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Abstract— The Prandtl–Ishlinskii (PI) operator is a mathe-
matical model for hysteresis, and it is comprised of weighted
superposition of multiple play (backlash) operators. The PI
operator has been widely used in modeling and compensation of
hysteresis in smart material actuators, robots, and mechanical
systems. The behavior of a PI operator is determined by
both the weights and the radii of individual play operators.
However, existing modeling work has mostly been focused on
the identification of the weight parameters by assuming the play
radii to be known. While the latter approach is convenient due
to the linear relationship between the operator output and the
weight parameters, it often requires a large number of plays with
preassigned radii in order to adequately capture the hysteresis in
a given application. In this work, for the first time, we propose
an adaptive estimation algorithm to identify the play radii of
a PI operator, to enable accurate modeling of hysteresis with
a small number of plays and, thus, reduce the complexity in
control. The major challenge lies in the nonlinear, complex,
time-varying relationship between the PI operator output and
the play radii. The proposed algorithm utilizes available mea-
surement and information, including the instantaneous slope of
the hysteretic input–output graph, to derive a modified estimation
error function that is proportional to the parameter error. With a
mild condition on the input, we establish the persistent excitation
of the resulting regressor vector and the parameter convergence
under a gradient algorithm with parameter projection. Both
simulation and experimental results are presented to illustrate
the proposed approach. In particular, comparison results based
on experimental data from a piezoelectric nanopositioner show
that, with the proposed method, the resulting PI operator
outperforms identified PI operators of larger numbers of plays
with preassigned radius values.

Index Terms— Adaptive estimation, hysteresis, piezoelectric
actuator, Prandtl–Ishlinskii (PI) operator.

I. INTRODUCTION

HYSTERESIS is a nonlinear phenomenon arising in
diverse fields, such as mechanics, biology, electronics,

and economics [1]. In particular, hysteresis is ubiquitously
exhibited by various smart materials—materials that show
inherent coupling between mechanical properties and electri-
cal/magnetic/thermal fields and, thus, can be used as sensors
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and actuators, such as piezoelectrics, magnetostrictives, and
shape memory alloys [2], [3]. For most systems, hysteresis is
an undesirable property, and proper modeling is essential to
effective mitigation of its impact. Aside from models aiming to
capture physics of hysteresis in a particular material or system
(e.g., the Jiles–Atherton model for ferromagnetic hysteresis
[4]), there have also been a number of phenomenological mod-
els introduced for hysteresis, examples of which include the
Prandtl–Ishlinskii (PI) operator, the Preisach operator [5]–[7],
the Krasnoselskii–Pokrovskii operator [8], the Maxwell-slip
model [9], the Duhem model [10], [11], and the Bouc–Wen
model [12]. These models have been extensively used in
adaptive control [13]–[22] and robust control [23]–[26] of
systems with hysteresis. Among these, the classical PI operator
and its variants [27], [28] have been particularly popular. For
example, they have been used in the modeling of a wide range
of motion control systems, as actuated by smart materials
(e.g., piezoelectric actuators [29]–[31], magnetostrictive actu-
ators [32], and vanadium dioxide actuators [28]), pneumatic
artificial muscles [33], and cable-driven mechanisms [34].
An important reason for the wide adoption of the PI models
is that, under mild assumptions, they admit analytical inverses
[31], [32], [35], [36], which enables efficient implementation
of feedforward inverse compensation to mitigate the hysteresis
effect.

A classical PI operator is comprised of weighted superpo-
sition of many (or a continuum of) elementary play operators.
Each play operator, also known as a backlash, is characterized
by a radius or threshold parameter that determines the width of
its hysteresis loop. The behavior of a PI operator is determined
by both the weights, and the radii of individual play operators.
Existing work on the modeling and control of PI operators,
however, has largely adopted some predefined play radii [19],
based on which the corresponding weights are identified. For
example, in [37], estimation of weights of a PI operator was
considered with an adaptive variable structure to stabilize a
nonlinear dynamic system. An adaptive inverse control tech-
nique was proposed to compensate for hysteresis in a piezoce-
ramic actuator [20], where the weights of a PI operator were
updated online. With predefined radii, it typically requires a
large number of play operators to capture the hysteresis with
reasonable accuracy. For example, eight, nine, ten, 15, and 15
elementary operators were used in [20], [22], [31], [38], and
[39], respectively. A large number of play operators directly
translate into the high computational cost associated with
model identification and controller implementation. Motivated
by the latter, Zhang et al. [28] examined the problem of best
approximating a PI operator that has a large number of play
operators using one with fewer plays.

