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Application of Deep
Reinforcement Learning to
Thermal Control of Space
Telescope
With the development of deep space exploration technology, thermal control systems for
space telescopes are becoming increasingly complex, leading to the key parameters of con-
ventional thermal control systems are difficult to adjust online automatically. To achieve
these adjustments, this paper provided detailed verification of the application of deep rein-
forcement learning to space telescope thermal control from three perspectives: thermophy-
sical modeling, intelligent sensing-based radiator, and online self-tuning of thermal control
parameters. This paper presents a high-speed and high-precision thermophysical modeling
strategy in MATLAB/SIMULINK with better computational efficiency than conventional
approaches. And an intelligent sensing-based radiator is proposed that can realize auton-
omous regulation of the radiating cold plate by sensing the external space environment and
the thermal load inside the spacecraft. A strategy for online self-tuning of the thermal
control parameters based on deep reinforcement learning is also proposed. Theoretical
and experimental results show that deep reinforcement learning thermal control
(DRLPID) can achieve temperature control accuracy of 0.05 °C. The steady-state errors
in the simulations were reduced by 22.7%, 37.4%, and 47.4% when compared with the rein-
forcement learning proportional–integral–derivative (PID), the neural network PID, and
the fuzzy PID, respectively. The experimental steady-state errors were reduced by 20.4%,
32.5%, and 42.7%, respectively. [DOI: 10.1115/1.4051072]
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1 Introduction
As an important type of space-based remote sensor, space tele-

scopes have been used widely in military reconnaissance, resource
exploration, disaster prediction, and other applications. With the
rapid development of space remote sensing technology and the con-
tinuous improvements in space detection accuracy, the resolution
requirements for space telescopes have become increasingly
demanding [1–6]. On the one hand, an increase in the resolution
means that the optical system must be larger in diameter and
must offer greater accuracy; on the other hand, it also places
more stringent requirements on the thermal control system in
terms of its accuracy, robustness, and adaptability to the working
environment [7]. In addition, as the complexity of the space mis-
sions of space telescopes increases, it becomes increasingly difficult
for ground-based measurement and control systems to meet these
demands. Factors such as the instability of the thermal environment
in space and the possible failure of the space telescope itself
also place further requirements for both autonomy and adaptability
on the thermal control system for the space telescope. Therefore, it
becomes necessary to study a new type of intelligent thermal control
system.
At present, increasing numbers of researchers are beginning to

conduct in-depth research into intelligent thermal control systems,
mainly at the component and system levels, to improve the autono-
mous thermal control capabilities of spacecraft. Examples include
NASA, who launched the Deep Space 1 (DS-1) probe as part of
the New Millennium Project to complete verification of their auton-
omous control system during the flight control test [8–11]. Jia et al.
[12] proposed an agent-based hierarchical hybrid structure for the

autonomous thermal control method, leading to a thermal control
system with pre-activity and adaptive and autonomous planning
capabilities, to realize a spacecraft thermal control system for auton-
omous control of its primary technical purpose, and proposing an
intelligent radiator, but this method is still at the theoretical stage
and requires further in-depth research for engineering applications.
Li et al. [13] described the working principle and fuzzy control
algorithm of a new intelligent equivalent physical simulator
which consists of a thermoelectric cooler, a plate-fin heat sink, a
forced cooling fan, and an integrated fuzzy controller. This
method applies fuzzy control to traditional proportional–integral–
derivative (PID) controllers for space radiators, but lacks innovative
designs in radiator architecture. In addition, Xin [14] introduced
feedforward control using the “system thermal load” as a signal
based on the existing PID feedback control system, which effec-
tively reduced the dynamic deviation and overshoot of the system
temperature characteristics and optimized the system’s control per-
formance, but the control efficiency of this method was rather slow
and could not meet the practical engineering requirements. Wang
et al. [15] developed a PID parameter optimization method based
on finite element analysis (FEA), which is much better than the
traditional methods. However, this method requires the FEA
model of PID thermal control, which is extremely difficult and time-
consuming to construct. Song et al. [16] provided a novel and effec-
tive method for high-precision thermal control of electronic devices
by combining positive temperature coefficient (PTC) material with
PID control strategy. The method employs PTC material for PID
temperature control, which can effectively reduce the amount of
process overshoot. However, the applicability of this method is
too poor, especially without a complete theoretical system for
PID parameter tuning. Grassi and Tsakalis [17] developed a
frequency-loop-based PID tuning method that can be directly
extended to multivariate PID cases. However, the simplicity of
the method relies mainly on the linearity (convexity) in the
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parameter structure of the PID, which may not be preserved in
tuning problems with different parameterizations or goals.
Recently, we proposed an intelligent reinforcement learning-based
thermal control strategy for adaptive self-tuning of PID parameters
(reinforcement learning PID or RLPID) [18], which provides the
PID thermal controller with the flexibility to tune the PID parame-
ters for stable and precision thermal control. However, the method
uses a low-speed algorithm that is difficult to bring to convergence
and also generates large steady-state errors when the control object
is changed. Thus, we then proposed an intelligent thermal control
algorithm based on deep reinforcement learning (DRLTC) [19],
which can quickly and accurately tune the PID parameters accord-
ing to the control object and provide online current compensation
based on the thermal system. However, the convergence of
DRLTC is not particularly stable, especially without detailed veri-
fication analysis for thermal control systems with multiple zones
heated simultaneously and coupled.
To solve the problems described above and achieve intelligent

