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Adaptive Parameter Estimation
With Convergence Analysis
for the Prandtl–Ishlinskii
Hysteresis Operator
Hysteresis is a nonlinear characteristic ubiquitously exhibited by smart material sensors
and actuators, such as piezoelectric actuators and shape memory alloys. The Prandtl–
Ishlinskii (PI) operator is widely used to describe hysteresis of smart material systems
due to its simple structure and the existence of analytical inverse. A PI operator consists
of a weighted superposition of play (backlash) operators. While adaptive estimation of
the weights for PI operators has been reported in the literature, rigorous analysis of param-
eter convergence is lacking. In this article, we establish persistent excitation and thus
parameter convergence for adaptive weight estimation under a rather modest condition
on the input to the PI operator. The analysis is further supported via simulation, where a
recursive least square (RLS) method is adopted for parameter estimation.
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Introduction
Micro/nano drive technology is widely applied in the high-

precision positioning field [1]. Smart actuators based on smart mate-
rials, such as piezoceramics [2], magnetically controlled shape
memory alloys [3], and giant magnetostrictive materials [4], serve
as the core part of high-accuracy positioning systems. The
complex hysteresis exhibited by smart materials, however, severely
challenges the control of these positioning systems. Modeling and
parameter estimation of hysteresis in smart materials has been a
subject of extensive interest [5,6].
Existing hysteresis models are mainly divided into two catego-

ries, which include physical models and phenomenological
models. Phenomenological models are widely used, and they can
be further classified into two categories depending on whether
they are based on differential equations or operators. Differential
equation-based models mainly include the backlash-like models [7],
Duhem models [8,9], and Bouc–Wen models [10,11]. Operator-
based models consist of weighted superposition of elementary hys-
teretic units, examples of which include Preisach model [12,13],
Krasnosel’skii–Pokrovskii model [14,15], and Prandtl–Ishlinskii
(PI) model [16–18]. Among these hysteresis models, the classical
PI operator and its variants have been widely used in the modeling
of smart material actuators. The main reason for the widespread use
of the PI operator is that it possesses a simple structure and admits
an analytical inverse, which provides convenience for the imple-
mentation of feed-forward inverse compensation control.
The PI operators typically consist of weighted combination of

play operators, and the input–output curves of a PI operator are
determined by both thresholds and their corresponding weights.
Existing work on the modeling or control of the PI operator typi-
cally adopts predefined thresholds and identifies the values for the
weights. For example, the particle swarm optimization algorithm
was used offline to obtain the weight values of the rate-dependent
PI model [19]. In addition, the gradient descent algorithm, the
Levenberg–Marquardt method, the least squares algorithm, and
their variants were used to identify the parameters of PI operators.

For example, in Ref. [20], the Levenberg–Marquardt method was
used to identify the parameters of a modified PI model for hysteresis
of the pneumatic muscle actuator. In Ref. [21], the estimates of the
weights of a PI operator were updated with an adaptive variable
structure for stable nonlinear systems. In addition, the adaptive
inverse compensation control method was proposed to address the
hysteresis of the piezoelectric actuator, and the weights of the PI
operator were adjusted adaptively [22]. Despite the extensive
work on this topic, little work has been reported on rigorous analy-
sis of parameter convergence conditions for adaptive estimation of
PI operators.
In this article, we present a novel approach to examining the

parameter convergence problem in adaptive identification of PI
operators. Under a mild condition on the input to the PI operator,
we establish that the outputs of constituent play operators are line-
arly independent and thus persistently exciting, which guarantees
the parameter convergence under popular estimation schemes
such as the recursive least square (RLS) algorithm and the gradient
algorithm. Simulation results are further presented to support the
analysis, where we show the parameter estimates converge to
their true values under an RLS scheme.
The remainder of this article is organized as follows. The play

operator and the PI operator are first introduced. Next, the conver-
gence of parameter estimation is analyzed in detail. We then present
the simulation results to support the analysis. Finally, concluding
remarks are provided.