Different from all aforementioned work, in this brief,
we take a new perspective on the identification of a PI
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operator, where the required number of play operators and
their associated weights are first determined, and then, the radii
of the play operators are estimated. The rationale behind this
is to obtain a PI operator with the smallest number of plays for
capturing the observed input–output hysteresis behavior, which
leads to low complexity for the model and the resulting con-
troller/compensator. In practice, the required number of plays
and their associated weights can be estimated by examining
the slope profile exhibited by the hysteresis loop, as justified in
Section III-A and demonstrated experimentally in Section V.
The core contribution of this brief focuses on the second
step of the modeling process, estimating the play radii once
their weights are identified. Specifically, we take an adaptive
estimation approach to facilitate online implementation. There
exist two fundamental challenges to the formulated adaptive
radius estimation problem. First, the estimation error, which is
the error between the predicted output (based on the current
parameter estimate) and the actual output, is not linearly
related to the error in the radius estimate; indeed, it depends
on the operating regimes of both the play operator and the
time-dependent estimated play operator. The second (subse-
quent) challenge is that, with the PI operator being a weighted
superposition of multiple play operators, it is impossible to
infer the operating regimes of individual plays based on just
the output of the PI operator. To address the first challenge,
we propose the construction of a modified estimation error,
which is linearly proportional to the parameter error, using
only information available to the user. To address the second
challenge, the instantaneous slope of the input–output graph
of the PI operator is used to identify the operating regimes of
all plays.

With a mild condition on the input to the PI operator,
we show that the associated regressor vector for the modified
estimation error is persistently exciting, which guarantees
the convergence of the estimates of the play radii to their
true values under a classical online estimation algorithm
(e.g., the gradient algorithm as adopted in this work).
Parameter projection is further introduced to ensure that the
estimated parameters follow the right ordering. For ease of
presentation, the approach is first elaborated with a PI operator
consisting of two plays and then extended to the case of n
plays. The efficacy of the proposed approach is supported
by both simulation and experimental results. In particular,
we demonstrate the identification of numbers and weights of
play operators and then the online estimation of play radii
using one set of hysteresis data from a piezoelectric nanopo-
sitioner. Furthermore, we compare the modeling performance
of the resulting PI operator with that of a PI operator identified
with the traditional approach (preassigning play radii and
estimating play weights) and show that the proposed approach
outperforms the traditional approach even when the latter uses
more plays.

A preliminary version of this work was presented at the
2019 American Control conference [40]. This brief extends
and enhances [40] significantly in a number of ways. First
and foremost, the proposed approach is now illustrated and
evaluated with experiments, where the comparison with the
traditional approach is also provided. Among other things,

the experimental work demonstrates the feasibility of quick
identification of the number and weights of plays in practice,
which supports the key assumption used in the radius estima-
tion problem. Second, while the case of a general n−play
was briefly mentioned in [40], the detailed algorithm and
theory (Proposition 3.2) are presented in this brief. Additional
technical results, such as Lemma 3.1 and Lemma 3.2 (which
is essential for verifying the input condition for parameter
convergence in practice), are developed and presented in
this brief. Third, this brief presents a more comprehensive
simulation evaluation comparing to [40], which only dealt with
simulation with two plays under a sinusoidal input. Finally,
the writing has been improved throughout this brief, including
adding various technical details and clarifications.

The rest of this brief is organized as follows. The play
operator and the PI operator are first reviewed in Section II.
In Section III, we formulate the estimation problem and
present and analyze the proposed radius estimation algorithm,
first illustrated with a two-play PI operator and then general-
ized to the n-play cases. Simulation and experimental results
are presented in Sections IV and V, respectively. Finally,
concluding remarks are provided in Section VI.

II. PLAY AND PRANDTL-ISHLINSKII OPERATORS

The play operator is the basic building block for the con-
struction of a Prandtl-Ishlinskii (PI) operator. For a piecewise
monotone input function v ∈ C[0, T ], where C[0, T ] is the
space of continuous functions in the interval [0, T ], and an
initial condition x ∈ R, the output of the play operator with
a fixed radius r ≥ 0, �r [v, x] ∈ C[0, T ], can be defined as
follows. Let 0 = t0 < t1 < · · · < tm = T be a partition of
the interval [0, T ] such that v is monotone (nondecreasing or
nonincreasing) in each interval [tk−1, tk], k = 1, . . . , m. Let

�r [v, x](0) = max{v(0) − r, min{v(0) + r, x}}. (1)

Then, for t ∈ (tk−1, tk], we define recursively

�r [v, x](t)=max{v(t)−r, min{v(t) + r, �r [v](tk−1)}}. (2)

For ease of presentation, we write �r [v, x](t) as �r [v](t)
when the initial condition is implicitly understood. The play
operator is the Lipschitz continuous in C[0, T ] in the sense
that

|�r [v1](t) − �r [v2](t)| ≤ max
t∈[0,T ]

|v1(t) − v2(t)| (3)

for all piecewise monotone functions v1, v2 ∈ C[0, T ] with the
initial condition x for both operators. This enables us to extend
the play operator by the density argument to the whole space
C[0, T ]. For a fixed input v ∈ C[0, T ] and time t ∈ [0, T ],
when we consider �r [v](t) as a function of the radius r ≥ 0,
it is known that it is Lipschitz continuous with the Lipschitz
constant 1 [41]. The output of the PI operator consists of a
weighted sum

y(t) =
n∑

i=1

pi�ri [v](t) (4)

of play operators with radii ri ≥ 0, where r1 ≤ r2 ≤ · · · ≤
rn , and weights pi > 0. Since the play operator �r is the
Lipschitz continuous with respect to r , it is concluded that
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the PI operator is also the Lipschitz continuous with respect to
(r1, . . . , rn), for a given input v(t) ∈ C[0, T ]. Note that the PI
operator is analytically invertible with its inverse represented
as another PI operator [42].