thermal control of space telescopes, an intelligent thermal control
strategy based on deep reinforcement learning is proposed for
space telescopes in this paper. In addition, the application of deep
reinforcement learning to the thermal control of space telescopes
will be verified in detail from three perspectives: thermophysical
modeling, intelligent radiators based on multi-sensor fusion tech-
nology, and online self-tuning of the thermal control parameters.
First, this paper presents thermophysical modeling of space tele-
scopes in MATLAB/SIMSCAPE based on the node network method
with high-speed and high accuracy, which was proposed and vali-
dated in paper [19], and this method provides improved computa-
tional efficiency when compared with the traditional approach of
modeling using UG/TMG software. Second, to increase the heat
dissipation efficiency of a radiator under passive thermal control,
this paper proposes an intelligent sensor-based radiator based on
multi-sensor fusion technology that operates by sensing the external
space environment and the internal thermal payload of the space-
craft. It then uses the advantages of deep reinforcement learning
in intelligent reasoning and decision-making to ensure that the
thermal control system, with minimal power consumption, can
realize the independent adjustment of the radiating cold plate, the
tilt angle, and other parameters, thus achieving the ideal heat dissi-
pation effect. Third, an intelligent thermal control policy for space
telescopes (deep reinforcement learning PID thermal control
system parameter tuning strategy or DRLPID) based on the deep
deterministic policy gradient (DDPG) method is proposed.
DDPG, which represents an important branch of reinforcement
learning, is a data-driven control method that learns the system’s
mathematical model, achieves optimal system control based on
the input and output data from the system, and then controls the
thermal control system error based on the construction of the
reward function. Therefore, the control parameters of the thermal
control system of a space telescope could be adjusted automatically
using deep reinforcement learning algorithms. Finally, the results of
this work show that the performance of the proposed thermal
control strategy is preferable to that of RLPID, backpropagation
PID (BPPID), and fuzzy PID-based thermal control (FuzzyPID)
[20,21].
The remainder of this paper is organized as follows. In Sec. 2, a

thermophysical model of a space telescope in MATLAB and SIMULINK

is provided. In Sec. 3, the smart sense radiator and DRLPID pro-
cesses are described in detail. The simulated and experimental
results are described in Secs. 4 and 5, respectively. Finally, Sec. 6
presents the conclusions from this study.

2 Thermophysical Model of Space Telescope
It is necessary to analyze the thermophysical model of a space

telescope, which is highly complex, before applying the DRLPID
approach to thermal control of that space telescope. At present,
the node network method is the most widely used method for

thermophysical modeling of spacecraft [22–24]. Depending on
the characteristics of the space telescope, it can be divided into a
large number of finite element units, where each of these units is
treated as an equilibrium body and is used as a node. The following
heat balance equation is applied to each node:

Q1 = Q2 + Q3 + Q4 + Q5 (1)

Q1 = mici
dTi
dt

(2)

Q2 =
∑N
j=1

(αsiSϕ1i + αsiErϕ2iεliEeφ3i)Ai (3)

Q3 = qi (4)