Prandtl–Ishlinskii Operator
The PI operators typically consist of weighted combination of

play operators (sometimes stop operators are used instead). The
input–output curve of the play operator is shown in Fig. 1. The
mathematical expression of the play operator is given as follows:

x(t) = Hr(u(t), x(ti−1), r)

=max{u(t) − r, min{u(t) + r, x(ti−1)}}
(1)

where u(t)∈C[0, T ] represents the piecewise monotone input,
x(t) ∈C[0, T ] is the output, and t∈ [t0, tm], t0≤ t1≤ · · ·≤ ti−1≤ t≤
ti≤ · · ·≤ tm−1≤ tm, where tis are times of input reversals and r is
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the threshold of the play operator. The initial condition of the play
operator is given by

x(t0) = Hr(u(t0), x(0), r)

=max{u(t0) − r, min{u(t0) + r, x(0)}}
(2)

where x(0) ∈ R is an initial condition, which does not have to be
zero in actual applications. The PI operator is formed as a weighted
sum of multiple plays:

y(t) =
∑n
j=1

ω jHr j (u(t), x j(ti−1), r j)

=
∑n
j=1

ω jmax{u(t) − r j, min{u(t) + r j, x j(ti−1)}}

(3)

where y(t) is the output of the PI operator, ωj and rj are the weight
and threshold of the play operator, respectively, rj satisfies that 0=
r1 < · · · < rn<+∞, and n is the number of the play operators.
The threshold r influences the width of the hysteresis loop.

Figure 2 shows the variations in the input–output behavior of the
play operator with different threshold values under the input
signal u(t)= 5sin(2πt). From Eq. (1), we can see that its output
x(t) depends on the play threshold in a complex nonlinear manner.

Convergence Analysis of the Parameter Estimation
Algorithm
In this section, we present the technical analysis of algorithms for

adaptive estimation of the weights of PI operators. To put the dis-
cussion in context, we will use the RLS estimation method as an
example. The persistent excitation condition we will establish,
however, will work equally well with other estimation schemes
(such as the gradient algorithm) to ensure parameter convergence.
We rewrite the PI operator as follows:

y(t) =
∑n
j=1

ω jHr j (u(t), x j(ti−1), r j)

= HT
r (t)W(t)

(4)

where W(t)= [ω1(t), ω2(t), …, ωn(t)]
T. For ease of presentation,

we write Hrj (u(t), x j(t), r j) as Hrj (t). Here, HT
r (t) = [Hr1 (t),

Hr2 (t), . . . , Hrn (t)]. With the RLS method, the estimate of the
weights, denoted as Ŵ(t), evolves as follows:

˙̂W(t) = P(t)ϵHT
r (t) (5)

where ϵ = (HT
r (t)W(t) − HT

r (t)Ŵ(t))/(m2), m = 1 + HT
r (t)Hr(t), and

P(t) are determined by

Ṗ(t) = −
P(t)Hr(t)HT

r (t)P(t)
m2

, P(0) = P0 (6)

where P0 is a positive definite matrix. The estimated output of the PI
operator is expressed as follows:

ŷ(t) = HT
r (t)Ŵ(t) (7)

The convergence of the RLS algorithm for the weights of the PI
operator is analyzed under the persistent excitation condition. We
first give the definition of the persistent excitation condition, and
the assumption on the input u(t) that we will show implies persistent
excitation.
DEFINITION 1. A continuous vector function Hr(t): [0, ∞) → Rn

is persistently exciting, if there exist positive constants T0 and c1,
such that for every t0 > 0:

1
T0

∫t0+T0
t0

Hr(t)H
T
r (t)dt ≥ c1In (8)

where In represents the n-dimensional identity matrix.
ASSUMPTION 1. There exists T0 > 0, such that, for any t0 > 0, the

following is true:

max
t∈[t0,t0+T0]

u(t) − min
t∈[t0,t0+T0]

u(t) ≥ 2rmax (9)

where rmax is the upper bound of the play thresholds.
Note that Assumption 1 does not require the input to be periodic,

although a periodic signal with peak-to-peak magnitude larger than
2rmax automatically satisfies this assumption. The assumption
ensures that, within each T0, for any play operator in the given PI
operator, it will traverse different operating regimes (linearly
increasing/decreasing envelopes and flat interiors) of the hysteresis
loop as illustrated in Fig. 1. We will show that the assumption
ensures the persistent excitation of the resulting vector Hr(t), which
is also the regressor vector in the adaptive estimation algorithm.
Therefore, the adaptive estimation scheme results in parameter con-
vergence. To show that, we first present the following lemma.
LEMMA 1. The outputs of the plays, Hri (t), i = 1, 2, . . . , n, with

t ∈ [t0, t0+ T0], are linearly independent, if and only if Hr(t) =
[Hr1 (t), Hr2 (t), . . . , Hrn (t)]

T satisfies

∫t0+T0
t0

Hr(t)H
T
r (t)dt ≥ c1In (10)

for some c1 > 0.
Fig. 2 Output of the play operator with different threshold
values r

Fig. 1 The input–output curve of the play operator
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Proof. We use contradiction to prove this statement. Note that
Hri (t), i = 1, 2, . . . , n are continuous functions. First, we assume
that

�t0+T0
t0

Hr(t)HT
r (t)dt ≥ c1In is true, but for t∈ [t0, t0+ T0],

Hri (t)’s are linearly dependent. According to the definition of the
linear dependence, there exists a nonvanishing vector, Λ= [λ1, λ2,
…, λn]

T that satisfies HT
r (t)Λ = 0. Then, we can get

ΛT
∫t0+T0
t0

Hr(t)H
T
r (t)dt

[ ]
Λ

=
∫t0+T0
t0

[ΛTHr(t)]
2dt

= 0

(11)

which contracts Eq. (10). Next, we assume that Hri (t)’s are linearly
independent, but Eq. (10) fails to hold. Since the integral in Eq. (10)
is a symmetric and semipositive definite matrix, all of its eigenval-
ues are real and nonnegative. Since Eq. (10) does not hold, one can
infer at least one of the eigenvalues is zero, which implies the exis-
tence of a nonvanishing vector Λ, such that

ΛT
∫t0+T0
t0

Hr(t)H
T
r (t)dt

[ ]
Λ =

∫t0+T0
t0

[ΛTHr(t)]
2dt

= 0

(12)

Since ΛTHr(t) is a continuous function, Eq. (12) implies ΛTHr(t)≡
0, for t∈ [t0, t0+ T0], i.e., Hri (t)’s are linearly dependent, which is a
contraction. ▪
With Lemma 1, we will just need to show that

Hr1 (t), Hri (t), . . . , Hrn (t) are linearly independent with an input
u(t) satisfying Assumption 1.
THEOREM 1. If the input u(t) of the PI operator satisfies Assump-

tion 1, the outputs of the plays Hri (t) are linearly independent and
thus persistently exciting.
Proof. To facilitate the discussion, we illustrate the argument

with the special case of a PI operator with three plays. The argument
extends to the general case of n plays in a straightforward manner.
We again prove the statement by contradiction. We assume

that Hr1 (t), Hr2 (t), and Hr3 (t) are linearly dependent on [t0, t0+
T0], which means that ∃Λ = [λ1, λ2, λ3]T ≠ 0, such that, for
t ∈ t0, t0 + T0],

λ1Hr1 (t) + λ2Hr2 (t) + λ3Hr3 (t) = 0 (13)

From Assumption 1, one can find an interval [t1, t2]⊂ [t0, t0+ T0],
such that at t1, all plays operate at the interior flat regimes, and at
t2, all plays have exited the interior and operate on their linearly
increasing envelopes (see Figs. 3 and 4 for illustration). Clearly,
Eq. (13) is satisfied on [t1, t2] since the latter is a subinterval of
[t0, t0+ T0]. We further divide [t1, t2] into four segments, according
to the output inflection points of these three play operators: τ1 is the

inflection point (time at which the output transitions from the inte-
rior flat regime to the linearly growing envelope on the x− u plane)
of Hr1 , τ2 is the inflection point of Hr2 , and τ3 is the inflection point
of Hr3 . As shown in Fig. 4, by applying Eq. (13) to t= τ1, we have