In this brief, we consider the radii ri of the PI operator
as unknown variables and aim to estimate them online. Since
these estimates are time-dependent, we need to consider play
operators and PI operators with time-dependent radii r̂i (t). The
output of a play operator with the estimated radius r̂(t) ≥ 0,
for t ∈ (tk−1, tk], is expressed as

ŷ(t) = max{v(t) − r̂(t), min{v(t) + r̂(t), m̂(tk−1)}} (5)

where

m̂(tk−1) = �r̂(tk−1)[v](tk−1) (6)

and m̂(0) = max{v(0) − r̂(0), min{v(0) + r̂(0), x}} for
the initial condition x . The operator �r̂(t)[.] is called a
time-dependent play, the properties of which can be found
in [43].

Similarly, a time-dependent PI operator can be expressed as

ŷ(t) =
n∑

i=1

pi�r̂i (t)[v](t). (7)

III. ONLINE ESTIMATION OF PLAY RADII

A. Problem Setup

Consider a PI operator of the form (4), where the number
of plays, n, and the weights {pi}n

i=1 are known. Given the
input function v(t) and the corresponding output y(t) of the
PI operator, for t ≥ 0, the goal is to estimate online the radii
values {ri }n

i=1.
Before presenting the proposed estimation algorithm,

we first justify known number and weights, based upon the
observation that such information can be readily extracted
from the measured hysteresis loop of the PI operator, as sum-
marized in the following lemma and further demonstrated in
Section V with experimental results.

Lemma 1: Consider a PI operator in the form of (4),
where 0 < r1 ≤ r2 ≤ · · · ≤ rn . Then, the segments of any
hysteresis loop of the PI operator can take up to n+1 different
values of slope,

∑i−1
j=1 p j , for i = 1, . . . , n + 1. Furthermore,

if the input v has at least one reversal and spans a range greater
than 2rn , the corresponding hysteresis graph will show all n+1
slope values.

Proof: The slope of the output–input graph of a
single (unweighted) play with radius ri is 1 when the play
operates on the lower (respectively, upper) envelope (i.e.,
the linear boundary z = v − ri and z = v + ri , respectively)
and is 0 when it operates in the interior. For a PI operator
with multiple plays, when the input v is increasing, each
play operator operates either on the lower envelope or in the
interior, and if play i operates on the lower envelope, so is any
play j with j < i . Conversely, when the input v is decreasing,
each play operator operates either on the upper envelope or in
the interior, and if play i operates on the upper envelope, so is
any play j with j < i . From these observations, one can see
the possible slope values for the hysteresis graph have to be in
the form of

∑i−1
j=1 p j , for some i ∈ {1, . . . , n + 1}. When the

Fig. 1. Output–input graph of a single play with radius ri , which shows the
upper envelope, the lower envelope, and the interior.

input v spans a range larger than 2rn and has at least one
reversal, each play has to traverse both an interior operating
regime and a linear envelope regime. As a result, all n + 1
slope values will be exhibited in the output–input hysteresis
graph. �

Remark 1: It is assumed in Lemma 1 that the smallest
radius r1 > 0. If this is not the case (namely, r1 = 0, which
means that the PI operator has a linear nonhysteretic element),
Lemma 1 holds true except that there will be n distinct slope
values, taking the form of

∑i
j=1 p j , i = 1, . . . , n. The main

discussion of this brief focuses on the scenario where the
smallest radius is positive (instead of zero). If the smallest
radius is zero (the nonhysteretic play has a positive weight),
then the minimal slope displayed by the hysteresis loop is
positive and corresponds to the weight of the nonhysteretic
play. In that case, one can subtract this value from the output
to obtain a “modified output” corresponding to all hysteretic
play operators. With the original input but the modified output,
the weights of the hysteretic plays can be identified using the
algorithm presented in this brief.

Remark 2: From Lemma 1, by inspecting the slope values
of the hysteresis graph of the PI operator obtained with
an input satisfying the (fairly mild) condition therein, one
can infer the number and weights of play operators for the
PI operator. Furthermore, the slope value of any hysteresis
segment, along with the knowledge of whether v is increasing
or decreasing during that segment, uniquely determines the
states of all play operators. The latter observation will be used
in the development of our estimation algorithm, as elaborated
in Section III-B.

B. Radius Estimation for the Two-Play Case
The estimation error for the PI operator is defined as

e(t) = ŷ(t) − y(t)

=
n∑

i=1

pi(�r̂i (t)[v](t) − �ri [v](t)). (8)

Due to the highly nonlinear relationship between the play
output and its radius, the estimation error e(t) is not linear
with respect to the parameter errors, r̂i (t) − ri , which is a
major challenge in the parameter estimation. This challenge
has been overcome in this work with the introduction of a
modified estimation error. To facilitate the discussion, we first
illustrate the approach with the special case of two play
operators, before presenting the results on the general case of
n plays.