Q4 =
∑N
j=1

Dji(Tj − Ti) (5)

Q5 =
∑N
j=1

Gji(T
4
j − T4

i ) (6)

where the subscripts i and j denote the node numbers; T denotes the
temperature of the ith node; Q1 is the value of internal energy varia-
tion of the node; mi denotes the mass of the ith node; ci denotes the
specific heat of the ith node; t denotes the time; dTi/dt is the tempera-
ture change rate of the ith node; Q2 denotes the heating rate of the
external heat flow absorbed by the ith node; αsi is the solar absorption
coefficient of the surface of the ith node; S is the solar constant; Er is
the average reflection intensity of the earth to the solar radiation; ɛli is
the emissivity of the surface of the ith node;Ee is the average infrared
radiation intensity of the earth; ϕ1i, ϕ2i, and ϕ3i are the angle factors
of the surface of the ith node to the solar radiation, the earth albedo,
and the infrared radiation of the earth, respectively; Ai is the area of
the surface of the ith node;Q3 and qi denote the power of the internal
heat source; Q4 is the value of convective heat transfer between the
node and the atmosphere environment; Q5 is the value of radiation
heat transfer between the node and the atmosphere environment;
andDji andGji denote the linear heat conduction (i.e., the heat trans-
fer coefficient) and the radiative heat conduction between node j and
node i, respectively. In Eq. (1), the rate of change of the internal
energy of the node is shown on the left side, and the right side
shows the external heatflow absorbed by the node, the self-generated
heat power, all linear thermal conduction-type heat transfer rates into
the node, and all radiative-type heat transfer rates into the node, in
that order.
The initial temperature conditions and thermal boundary condi-

tions should be set as follows before calculating the node tempera-
tures based on all the above equations

T(i)|t=0 = T0(i) (7)

T(i)|(Sc,Sε) = TW (i) (8)

where T0 is the initial temperature; TW is the temperature at a given
boundary condition; Sc is the thermal boundary; and Sɛ is the radi-
ation boundary.
Figure 1 shows a schematic diagram and finite element model

of the main mirror installation (MMI) in a space telescope
system, and the relevant physical parameters are listed in Table 1.
The main elements in the MMI include the main mirror, the intelli-
gent electric heater, and the intelligent radiant cooling zone;
the intelligent radiant cooling zone is used to cool the internal
heat payload efficiently by arranging intelligent sensing emitters
to adjust the cooling efficiency automatically according to the
demands of the thermal control system. The MF501 NTC (provided
by Chengdu Hongming Electronics Co., Ltd.) is a negative
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temperature coefficient thermistor that is used to perform high-
precision temperature measurements with an accuracy of 5 mK
[19]. Because the space telescopes system is in an ultra-low tem-
perature state for a long period of time, the optical payload
system is fully wrapped using multilayer insulation material to
achieve a heat insulation effect.
As illustrated in Fig. 2(a), the node network method is used to

divide the space telescope mounting box into six planes, which
are named L Face, R Face, U Face, D Face, F Face, and
B Face. The smart electric heater is arranged on the U Face,
while the main mirror and the smart radiant cooling zone are
arranged on the D Face, and insulation is arranged on all six sur-
faces. Each of these planes is then divided into 24 cells, individually
named as Cells, as shown in Fig. 2(b). In addition, JRP represents an
electric heater and MLI stands for the multilayer insulation. Based
on the node network method, unit T41 was divided further into
four units using SIMSCAPE [25,26] in MATLAB and SIMULINK and a
thin plate unit body was created, as shown in Fig. 2(c). The
method has been validated by several theoretical and experimental
validations in Paper 1 [18] and Paper 2 [19] showing that the error
between the thermophysical model built with SIMSCAPE in MATLAB

and SIMULINK and the finite element model built in UG/TMG is
always within 5%.

