468–5482 

1 Introduction

Chirp signals have a broad range of applications, such as in radar, sonar, communi-
cation and medical imaging [9]. Chirp usage and estimation of their parameters is a 
significant part in the digital signal processing area [3]. At present, many methods have 
been proved to be efficient and practical. However, they all face a common problem, 
which is their performance is reduced a lot under the condition of low SNR.

Last few years, driven by the large amount of data, deep learning has been widely 
used in image denoising and has achieved good results [14, 18, 20, 21]. However, in 
the field of digital signal processing, the application of processing methods based on 
convolutional neural networks (CNN) is not as many as in image processing. Yuan 
Jiang proposed a deep learning denoising-based approach for line spectral estimation 
[10]. By using CNN to filter multi-component single-frequency signals, combined 
with the popular model order selection method and a subspace line spectral estima-
tor, this method has achieved a substantial improvement compared with the line spec-
tral estimation results obtained by directly applying the subspace estimator without 
denoising. In addition to using CNN for filtering in the time domain, Se Rim Park pro-
posed a method to remove noise from speech signals in time–frequency domain [13] 
for enhancing the quality and intelligibility of speech. The training data and validation 
data of the network are the amplitude spectra of noisy speech signals and pure speech 
signals, respectively. Network’s output is the magnitude spectrum of the denoised sig-
nal. And then converts back to the time domain by using inverse short-time Fourier 
transform of the output’s magnitude spectrum and the noisy signal’s phase spectrum. 
Xiaolong Chen applies CNN for replacing the Fourier transform and fractional Fou-
rier transform (FrFT) and uses it for single-frequency signal and LFM signal detec-
tion and estimation [2]. It has proved that the CNN-based method can achieve good 
recognition performance at SNR above − 2 dB, and above − 10 dB combined with the 
wavelet denoising method. CNN also plays an active role in the field of signal detection 
and classification. Huyong Jin proposed a CNN-based framework to perform preamble 
detection for underwater acoustic communications application [11], which can learns 
features from the time–frequency spectrum, and can give an efficient solution for pre-
amble detection under complicated underwater acoustic communications. For signal 
classification, Johan Brynolfsson uses Wigner–Ville distribution instead of the spec-
trogram as basic input into CNN to Classify One-Dimensional Non-Stationary Signals 
and has achieved good performance [1]. Inspired by the above ideas, this article applies 
deep learning to signal filtering processing. Compared with directly applying CNN to 
estimate the parameters of the signal as described in paper [2], the proposed method 
can extract pure signals from noisy signals and then can be combined with classic sig-
nal processing algorithms to improve algorithm performance further.

Assume a chirp signal x(t) with additive Gaussian noise n(t) is described as follows:

where x(t) = sin
(
2�f0t + �kt2

)
 , f0 denotes the initial frequency, k denotes the chirp 

rate, the prior knowledge of their value are unknown. We employ DCNN to extract 

(1)y(t) = x(t) + n(t)
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denoised signal ŷ(t) from observation y(t) . Then, the performance of DCNN is 
measured by comparing the SNR and parameter estimation accuracy of y(t) and ŷ(t).

This paper is organized as follows. Section 2 introduces the structure of DCNN and 
its associated inner layers. Section 3 introduces two typical parameter estimation meth-
ods used in the article. One is based on time–frequency analysis, and the other is based 
on fractional Fourier transform. In Sect.  4, simulation results are given to show the 
advantages of the DCNN. Finally, conclusions are drawn in Sect. 5.

2  The Structure of DCNN

The observation signal is one-dimensional data that changes with time. So the pro-
posed DCNN is a one-dimensional network. Generally, DCNN has a layer structure 
that includes input layer, more hidden layers, and a regression output layer as shown 
in Fig. 1. The input of DCNN is a real mono-component chirp signal with N samples 
blurred by additive white Gaussian noises, denoted as Y0 ∈ RN×1.

Conv is convolutional layer which applies sliding convolutional filters to the input. 
The layer convolves the input by moving the filters along the input vertically and hori-
zontally, and computing the dot product of the weights Wi and the input Yi−1 , then add-
ing a bias term Bi . Convolution output Gi can be expressed as:

where i denotes the layer number, Wi and Bi are learnable parameters, and Yi−1 is 
output of the previous activation layer. The dimension of Gi is N × 1 × k , as the con-
volution is operated with same padding.