1) Modified Estimation Error: We enumerate all possible
configurations of the operating regimes for the four play
operators involved: �r1 , �r2 , �r̂1(t), and �r̂2(t). Fig. 1 illustrates
the three operating regimes of the play operator. First, consider
the case when v is increasing. There are three possibilities for
just the combination of �r1 and �r2 : 1) �r2 is on its lower
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envelope, in which case �r1 has to be on its lower envelope
as well (since r1 ≤ r2); 2) �r2 is in its interior, and �r1 is
on its lower envelope; and 3) both �r1 and �r2 are in their
interiors. Similarly, for each of these three cases, there are
three subcases for the combination of �r̂1(t) and �r̂2(t). This
results in nine subcases when v is increasing. Likewise, there
are nine subcases when v is decreasing, leading to a total
of 18 subcases.

As will be illustrated in the following, in each of the
subcases, we use the sign of input change, the instantaneous
slope η(t) for the PI operator and the information from the
estimator to uniquely decide the operating regimes of the
two original plays and two estimated plays. Correspondingly,
one can construct a suitable modified estimation error eδ(t)
based on the original estimation error e(t), where eδ(t) is
proportional to the parameter error {r̃i (t)}, where r̃i(t) =
ri − r̂i (t). We now illustrate the three subcases under Case I
(increasing v with both plays operating on lower envelopes):
v(t) > v(tk−1), y(t) > y(tk−1), output–input slope η =
p1 + p2, and y(t) = p1(v(t) − r1) + p2(v(t) − r2). Denote
�v(t) = v(t) − v(tk).

1) Case I-1: Both estimated plays are in interiors. In this
case, ŷ(t) = p1(v(tk−1) + r̂1(tk−1)) + p2(v(tk−1) +
r̂2(tk−1)), and e(t) = p1(−�v(t) + r̂1(tk−1) + r1) +
p2(−�v(t)+ r̂2(tk−1)+r2). Then, we add −r̂1(t)+ r̂1(t)
and −r̂2(t) + r̂2(t) to the terms in e(t) associated with
p1 and p2, respectively, and arrive at
e(t) = p1(−�v(t) + r̂1(tk−1) + r̃1(t) + r̂1(t))

+ p2(−�v(t) + r̂2(tk−1) + r̃2(t) + r̂2(t)) (9)

e(t) = p1(r̃1(t)) + p1(−�v(t) + r̂1(tk−1) + r̂1(t))

+ p2(r̃2(t)) + p2(−�v(t) + r̂2(tk−1) + r̂2(t)).

(10)

Then, by defining (all information needed is available
to the user) δ1(t) = p1(−�v(t) + r̂1(tk−1) + r̂1(t)) +
p2(−�v(t) + r̂2(tk−1) + r̂2(t)) and subtracting it from
e(t), one can obtain a modified estimation error eδ

eδ(t) = e(t) − δ1(t) (11)

= p1r̃1(t) + p2r̃2(t). (12)

2) Case I-2: �r̂1(t) is on its lower envelope, and �r̂2(t) is
in its interior. In this case, ŷ(t) = p1(v(t) − r̂1(t)) +
p2(v(tk−1) + r̂2(tk−1)), and e(t) = p1(r1 − r̂1(t)) +
p2(r̂2(tk−1) + r2 − �v(t)). We follow similar steps as
in Case I-1 and define δ2(t) = p2(−�v(t) + r̂2(tk−1) +
r̂2(t)), which can be used to define a modified estimation
error eδ :

eδ(t) = e(t) − δ2(t)

= p1r̃1(t) + p2r̃2(t). (13)

3) Case I-3: Both estimated plays are on their lower
envelopes. In this case, ŷ(t) = p1(v(t) − r̂1(t)) +
p2(v(t)−r̂2(t)) and e(t) = p1(r1−r̂1(t))+ p2(r2−r̂2(t)),
which is already in a desired form. With δ3(t) = 0, one
can obtain a modified estimation error eδ

eδ(t) = e(t) − δ3(t)

= p1r̃1(t) + p2r̃2(t). (14)

It can be observed that, for all three subcases under Case I,
the modified error takes the same form, as shown in
(12)–(14). Similarly, for Case II, one can construct the
modified estimation error function that is represented as

eδ(t) = p1r̃1(t) − p2r̃2(t) (15)

and for Case III

eδ(t) = −p1r̃1(t) − p2r̃2(t). (16)

Likewise, one can perform similar manipulations when v is
decreasing, where three principal cases are: (IV) both plays
are on their upper envelopes; (V) �r2 is in its interior, and �r1

is on its upper envelope; and (VI) both �r2 and �r1 are in their
interiors. The modified estimation error for all six principal
cases (I–VI) can be summarized as

eδ(t) =

⎧⎪⎨
⎪⎩

(p1r̃1(t) + p2r̃2(t))sgn(�v(t)), Cases I& IV

(p1r̃1(t) − p2r̃2(t))sgn(�v(t)), Cases II& V

(−p1r̃1(t) − p2r̃1(t))sgn(�v(t)), Cases III& VI
(17)

where sgn(�v(t)) = 1 for �v(t) > 0 and sgn(�v(t)) = −1
for �v(t) < 0. We note that, eδ(t), as calculated by subtracting
proper δi(t) function from e(t) [e.g., as in (11)], will be used
in the execution of the adaptive estimation algorithm. On the
other hand, (17) is used to linearly correlate the modified
estimation error with the parameter errors, r̃1(t) and r̃2(t),
which will be instrumental in the convergence analysis of the
algorithm (in particular, in the proof of Proposition 3.1 later).
Define p = (p1, p2)

T , r = (r1, r2)
T , r̂ = (r̂1, r̂2)

T , and
r̃ = (r̃1, r̃2)

T . We can rewrite (17) as

eδ(t) = sgn(�v(t))φT (t)r̃(t) (18)

where

φ(t) =

⎧⎪⎨
⎪⎩

(p1, p2)
T , Cases I & IV

(p1,−p2)
T , Cases II & V

(−p1,−p2)
T , Cases III & VI.