3 Intelligent Control Strategy Based on Deep
Reinforcement Learning
3.1 Application to Self-Tuning of Parameters for Thermal

Controllers. Figure 3 shows a schematic diagram of a PID adap-
tive thermal controller based on deep reinforcement learning.
Because the thermal control system for the space-based optical
remote sensors can only calculate the control parameter based on
sampled deviation values and cannot use a continuous PID
control algorithm directly because it requires a discrete approach,
this paper proposes the concept of combining a deep reinforcement
learning-based algorithm with a discrete positional PID controller
[18,19,27–30]

u(t) = K(t) + I(t)

= kP(t)x1(t) + kI(t)x2(t) + kD(t)x3(t) + I(t)

= kP(t)error(t) + kI (t)
∑k
j=0

error(j)T

+ kD(t)
error(t) − error(t − 1)

T
+ I(t)

= kP(t)(error(t) +
T

TI

∑k
j=0

error(j))

+
TD
T

(error(t) − error(t − 1)) + I(t) (9)

where

kI =
kP
TI

(10)

kD = kPTD (11)

∫t
0
error(t)dt ≈ T

∑k
j=0

error(jT)

= T
∑k
j=0

error(j) (12)

derror

dt
=
error(kT)error((k − 1)T)

T

=
error(t) − error(t − 1)

T
(13)

I(t) = R(f )

= R

�������������������������������
2t2∑t

t=0 error(t) − error(t − 1)2

√( )
(14)

where T is the sampling time period; k is the sampling number,
where k= 0, 1, 2, 3,…; error(k− 1) and error(k) are the control
errors of the thermal control system at the times k− 1 and k, respec-
tively; K(t)= [KP(t), KI(t), KD(t)] is the corresponding control
parameter of the PID thermal controller at time t; I(t) is the adaptive
compensation of the PID thermal controller output current at time
based on the deep reinforcement learning algorithm; and R( f ) is
the current compensation function of the PID thermal controller
based on the control error value, which is fitted approximately
using the deep reinforcement learning algorithm.
As shown in Fig. 3, y(t) and yd(t) represent the actual and

expected system outputs, respectively. The system error e(t)=
yd(t)− y(t) is converted into a system state vector x(t) using a
state converter known as a random action modifier (SAM). The
Actor is used to perform strategic estimation and mapping of the
system state variables to the recommended PID thermal controller
parameters K′(t) and the compensation current I′(t). The output

Table 1 Physical parameters of MMI

Parameter Description Value

ρMMI Density 2637 kg/m3

mMMI Quality 15.63 kg
kMMI Thermal conductivity 200 W/(m K)
cMMI Specific heat capacity 904 J/(kg K)
VMMI (physical volume) Volume 0.3 × 0.21 × 0.12 m3

Fig. 1 Schematic diagram and finite element model of MMI
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parameters of the Actor are not involved directly in the DDPG
implementation of the PID thermal controller, but are corrected
by the SAM based on value function estimation information pro-
vided by the Actor to obtain the actual PID thermal controller
parameters K(t) and the compensation current I(t). The cumulative
return value is denoted by R(t). In addition, the decision effect of the

DDPG was evaluated for each time period and the temporal differ-
ence (TD) error (internal reinforcement signal) δTD and an estima-
tion function V(t) were generated, where high values of δTD were
fed directly to the Actor and the Critic and used to update their
various parameters. Simultaneously, V(t) was fed to SAM and
used to correct the Actor’s output.

Fig. 2 Thermophysical model of the MMI

Fig. 3 Adaptive temperature controller based on deep reinforcement learning
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The DDPG algorithm is a model-free, online, nonstrategic rein-
forcement learning method that was proposed by Lillicrap et al.
[31]. This algorithm and the deep Q network (DQN) algorithm
sample data in the same way and both algorithms use the experience
replay sampling method; they sample randomly from their previous
state transfer experience for training, thus solving the problem of
the use of neural network representation value functions that are
prone to algorithmic instability and other problems.
Because the DDPG algorithm is inspired by the idea of the DQN

algorithm, it is necessary to describe the principle of the DQN algo-
rithm in detail before the DDPG algorithm is introduced to enable
better application of DDPG to online self-tuning of the thermal
controller parameters. The DQN algorithm builds on the Q-learning
algorithm by constructing two neural networks called the Actor
Network and the Critic Network, and then creating two targets
called the Target Actor Network and the Target Critic Network,
which have the same network structures and are both slow to
update. The algorithm uses the network to produce the target
value, rather than use a Q-table to approximate the optimal
Q-value, thus solving the problem that the Q-table cannot store
state-action pairs in a high-dimensional continuous state, and
exerts the deep learning ability to process the high-dimensional
data. The DQN uses theQ function as the value evaluation function,
and its renewal equation is given as follows:

Q(s, a) = Q(st , at) + α[rt + γmax
a

Q(st+1, a) − Q(st , at)] (15)

where Q(st, at) denotes the current state Q-value, α∈ [0, 1] denotes
the learning rate of the DQN algorithm, γ∈ [0, 1] denotes the
DQN algorithm discount factor, rt denotes the payoff value, and
Q(st+1, a) denotes the line of Q data used for all actions in the
next state.
The DQN uses a neural network as a Q-value network with the

parameter ω and

Q(s, a, ω) ≈ Qπ(s, a) (16)

The Critic Network uses the mean square error to define the
minimum loss function as

L(θ) = E[(QTarget − Qτ(st , a; θ))2] (17)

where q represents the neural network parameters and the objective
function is

QT arg et = r + γmax
a

Q(st+1, a; θ) (18)

The Q-value network parameters ω are then computed for the
gradient of the loss function as follows:

∂L(ω)
∂ω

= E (r + γ •max
a

Q(st+1, a, ω))
∂Q(st , a, ω)

∂ω

[ ]
(19)

where the value of ∂Q(st, a, ω)/∂ω is calculated by the neural
network; the network parameters can be updated using the stochas-
tic gradient descent (SGD) method, and the optimal Q-value is
finally obtained.
Figure 4 shows a diagram of the self-tuning of the parameters

based on the DDPG approach. Similar to the DQN algorithm, the
DDPG algorithm also uses an Actor-Critic algorithm framework,
which shows a flowchart of the Actor-Critic reinforcement learning
structure. The general operation of the framework is described as
follows.
The Actor uses the policy gradient for policy learning to select

the thermal control strategies in the current given environment,
while the Critic uses policy evaluation to evaluate the value
function to generate signals for use in the evaluation of the
Actor’s actions. When the thermal control strategy is being
planned, the external space environment data obtained from the
spacecraft’s thermal sensors and the internal heat load data are
input into the Actor Network, which outputs the thermal control
strategy to be adopted by the intelligent thermal control system;

the Critic network then inputs the internal and external thermal
environment states of the spacecraft and the proposed thermal
control strategy, and subsequently outputs the corresponding
Q-value required for the evaluation.
In the DDPG algorithm, both the Actor and the Critic are repre-

sented by a deep neural network (DNN) and the Actor Network and
the Critic Network perform function approximations on determinis-
tic policy θμ and the value-action function Q with the parameters θμ

and θQ, respectively. When the algorithm is updated iteratively, we
initially accumulate the sample data in the experience pool until the
minimum number of batches is reached; we then use the sample
data to update the Critic Network and update the parameters θQ

through the loss function to obtain the gradient for the relative
action θμ of the objective function; finally, we use the Adam opti-
mizer to update θμ.
It continues to be measured using a function J that is defined as

follows when measuring a good or bad thermal control strategy

Jβ(μ) =
∫
S
ρβ(s)Qμ(s, μ(s))ds

= Es∼ρρ [Q
μ(s, μ(s))] (20)

where S denotes the environmental state of the spacecraft’s thermal
control system, ρβ denotes the distribution function, and Qμ(s, μ(s))
denotes theQ-value generated by the thermal control system in state
S when it selects the thermal control strategy based on strategy μ.
The algorithm is trained along the directions in which the loss func-
tion is maximized and minimized. The algorithm is then trained in
the direction that maximizes Jβ(μ) and minimizes the loss function.
The DDPG algorithm uses the stochastic gradient ascent (SGA)
random gradient to update the parameter θμ in the policy network
μ. The Q network updates the parameter θQ in the same manner
as the DQN algorithm.