BN is batch normalization layer. BN normalizes each input channel across a mini-
batch before the nonlinearity layer to speed up training of convolutional neural net-
works and reduce the sensitivity to network initialization [8]. BN first calculates the 
mean � and variance �2 across a mini-batch over each input Gi . Then, the normalized 
activations can be described as:

(2)Gi = Yi−1 ∗ Wi + Bi

(3)Ĝi =
Gi − 𝜇√
𝛿2 + 𝜀

Fig. 1  Structure of DCNN, Conv is convolutional layer, BN is batch normalization layer, Tanh is hyper-
bolic tangent activation function of nonlinearity layer
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where � is a hyper parameter set to 0.00001 to improve numerical stability when 
mini-batch variance is very small. Then BN shift and scale the activations as:

where � is scale factor, � is offset, and they are learnable parameters.
After BN normalization, a hyperbolic tangent function, denoted by Tanh, is 

used to increase nonlinearity properties of DnCNN, and then the output Yi can be 
expressed as:

The regression output layer computes the half-mean-squared-error loss for regres-
sion problems. The optimization goal of training is to minimize the half-mean-
squared-error loss between regression output ŷ(n) and the clean labels x(n) , and then 
the loss function for training is:

where M is mini-batch size, ŷi ∈ RN×1 , xi ∈ RN×1 . During training process, we use 
mini-batch gradient descent with Adam optimization algorithm [4] to evaluate the 
gradient of the loss function and backpropagate to update DCNN weights.

Since the additive white Gaussian noise is randomly distributed, in order to train 
DCNN to effectively remove noises from observation Y0 , in the vicinity of the same 
SNR value, we need a lot of training data to enable the network to better adapt to the 
randomness of noise. The parameters of initial frequency f0 and chirp rates k should 
also be selected reasonably so that they can cover the parameter range of the signal. 
In order to enable the network to better learn the data characteristics of the training 
data set and the verification data set, we need to train multiple epochs with the data. 
And we shuffle the data before each training epoch.

3  Parameter Estimation of Denoised Signal

After denoising, the initial frequency f0 and chirp rate k of observation are estimated 
by denosied output ŷ(n) . There are many parameter estimation algorithms available, 
for example based on maximum likelihood principle [12, 16, 17], the gradient of 
the short-time Fourier transform complex phase [3] and the Fractional Order Cross 
Spectrum [5]. Here, we choose two classic parameter estimation methods, one is 
Radon–Wigner Transform (RW) [7, 19] based on time–frequency analysis, and the 
other is based on Fractional Fourier Transform (FrFT) [6, 15].

3.1  RW

For a chirp signal y(t) with duration T, the Wigner Ville distribution (WVD) is:

(4)Zi = 𝜆Ĝi + 𝛽

(5)Yi = tanh
(
Zi
)
=

ez
i

− e−z
i

ez
i
+ e−z

i

(6)loss =
1

2

M∑
i=1

(
ŷi − xi

)2
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The WVD(t, f ) can provide a high-resolution time–frequency representation of a 
mono-component chirp signal. In order to obtain signal parameters from time–fre-
quency distribution information, we do Radon transform on WVD(t, f ) , which can 
be described as the following formula:

As shown in Fig.  2, the linear integration is performed along the line PQ at 
radius � and angle � . Radon transform converts time–frequency domain distri-
bution to � − � domain distribution. Then we can extract linear component by 
searching the maximal amplitude of RW(�, �) at rotation angle �′ and integral 
radius �′ , which correspond to the initial frequency and chirp rate of ŷ(n) . Then 
we can get the estimation result as follows:

3.2  FrFT

The inverse FrFT of a finite signal y(t) is defined as follows:

(7)WVD(t, f ) =

T∕2

∫
−T∕2

y(t + �∕2)y∗(t − �∕2)e−j2�f �d�

(8)RW(�, �) = ∫ WVD(u cos � − v sin �, u sin � + v cos �)dv

(9)
{
��, ��

}
= argmax

�,�
{RW(�, �)}

(10)k̂ = − cot 𝜃�

(11)f̂0 = 𝜌�∕ sin 𝜃�

Fig. 2  The diagram of Radon transform
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where Yp(u) is the FrFT of y(t) , p is FrFT order, Kp(t, u) is FrFT kernel function, and 
it is defined as:

where � is FrFT rotation angle, and � = p�∕2.
The above statement shows that y(t) can be expressed as the expansion of inverse 

kernel K−p(t, u)-based space. The expansion coefficients are Yp(u) . And K−p(t, u) can 
be considered as a set of orthogonal basis of chirps. So the FrFT amplitude of a 
chirp signal at an appropriate order will be represented as a pulse. Gaussian noise 
does not have this property. In other words, FrFT have a good property of energy 
aggregation for chirp signal at corresponding order p. So, by searching the maximal 
amplitude of FrFT at u0 and �0 , we can calculate chirp parameter as follows:

4  Simulation Results and Analysis

In this section, we present simulation results to demonstrate the performance of 
the proposed approach for denoising. The signal sampling frequency is 256 Hz, the 
duration is 2 s, so observation Y0 ∈ R513×1 . The midpoint of the signal represents the 
beginning of time. The initial frequency f0 ranges from 15 to 20 Hz with 1 Hz inter-
val. And the chirp rate k ranges from 5 to 10 Hz/s with 1 Hz/s interval. In order to 
make the experiment universal and comparable, we use the commonly used additive 
white Gaussian noise as the noise source. The SNR changes from − 13 to − 9 dB 
with approximately 1 dB intervals. Under the same SNR value, we randomly gener-
ate 800 training signals and 150 validation signals using the same signal parameters. 
So the training data set size is 144,000 signals and validation data set size is 27,000 
signals.