(19)

2) Adaptive Estimation Law for the Case of Two Plays:
With a (modified) estimation error in the form of (18), one
can employ a number of classical algorithms to estimate
the parameter r (see [44]). Here, we proceed with the gra-
dient algorithm with parameter projection. Define the cost
function as

J (r̃(t)) = e2
δ (t)

2
. (20)

The parameter estimate r̂ needs to satisfy the following
constraints: r̂2 ≥ r̂1 ≥ 0. To facilitate that, we define two
constraint sets, the intersection of which defines the feasible
set for the parameter estimate:

�1 = {(r̂1, r̂2) ∈ R
2|g1(r̂1, r̂2) = −r̂1 ≤ 0}

�2 = {(r̂1, r̂2) ∈ R
2|g2(r̂1, r̂2) = r̂1 − r̂2 ≤ 0}.
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Then, the boundaries are

δ�1 = {(r̂1, r̂2) ∈ R
2|g1(r̂1, r̂2) = 0}

δ�2 = {(r̂1, r̂2) ∈ R
2|g2(r̂1, r̂2) = 0}.

The interiors of the sets are denoted as

�0
1 = {(r̂1, r̂2) ∈ R

2|g1(r̂1, r̂2) < 0}
�0

2 = {(r̂1, r̂2) ∈ R
2|g2(r̂1, r̂2) < 0}.

The gradient algorithm with parameter projection [44] can then
be expressed as

˙̂r=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�sgn(�v(t))eδφ, if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) r̂ ∈ �0
1 ∩ �0

2

or

(b) r̂ ∈ δ�i , r̂ �∈ δ�3−i , and

(�sgn(�v(t)eδφ)T ∇gi ≤ 0)

for i = 1 or i = 2

or

(c) r̂ ∈ δ�1 ∩ �2 and

(�sgn(�v(t))eδφ)T ∇gi ≤0

for both i = 1 and 2

�sgn(�v(t))eδφ − ∇g1∇g1
T

∇gT
1 ∇g1

�sgn(�v(t))eδφ

if r̂ ∈ δ�i , r̂ �∈ δ�3−i , and

(�sgn(�v(t))eδφ)T ∇gi > 0

for i = 1 or i = 2

0 if otherwise

(21)

where

� =
[

γ1 0
0 γ2

]
> 0

represents the adaptation gains, and ∇g1 and ∇g2 represent
the gradients of g1 and g2, respectively.

3) Parameter Convergence Analysis:
Proposition 1: Assume the input v to be periodic with a

spanned range larger than 2r2. The estimation algorithm (21)
will result in exponential convergence of r̂(t) to r as t → ∞.

Proof: For the convenience of discussion, we consider the
gradient law without parameter projection (parameter projec-
tion only helps convergence; see [44]). From (18) and (21),
it can be readily derived that

˙̃r = −�φ(t)φ(t)T r̃(t) (22)

where φ(t) is governed by (19). With the assumption on
v, the PI operator will traverse all six principal cases of
configurations (I–VI) during each period T . From (19),
the regressor vector φ will rotate between linearly inde-
pendent vectors (p1, p2)

T and (p1,−p2)
T periodically, with

which one can conveniently establish that φ(t) is persis-
tently exciting. The exponential convergence of r̃ → 0 then
follows [44]. �

C. Radius Estimation for the General n-Play Case

The algorithm and analysis in Section III-B can be read-
ily extended to a general PI operator consisting of n play
operators. In particular, for an increasing input v, one can
enumerate n + 1 principal cases based on the configuration of
the operating regimes of all play operators. For each principal
case, one can enumerate n + 1 subcases covering all possible
configurations of the operating regimes of the estimated play
operators. The beauty is that, for a given principal case,
the modified estimation error eδ can be expressed as eδ(t) =
φT (t)r̃(t) for all its subcases with the same expression for
φ(t), as illustrated for the two-play case in Section III. The
analogous observation holds true for a decreasing v. Specifi-
cally, for an increasing v, the n +1 principal cases correspond
to the slope η value of 0, p1, p1 + p2, . . ., p1 + p2 +· · ·+ pn.
In shorthand, for i = 1, . . . , n + 1, the slope of the principal
case i is

∑i−1
j=1 p j . The regressor vector φ for case i (for all

its (n + 1) subcases) satisfies: φ j = sgn(i − j)p j , where φ j

denotes the j th element of φ, and here, we take convention
sgn(0) = −1.