λ1Hr1 (τ1) + λ2Hr2 (τ1) + λ3Hr3 (τ1) = 0 (14)

Then, applying Eq. (13) to t∈ (τ1, τ2], we have

λ1Hr1 (t) + λ2Hr2 (τ1) + λ3Hr3 (τ1) = 0 (15)

where we have used Hr2 (t) ≡ Hr2 (τ1) and Hr3 (t) ≡ Hr3 (τ1) (see
Fig. 4). From Eqs. (14) and (15), it is evident that

λ1[Hr1 (τ1) − Hr1 (t)] = 0 (16)

SinceHr1 (τ1) = Hr1 (t) cannot be true for all t∈ (τ1, τ2], we get λ1= 0
from Eq. (16). Now proceeding in a similar manner and applying
Eq. (13) to t∈ (τ2, τ3], we get

λ1Hr1 (t) + λ2Hr2 (t) + λ3Hr3 (τ2) = 0 (17)

Since λ1= 0 and Hr3 (τ1) = Hr3 (τ2), subtracting Eq. (17) from
Eq. (15), we get

λ2[Hr2 (τ1) − Hr2 (t)] = 0 (18)

SinceHr2 (τ1) = Hr2 (t) cannot be true for all t∈ (τ2, τ3], we get λ2= 0
from Eq. (18). For t∈ (τ3, t2], it is derived that λ3Hr3 (t) = 0 accord-
ing to Eq. (13). Since Hr3 (t) is strictly increasing in this time inter-
val, we obtain λ3= 0. Therefore, we get Λ= [0, 0, 0], which is in
contradiction with Λ≠ 0. ▪

Simulation Results
This section shows the simulation results, where an example of a

PI operator with three plays is used. The chosen input u in the simu-
lation easily satisfies Assumption 1. First, we consider the input
signal u(t)= 10sin(2πft), where f= 5Hz, t∈ [0, 1], and the sampling
time is set to be 0.001 second. First, we consider the weight values
ω1= 1, ω2= 3, and ω2= 5, with threshold values r1= 0, r2= 10/3,
and r3= 20/3. The simulation results are shown in Fig. 5. From
Fig. 5, it can be seen that the parameter estimation process is con-
vergent and the estimated errors ω̃1(t), ω̃2(t), and ω̃3(t) approach
zero.
We further consider another input that generates minor hysteresis

loops, u(t)= 10sin(10πt)+ 5sin(2πt). The unknown weights are set
to be ω1= 2, ω2= 6, and ω3= 8, with play threshold values set to be
r1= 0, r2= 10/3, and r3= 20/3. The simulation results are shown in
Fig. 6. Again, one can see that the errors of weight parameter esti-
mation go to 0, quickly.

Fig. 3 Illustration for the proof of Theorem 1: the output of three
plays with the input u(t)

Fig. 4 Illustration for the proof of Theorem 1: the output of three
plays with the time t
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Conclusion and Future Work
This study focused on the estimation of the weight parameters of

the PI hysteresis operators. We considered the RLS method as an
example for the estimation algorithm. The convergence of the
weight parameters was analyzed by establishing a persistent excita-
tion condition under a fairly modest condition on the hysteresis
input. In particular, the condition only requires the input to have
adequate variation across some interval T0, which “excites” all
play operators within the PI operator. Such a condition, unique to
systems with hysteresis, is in sharp contrast to conditions for persis-
tent excitation in linear systems, which typically involve the number
of frequency components in the input. In some sense, the strong
nonlinearity of the hysteresis operators have provided an edge
when it comes to weight parameter estimation—the n-dimensional
regressor vector, no matter how large n is, could be persistently
exciting even under a sinusoidal input.
For future work, we will focus on extending the analytical

approach to other operator-based models, for example, the
Preisach and Krasnosel’skii–Pokrovskii model, and further validate
the theoretical results with experiments involving smart material
actuators.
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