We use test data set signals to verify the performance of the proposed method. 
The test signals have the same initial frequency and chirp rate as the training data 
set and validation data set. But the SNR changes from − 13 to − 3 dB with about 

(12)y(t) =

+∞

∫
−∞

Yp(u)K−p(t, u)dt

(13)Kp(t, u) =

⎧
⎪⎨⎪⎩

�
1−j cot �

2�
exp

�
j
�

u2+t2

2
cot � − ut csc �

��
� ≠ n�

�(t − u) � = 2n�

�(t + u) � = (2n + 1)�

(14)
{
u0, �0

}
= argmax

u,�
{abs(Yp(u))}

(15)f̂0 = u0 csc 𝛼0

(16)k̂ = − cot 𝛼0
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1 dB intervals. For any combination of initial frequency f0 and chirp rate k, we 
randomly generate 10 signals under the same SNR condition. So the test data set 
size is 3960 signals.

In the process of training network, we use mini-batch gradient descent method 
to update DCNN parameters. The mini-batch size is 128. The maximum value of 
epoch is set to 8. So there are 8 full passes of the training algorithm over entire 
training set, and before each training epoch we shuffle the training data. This pro-
cess is done by applying Matlab Deep Learning Toolbox.

We calculate the SNR of input observation signals and DCNN output signals 
separately, and the results are illustrated in Fig. 3. Obviously, it can be seen from 
the results that the SNR of denoised signal is greatly improved after DCNN filter-
ing. Although we train DCNN under low SNR conditions, the network still has a 
good filtering performance at higher SNR with the range of − 9 to − 3 dB. We 
can also see that the SNR of denoised signal fluctuates greatly. This is because 
the strong noises are randomly distributed, which attenuate the signal structured 
features that DCNN can extract. Examples of using DCNN filtering are shown in 
Figs. 4 and 5, the RW and FrFT of the signal are shown in Figs. 6 and 7; from 
these figures, we can intuitively see that DCNN can effectively filter the unstruc-
tured noises and output highly structured signal.

Another issue we are concerned about after filtering is the parameters of the 
signal. We use RW and FrFT methods to estimate the parameters of observa-
tion and denoised signals, respectively. The performance metric is the root mean 
squared error (RMSE), which is defined as:

Fig. 3  Comparison of SNR between observation signals and denoised signals
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(17)RMSEf0
=

√√√√ 1

M

M∑
i=1

(
f
�

0i
− f0i

)2

(18)RMSEk =

√√√√ 1

M

M∑
i=1

(
k
�

i
− ki

)2

Fig. 4  DCNN denoise instance at SNR = − 13.3133 dB

Fig. 5  DCNN denoise instance at SNR = − 4.8159 dB
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where M is the number of signals under the same SNR in test set, f0i and ki are the 
true value, and f ′

0i
 and k′

i
 are estimation results. The parameter estimation results by 

RW and FrFT are shown in Figs. 8 and 9. We can see that after DCNN processing, 
the parameter estimation accuracy has been significantly improved. One point to 
note is that different network structures and network parameters will have different 
effects on the filtering results. Due to the strong randomness of most noise, under 
the same SNR conditions, different training processes of the same network will have 
different results. But the trend of SNR and parameter estimation results of denoised 
signal will not change.

Parameter estimation error rate is defined by the following formula:

The threshold refers to the deviation between the estimation result and the 
true value. If the deviation is less than the threshold, it means that the estima-
tion result is acceptable. We calculate error rate when threshold is equal to 0.1 
and 0.25, respectively, and the result is shown in Figs.  10 and 11. But at low 
SNR circumstance, there are also considerable observation signals cannot be 
processed commendable and the error rate seems to be acceptable at SNR above 
− 10 dB.

(19)ER =
number of estimation results greater than threshold

number of total estimation results
× 100%

Fig. 6  WVD and RW of observation and denoised signal at SNR = − 13.3133 dB
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5  Conclusion

In this paper, a DCNN-based method for extracting chirp signal in noise 

Fig. 7  FrFT of observation and denoised signal at SNR = − 13.3133 dB
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circumstances is proposed. It takes advantage of deep learning feature extraction 
ability to recover the clean chirp signals as far as possible. Simulation results 
indicate that DCNN have a good filtering performance at low SNR circumstances, 
which will help improve the accuracy of the parameter estimation algorithm. And 
although DCNN has learned the features of chirp signals at low SNR scenarios, 
it still works in high SNR conditions. But when the SNR is low enough, DCNN’s 
performance seems to be unacceptable. In practice, in the various stages of the 
digital signal processing, whether the application of deep learning can play a role 
needs further research.
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