One can see, again, in the n−play case, that the regres-
sor vector φ will rotate between vectors that encom-
pass n linearly independent vectors: (p1, p2, . . . , pn−1, pn)

T ,
(p1, p2, . . . , pn−1,−pn)

T ,. . ., (p1,−p2, . . . ,−pn−1,−pn)
T ,

and therefore, it will be persistently exciting under a sim-
ilar assumption used in Lemma 1, where the range of the
input v is required to be larger than 2 rn , with rn being
the largest play radius. One can then employ the gradient
algorithm with parameter projection, as summarized in the
following.

The parameter estimate r̂ needs to satisfy the following
constraints: r̂n ≥ · · · ≥ r̂2 ≥ r̂1 ≥ 0. To
facilitate that, we define n constraint sets, the intersec-
tion of which defines the feasible set for the parameter
estimate

�1 = {(r̂1, r̂2, . . . , r̂n, ) ∈ R
n|g1(r̂1, r̂2, . . . , r̂n) = −r̂1 ≤ 0}

�2 = {(r̂1, r̂2, . . . , r̂n) ∈ R
n|g2(r̂1, r̂2, . . . , r̂n) = r̂1 − r̂2 ≤ 0}

...

�n = {(r̂1, r̂2,. . ., r̂n)∈R
n|gn(r̂1, r̂2, . . . , r̂n)= r̂n−1−r̂n ≤0}.

Then, the boundaries of these constraint sets are

δ�1 = {(r̂1, r̂2, . . . , r̂n) ∈ R
n|g1(r̂1, r̂2, . . . , r̂n) = 0}

δ�2 = {(r̂1, r̂2, . . . , r̂n)) ∈ R
n|g2(r̂1, r̂2, . . . , r̂n) = 0}

...

δ�n = {(r̂1, r̂2, . . . , r̂n) ∈ R
n|gn(r̂1, r̂2, . . . , r̂n) = 0}.

The interiors of the constraint sets are

�0
1 = {(r̂1, r̂2, . . . , r̂n) ∈ R

n|g1(r̂1, r̂2, . . . , r̂n) < 0}
�0

2 = {(r̂1, r̂2, . . . , r̂n) ∈ R
n|g2(r̂1, r̂2, . . . , r̂n) < 0}

...

�0
n = {(r̂1, r̂2, . . . , r̂n) ∈ R

n|gn(r̂1, r̂2, . . . , r̂n) < 0}.
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Then, the estimation algorithm can be presented as

˙̂r =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�sgn(�v(t))eδφ, if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) r̂ ∈ ⋂n
i=1 �0

i

or

(b) r̂ ∈ δ�i , r̂ �∈ δ� j , for j �= i

and

(�sgn(�v(t)eδφ)T ∇gi ≤0

for i = 1, 2, . . . or n

or

(c) for some k ∈ {1, . . . , n}
r̂ ∈ ⋂k

j=1 δ�i j , and

(�sgn(�v(t))eδφ)T ∇gi j <0

for all i j , where i1, . . . , ik

are distinct elements for

{1, . . . , n}
�sgn(�v(t))eδφ − ∇gi∇gi

T

∇gT
i ∇gi

�sgn(�v(t))eδφ

if r̂ ∈ δ�i , r̂ �∈ δ� j , for j �= i

and (�sgn
(
�v(t))eδφ

)T ∇gi >0

for some i ∈ {1, . . . , n}
0, if otherwise

(23)

where � > 0 represents the adaptation gains, and ∇gi

represents the gradient of gi .
We summarize the above discussions in the following

proposition.
Proposition 2: For a PI operator with n plays, assume

the input v to be periodic with a spanned range larger than
2rn . The estimation algorithm (23) will result in exponential
convergence of r̂(t) to r as t → ∞.

Remark 3: The requirement of periodic v in Proposition 2
can be relaxed to the following: the rate of change for v
is bounded, and there exists T > 0 such that, for any time
interval [t0, t0 + T ], v has at least one reversal and spans a
range larger than 2rn .

Proposition 2 requires the range of the input v to be larger
than twice of the largest play radius rn ; however, the value of
rn is not known in advance. The following lemma provides a
practical means for obtaining a lower bound for 2 rn and, thus,
for checking a necessary condition v that needs to be satisfied,
i.e., the range of v should be not be smaller than the width
ρ of the observed hysteresis loop. In addition, it provides an
upper bound and sufficient condition for 2 rn in terms of ρ and
play weights. For a hysteresis loop, we define its width as the
largest separation between two input values that correspond to
the same output value.

Lemma 2: For a PI operator with n plays satisfying the
condition in Lemma 1, the maximum width of its hysteresis
loop generated among all possible inputs is

ρ = 2

∑n
i=1 piri∑n
i=1 pi

(24)

2r1 ≤ ρ ≤ 2rn (25)

2rn <

∑n
i=1 pi

pn
ρ. (26)

Fig. 2. Simulation results for the case of a PI operator with five plays
with unknown radii of r1 = 0.4, r2 = 1, r3 = 1, r4 = 2, and r5 = 3.6:
(a) estimated radii r̂1(t), r̂2(t), r̂3(t), r̂4(t), and r̂5(t) and (b) time trajectories
of the estimation error e(t) and the modified error eδ(t).