3.2 Applications of Intelligent Sensing Radiator. The opti-
mization of spacecraft thermal control systems based on both heat
transfer and control science will make the task of thermal control
of spacecrafts much more effective. Currently, many scholars
have conducted a lot of research in the field of efficient cooling
and heat transfer technologies for spacecraft and electronic
devices, such as the microchannel heat exchangers developed by
the Jet Propulsion Laboratory (JPL) and NASA, which can be inte-
grated with the packaging structure of electronic devices [32,33],

Fig. 4 Diagram of self-tuning of the parameters based on DDPG
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single-phase and multi-phase flow circuits driven by micro-pumps
[34,35], and micro louvers controlled by electrical signals
[36,37], but the research on advanced active control technologies
for various efficient cooling devices is still relatively lacking.
The thermal control system thus faces a huge challenge and to

solve these problems, this paper proposes an intelligent autonomous
regulation strategy based on deep reinforcement learning for
radiators and a first sample structure diagram is designed that has
some reference significance for future research and development
of intelligent radiators.
Figure 5 shows a schematic diagram of an intelligent sensor-

based radiator structure, which mainly consists of an unfolded radi-
ating cold plate, a radiating cold plate intelligent driver, a radiating
cold plate support frame, a flexible thermal joint, an intelligent
perceptron, and a multilayer insulation assembly. By sensing the
external thermal environment in space and the thermal load inside
the space telescope and using intelligent decision-making algo-
rithms, the intelligent sensor infers the heat dissipation area required
for the radiation cooling plate and the mounting angle needed
between the support frame and the remote sensor to ensure that
the thermal control system can achieve stable control of the space
telescope with the lowest possible power consumption. A flexible
thermal joint is used to adjust the mounting angle of the radiant
cooling panel support frame independently by receiving indepen-
dent perception and reasoning decisions from the intelligent
sensor. The unfolding radiant cooling panel then adjusts the
radiant cooling panel’s heat dissipation area in accordance with
the independent adjustment of the intelligent driver of the radiant
cooling panel and in sufficient time to adjust the heat dissipation
and cooling efficiency of the thermal control system based on the
reasoning decisions of the intelligent sensor to finally achieve the
ideal heat dissipation effect.

4 Simulation
To verify whether the intelligent thermal control strategy based

on deep reinforcement learning proposed in this paper can adjust
the system autonomously and then reach the ideal state via unsuper-
vised adjustment when the external thermal environment or the
internal thermal load of a space telescope changes, the strategy is
applied to temperature control of the MMI in an optical payload
system. The physical parameters related to the MMI are listed
in Table 1. There is strong thermal coupling between the MMI
and the main mirror, which means that a temperature change in
the MMI will affect the temperature stability of the main mirror
directly; this represents a difficult challenge for the thermal
control system because the temperature control accuracy of the
main mirror is required to reach 0.1 °C. As shown in Fig. 1, multi-
layer insulation with an emissivity of 0.69 and an infrared absor-
bance of 0.02 was applied to the outer surface of the mounting

box to reduce the effects of the external thermal environment on
the internal temperature of the box.
The simulations performed in this study were divided into two

heating phases to evaluate the performances of the DRLPID,
RLPID, FuzzyPID, and BPPID approaches under the action of
random disturbances from the external thermal environment. The
total duration of the experiment is 3000 s. Over the period from 0
to 1500 s, the temperature in the thermally coupled zone is
increased gradually from the initial temperature of 21 °C to 22 °C
and this is used as the operating temperature for this phase, which
is referred to as case A. From 1501 s to 3000 s, the temperature
in the thermally coupled zone rises gradually to 23 °C, and this is
used as the operating temperature at this stage; this stage is called
case B. As a rule, two irregular 1–2 °C temperature disturbance
signals are applied to these two cases at the installation position
of the main mirror to verify the robustness of the proposed intelli-
gent control algorithm. An active temperature control loop is
located on the opposite side of the radiation dissipation area and
is controlled by DRLPID. The parameters related to the simulation
environment are listed in Table 2.
To verify the control effects of the intelligent thermal controller

proposed in this paper, the simulation results of the RLPID designed
by Xiong et al. [18], the FuzzyPID designed by Carvajal et al. [20],
and the BPPID designed by Chen and Huang [21] are compared

Fig. 5 Schematic diagram of an intelligent sensor-based radiator structure, which mainly
consists of an unfolded radiating cold plate, a radiating cold plate intelligent driver, a radiating
cold plate support frame, a flexible thermal joint, an intelligent perceptron, and a multilayer
insulation assembly

Table 2 Simulation environment parameters

Parameter Description Value

Patm Atmospheric pressure 101.325 kPa
Tinside The temperature inside the incubator 24.65 °C
Toutside The temperature outside the incubator 25.55± 0.3 °C
PHeat Heating power 0–12.484 W
ɛMLI Emission coefficient of multilayer 0.69
aMLI Absorption coefficient of multilayer 0.02

Table 3 Parameters of DRLPID

Parameter Description Value

αA Learning rate of Actor 0.001
αC Learning rate of Critic 0.02
ɛ Tolerant error band 0.001
γ Discount factor 0.97
NA, NC Batch size of Actor and Critic 256
MA, MC Memory capacity of Actor and Critic 50,000
SA Update steps of Actor 15,000
SC Update steps of Critic 13,000
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and analyzed with respect to the simulation results obtained for
DRLPID; the relevant parameters for DRLPID are presented in
Table 3. The thermophysical model was built in SIMULINK using SIMS-

CAPE, and the control algorithm was designed using MATLAB. The
simulation results are shown in Fig. 6.
As shown in Fig. 6, when the temperature increases gradually to

reach the target temperature value, the RLPID thermal controller
has an overshoot of up to 0.091 °C and its convergence effect is
very poor, remaining constantly in the oscillation state despite a
small fluctuation range. The FuzzyPID thermal controller has an
overshoot of approximately 0.089 °C, and its static error exceeds
0.025 °C. For the BPPID thermal controller, the overshoot was
0.11 °C and the static error was 0.021 °C, and it cannot meet the
thermal control indicators of the main mirror thermal control
system. The static error of the DRLPID thermal controller proposed
in this paper is only 0.052 °C; there is almost no overshoot in the

temperature adjustment stage, and the temperature control stage
shows less fluctuation when compared with the other controllers.
When compared with the RLPID thermal controller, the BPPID
thermal controller, and the FuzzyPID thermal controller, the tem-
perature control accuracy of the DRLPID thermal controller pro-
posed in this paper shows improvements of 22.7, 37.4, and
47.4%, respectively.

5 Experiments
For our experiments, we used the same MMI that was used for

the simulations, and the relevant parameters of this MMI are
given in Tables 1 and 2. An NTC thermistor called the MF501
NTC that can achieve temperature accuracy of 5 mK was used to
perform the high-precision temperature measurements at critical

Fig. 6 Simulation results of MMI in the specified environment

Fig. 7 Thermal equilibrium test devices and platforms for MMI, and experiment flow
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locations. As shown in Fig. 7, a heating zone was placed above the
MMI to prevent the high temperatures generated during heating of
the polyimide heating element from affecting the imaging quality of
the primary mirror. The MMI was placed in a holding tank to insu-
late it from the external environment, thus eliminating any effects
from the external environment. To verify the robustness of the
various control methods, a 1–2 °C random temperature interference
signal was applied in the experiment at the same locations used in
the simulations.
The algorithm was developed and designed in MATLAB, and

LABVIEW was used to perform joint control [38,39]. The experimen-
tal flow is illustrated in Fig. 7.
The temperature data from the important nodes in the MMI were

collected in real-time using the temperature data acquisition
system and were then sent to the DRLPID algorithm system in
MATLAB via a data switch. The DRLPID algorithm system then
made intelligent decisions by reasoning and sent these decisions
to the programmable power supply through the data switch to be
used to control the power supply. As shown in Fig. 8, the BPPID
thermal controller had an overshoot of 0.15 °C, a static error of
0.067 °C, a temperature amplitude of 0.045 °C, and found it
difficult to reach convergence, always remaining in a fluctuating
state. The RLPID thermal controller also showed large temperature
fluctuations and had an overshoot of 0.11 °C. Although the
maximum temperature fluctuation of the FuzzyPID thermal con-
troller was only 0.096 °C, its static error reached 0.079 °C. The
maximum temperature fluctuation of the DRLPID was only
0.075 °C, and its static error was only 0.057 °C. When compared
with the RLPID, the BPPID, and the FuzzyPID, the temperature
control accuracy was improved by 20.4, 32.5, and 42.7%, respec-
tively, when using the DRLPID.