Proof: For a PI operator, the maximum width of the
hysteresis loop is the separation between the increasing and
decreasing curves when the plays are on their lower and upper
envelopes, respectively. For the increasing curve, the output of
PI operator can be expressed as y(t) = ∑n

i=1 pi(v(t) − ri );
for the decreasing curve, the output can be expressed as
y(t) = ∑n

i=1 pi(v(t) + ri ). To figure out the “horizontal”
separation between these two curves, without the loss of
generality, we can find the input values, v∗+ and v∗−, for
both curves, with their corresponding outputs y(t) = 0.
It can be readily verified the hysteresis loop width ρ =
v∗+ − v∗− = 2(

∑n
i=1 piri )/(

∑n
i=1 pi). Equation (25) is

then obtained from (24) by noting r1 ≤ ri ≤ rn , for
i = 1, . . . , n. Likewise, (26) is obtained from (24) by noting
pnrn <

∑n
i=1 piri . �

IV. SIMULATION RESULTS

We perform simulation with the proposed algorithm for
the case of a PI operator with a harmonic input of v(t) =
30 sin(ωt), where ω = 2π rad/second, five plays with weights
of p1 = 0.3, p2 = 0.5, p3 = 0.8, p4 = 0.3, and p5 = 0.2
and unknown radii of r1 = 0.4, r2 = 1, r3 = 1.5, r4 = 2,
and r5 = 3.6. The adaption gains are γ1 = γ2 = γ3 =
γ4 = γ5 = 10. We consider white noise of signal-to-noise
ratio (SNR) of 10 dB with the output of the PI operator.
Fig. 2 shows the simulation results, where Fig. 2(a) shows
the time history of the estimated radii r̂1(t), r̂2(t), r̂3(t),
r̂4(t), and r̂5(t), and Fig. 2(b) shows the time history of the
estimation error e(t) and the modified estimation error eδ(t).
To show that the algorithm can be used to identify radii
with different input signals, we consider a periodic, biased
stair-step input shown in Fig. 3(b) with white noise of SNR
ratio of 20 dB added to the output of the PI operator. Fig. 3(a)
shows the time history of the estimated radii r̂1(t), r̂2(t),
r̂3(t), r̂4(t), and r̂5(t). To identify the radii with this input,
we select the adaption gains as γ1 = γ2 = γ3 = γ4 =
γ5 = 10. From Fig. 3(a) and (c), it is evident that the proposed
algorithm is able to drive the radius estimates to their true
values.
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Fig. 3. (a) Simulation results the PI operator with five unknown radii of Fig. 3
with a periodic, biased stair-step input, (b) sample of the biased stair-step
input, and (c) time histories of the estimation error e(t) and the modified
error eδ(t).

Fig. 4. Voltage-to-displacement major hysteresis loop of the piezo-actuated
nanopositioning system and the four identified slopes (piecewise linear fit).

V. EXPERIMENTAL RESULTS

In this section, we present experimental validation of the
estimation approach using a piezo-actuated nanopositioning
stage (Nano-OP65, Mad City Labs Inc.). A PC equipped with
a dSPACE system (RT1104, dSPACE) is used to generate the
voltage input signals and to acquire the displacement data from
the nanopositioning stage. The voltage input signal is first sent
to a power amplifier (Nano Drive, Md City Labs Inc.) with
a gain of 15, before being applied to the piezo stage. In this
section, we consider the hysteresis loops between the input
voltage that is applied to the power amplifier and the measured
displacement output.

A. Identification of Number and Weights of Plays
We apply a 1-Hz triangular input voltage of amplitude 2 V

to the piezo-actuated nanopositioning system. The measured
voltage-to-displacement hysteresis loop is presented in Fig. 4.
From the hysteresis loop, we determine that four linear
segments suffice to capture the ascending and descending
branches. At first, we divide the increasing hysteresis curve
into four parts based on the visually observed slope trend.
Next, we aim to identify the best slopes that approximate the
four segments. In particular, we seek the best match of each
segment to a linear function, using a bat-inspired optimization
algorithm [45]. The resulting slopes are s1 = 6.3460, s2 =
8.0195, s3 = 9.1747, and s4 = 9.6224. Once the slopes are
found, we calculate the play weights based on the relationship
between the weights and the slopes as captured in Lemma 3.1:
p1 = s1, p2 = s2 −s1, p3 = s3 −s2, and p4 = s4 −s3, resulting
in p1 = 6.3460, p2 = 1.6735, p3 = 1.1552, and p4 = 0.4477.

Fig. 5. (a) Estimated radii r̂2(t), r̂3(t), and r̂4(t) based on the measured
hysteresis loop in Fig. 4. (b) Estimation error e(t).

Fig. 6. Modeling performance of the estimated PI operator: (a) comparison
between the measured and predicted hysteresis loops. (b) Measured displace-
ment and predicted displacement in time and (c) modeling error y(t) − ŷ(t)
and the percentage error (y(t) − ŷ(t))/(max{y(t)} − min{y(t)}) × 100%.