6 Conclusions
In this paper, a self-tuning strategy for thermal control parameters

based on deep reinforcement learning and an intelligent autono-
mous regulation strategy for radiators based on deep reinforcement
learning are proposed. The feasibility and the advantages of the
application of deep reinforcement learning to the thermal control

of space telescopes are verified in detail from three perspectives:
thermal physics modeling, intelligent perception of the emitters,
and online self-tuning of the thermal control parameters. An adap-
tive temperature controller based on deep reinforcement learning is
used to perform simulation analyses and experimental verification
of the thermal control system of the main mirror mounting box in
an optical payload system, and the following conclusions can be
drawn from the analysis of the research results:

(1) The node network method proposed in this paper for thermo-
physical modeling of space telescopes in SIMULINK using SIMS-

CAPE can integrate the control algorithms effectively, thus
enabling simultaneous finite element analysis and control
algorithm verification of thermophysical models of space
telescopes and thereby improving the modeling efficiency
and control algorithm development efficiency for their
thermal control systems.

(2) The feasibility and prospects for the application of deep rein-
forcement learning algorithms in self-tuning of the thermal
control system parameters of a space telescope have been
demonstrated by simulation and testing of the thermal
control system of an MMI in a payload system.

(3) The DRLPID proposed in this paper is applied to the space
telescope’s adaptive thermal controller. The simulation tem-
perature control accuracy can reach 0.02 °C and the
steady-state error of the experiment is only 0.05 °C, which
means that the DRLPID offers the advantages of higher accu-
racy, increased robustness, and a smaller steady-state error
when compared with the various traditional adaptive PID
thermal controllers.

(4) The strategy used for self-tuning of the thermal control
parameters based on deep reinforcement learning and the
intelligent autonomous regulation strategy for the radiators
based on deep reinforcement learning proposed in this
paper can realize the intelligent autonomous regulation of
the thermal control system under no supervision, which
greatly improves the efficiency of the thermal control
system and can provide novel ideas for the intelligent and
autonomous development of the thermal control system of
future space telescopes.

Fig. 8 Experimental results of MMI in the specified environment
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Nomenclature
t = time

aMLI = absorption coefficient of multilayer
at = the action at moment t
ci = specific heat capacity of the ith node

kMMI = thermal conductivity of MMI
mi = mass of the i node

mMMI = quality of MMI
qi = power of the internal heat source of the ith node
rt = payoff value
st = system state at moment t
yt = actual system outputs
Ai = the area of the surface of the ith node
Dji = linear heat conduction (i.e., the heat transfer

coefficient) between node j and node i
Ee = the average infrared radiation intensity of the earth
Er = the average reflection intensity of the earth to the solar

radiation
Gji = the radiative heat conduction between node j and node

i
MA = memory capacity of the Actor agent
MC = memory capacity of the Critic agent
NA = batch size of the Actor agent
NC = batch size of the Critic agent

Patm = atmospheric pressure
Pheat = heating power
Q1 = the value of internal energy variation of the ith node
Q2 = heating rate of the external heat flow absorbed by the

ith node
Q3 = power of the internal heat source
Q4 = the value of convective heat transfer between the node

and the atmosphere environment
Q5 = the value of radiation heat transfer between the node

and the atmosphere environment
SA = update steps of Actor
Sc = thermal boundary
SC = update steps of Critic
Sɛ = radiation boundary
Ti = temperature of the ith node
Tj = temperature of the jth node

Tinside = the temperature inside the incubator
Toutside = the temperature outside the incubator

DRLPID = intelligent thermal control policy for space telescopes
based on the DDPG

errort = control errors of the thermal control system at the
time t

e(t) = system error
I(t) = adaptive compensation of the PID thermal controller

output current at time t based on the DRL
I′(t) = compensation current

K(t) = control parameters of the PID thermal controller at
time t

K′(t) = recommended PID thermal controller parameters from
the Actor agent

R( f ) = current compensation function of the PID thermal
controller based on the control error value

R(t) = cumulative return value
T0(i) = initial temperature of the ith node
Tw(i) = temperature at a given boundary condition
u(t) = control strategy

VMMI = volume of MMI
V(t) = estimation function
yd(t) = expected system outputs
αA = learning rate of the Actor
αC = learning rate of the Critic
αsu = solar absorption coefficient of the surface of the ith

node
γ = discount factor

δTD = temporal difference
ɛ = tolerant error band

ɛMLI = emissivity coefficient of multilayer
θμ = deterministic policy
θQ = value-action function
ρβ = distribution function
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