The four slopes of the increasing curve are shown in Fig. 4.
Since the smallest slope is positive, we infer (see Remark 1)
that there is a linear (nonhysteretic) play r1 = 0 with
weight p1. We need to estimate three thresholds r̂2(t), r̂3(t),
and r̂4(t).

B. Estimation of Play Radii With the Proposed Algorithm

Based on the data for the major hysteresis loop, we imple-
ment the proposed algorithm to estimate the radius values
for the four play operators. We use adaption gains of γ1 =
γ2 = γ3 = 20. Fig. 5 shows the evolution of the parameter
estimates and the estimation error. The radius estimates are
obtained as r̂2 = 0.1945, r̂3 = 0.4826, and r̂4 = 0.5707.
Fig. 6 shows the modeling performance of the resulting PI

operator, by comparing the prediction from the identified PI
operator with the measurement obtained using the triangular
input. In particular, Fig. 6(a) shows the comparison of the
hysteresis loops, while Fig. 6(b) compares the predicted output
with the measured output in time, and Fig. 6(c) shows the
output prediction error, which is less than 0.122 μm for the
total displacement range of 17.03 μm.
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Fig. 7. Validation of the estimated model with a new input that generates
both major and minor loops. (a) Comparison between the measured and
predicted major and predicted hysteresis loops. (b) Measured displacement
and predicted displacement in time and (c) modeling error y(t) − ŷ(t) and
the percentage error (y(t) − ŷ(t))/(max{y(t)} − min{y(t)}) × 100%.

We further evaluate the obtained PI operator using a dif-
ferent set of measurement data involving an input function
that generates both major and minor loops. The comparison
between the model prediction and the measured data is shown
in Fig. 7. From the figure, it can be concluded that the
PI operator with four plays, identified via only the major
hysteresis loop data, is able to capture well the hysteretic
behavior under more sophisticated inputs.

C. Comparison With the Conventional Approach
In order to demonstrate the merit of identifying a PI operator

based on the estimation of play radii, we compare the proposed
approach with the conventional approach, where the weights
of the plays are identified with the radii of plays assumed to
be known. Here, we use the same major hysteresis loop data
in Fig. 4 to identify the play weights. Different numbers of
play operators of n = 4, 5, 6, . . . , 10, with preassumed radii of
ri = (i −1)/(n−1), i = 1, 2, . . . , n, are used. For example, for
a PI operator of seven (n = 7) play operators, the selected radii
are r1 = 0, r2 = (1)/(6), r3 = (2)/(6), r4 = (3)/(6), r5 =
(4)/(6).r6 = (5)/(6), and r7 = 1. The weights are solved
for with the nonlinear least-squares command in MATLAB to
obtain the optimal weights. Again, with the example of seven
plays, the resulting optimized weights from the optimizer are
p1 = 5.4194, p2 = 2.2159, p3 = 1.2423, p4 = 0.0852,
p5 = 0.3505, p6 = 0.0145, and p7 = 0.0099. The optimized
weights (p1, p2, . . . , pn) and the corresponding predetermined
radii (r1, r2, . . . , rn) are then used to compute major and minor
hysteresis loops.

Fig. 8 shows the comparison for the case of a major
hysteresis loop (measured data from Fig. 4). Similarly, Fig. 9
shows the comparison for the case involving both major and
minor hysteresis loops (measured data from Fig. 7). It can be
seen that, in both cases, the proposed approach outperforms the
conventional approach even when the latter uses a larger num-
ber of plays. For example, for the case in Fig. 9, the proposed

Fig. 8. Comparison of the modeling errors with the proposed and conven-
tional approaches, for the case of a major hysteresis loop: (a) time history
of the modeling errors of the conventional approach of n = 4, 5, 6, 7, 8, 9,
and 10 and the proposed algorithm with n = 4 and (b) resulting maximum
modeling error for each case.

Fig. 9. Modeling errors of the major loop and three minors: (a) time history
of the modeling errors of the conventional approach of n = 4, 5, 6, 7, 8, 9,
and 10 and the proposed algorithm with n = 4 and (b) resulting maximum
modeling error for each case.

algorithm (n = 4) results in a maximum error of 0.34 μm,
while the conventional approach results in a maximum error
of 0.48 μm when n = 7 and maximum error of 0.44 μm when
n = 10.

VI. CONCLUSION

This brief was focused on the identification of the PI
operator, which has been used widely to model the hysteresis
in smart material-based actuators and other actuation mech-
anisms. Specifically, we proposed a novel algorithm for the
adaptive estimation of play radii, based on the construction of
a modified estimation error. With mild conditions on the input,
the exponential convergence of parameters was established
under the gradient algorithm with parameter projection. The
approach was evaluated with both simulation and experimental
results. In particular, experimental data from a piezo-based
nanopositioning stage were used to illustrate the proposed
approach. Furthermore, the comparison with the conventional
identification approach for a PI operator shows that the pro-
posed method can better capture the hysteresis behavior even
with a smaller number of play operators.

Our future work will be pursued in several directions. First,
in this brief, the weights of the plays were identified offline
first. It is of interest to explore whether both play weights and
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play radii can be jointly estimated online. Second, we plan to
extend this work from a classical PI operator to its variants,
such as a modified PI operator [27] and a generalized PI
operator [28].
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