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This paper presents an optical alignment strategy for complex perturbed pupil-offset off-axis reflective telescopes,
based on the extension of nodal aberration theory (NAT). First, the direct expansion of the wave aberration func-
tion in the vector form for perturbed off-axis systems is given, which is especially convenient for the expansion of
the corresponding higher-order terms. The inherent vector relationships between the contributions generated by
the aberrations of the on-axis parent systems through pupil transformation are disclosed in detail, which is helpful
to understand the aberration behavior of off-axis systems. Then, according to the inherent vector relationships, an
analytical alignment model based on NAT for complex cases of perturbed off-axis telescopes is established. It can
quantitatively separate the effects of misalignments and surface figure errors from the total aberration fields. The
alignment model is solved by using particle swarm optimization algorithm. Then, an optical alignment example of
the off-axis three-mirror anastigmatic telescope with misalignments and complex surface figure errors based on the
proposed method is demonstrated. After correction, the perturbed telescope can be nearly restored to the nominal
states. Finally, Monte Carlo simulations are carried out to show the effectiveness and accuracy of the proposed
method. ©2021Optical Society of America

https://doi.org/10.1364/AO.421611

1. INTRODUCTION

Compared with refractive optical telescopes, reflective opti-
cal telescopes have the advantages of high transmission, wide
spectrum, radiation resistance, no chromatic aberrations, and
so on. Due to the weight limitation of space-based systems, the
mirrors and supporting structures will have to be lightweight.
This kind of system is easily affected by severe environments
such as thermal stress and vibration, which will degrade the
imaging capabilities. Because of the increase of the aperture size
and performance requirements, it is necessary to equipped it
with the active optics system [1–5] to correct the component
perturbations (component misalignments or surface deforma-
tions). In on-axis reflective telescopes, the spider and the mirror
obscuration limit the energy concentration, signal-to-noise
ratio and field-of-view (FOV), and so on. To overcome these
shortcomings, off-axis reflective telescopes have been developed
[6,7]. However, the rotational symmetry of off-axis telescopes
is broken, and the aberration field characteristics become more
complex. Thus, the alignment or active alignment of off-axis
telescopes becomes more challenging.

To correct the perturbed telescopes, it is necessary to quan-
titatively determine the perturbation values. To determine
these perturbation values, some methods were presented, which

are sensitivity table (ST) method, reverse optimization (RO)
method, the method based on nodal aberration theory (NAT),
and so on. Among them, the ST method [8] is commonly used.
Because this method basically adopts linear approximation,
the accuracy is limited by the assumption. As the perturbation
ranges increase, the linear relationship will be broken, and the
calculated perturbation values using the sensitivity table may
be inaccurate. Moreover, in some optical systems, perturbation
parameters are likely to be strongly coupled, which can lead to
the singularity problem in the ST method, and the calculated
perturbation values can also be inaccurate. The RO method
[9] uses the optimization module of optical design software to
obtain the perturbation values, which is difficult to implement
on orbit. Moreover, most of these methods are numerical, which
can hardly provide deep theoretical guidance for system align-
ment, and there exist some problems in practical application.
To overcome these shortcomings, the method based on NAT is
proposed.

NAT is a very powerful tool for design, analysis, and align-
ment of nonsymmetrical optical systems, which was discovered
by Shack [10] and developed by Thompson [11–15]. The
current research on the alignment of off-axis and on-axis tele-
scopes using nodal aberration theory can be mainly categorized
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into two groups: one to discuss the aberration field character-
istics, and the other to discuss the calculation of perturbation
parameters. For the first group, the focus is on discussing the
characteristics of aberration fields in the presence of different
kinds of misalignments or other perturbations based on nodal
aberration theory, and also the relationships between several
derived aberrations [16–19]. For the second group, the calcu-
lation of perturbation parameters based on nodal aberration
theory is mainly discussed [20–24]. In the second group, an
optical compensation method for the perturbed three mirror
anastigmatic telescopes based on NAT was presented [20],
which mainly discussed the corresponding compensation strat-
egy. An optical alignment method for off-axis telescopes based
on NAT was reported [21], which mainly separated the specific
aberration contributions of lower-order aberrations (astigma-
tism and coma) from the total aberrations, and the aberration
relationships of the off-axis systems with decentered pupil cen-
ter on y -axis were given. These methods mainly focus on some
simple cases of perturbed telescopes, which only involve some
lower-order aberrations and simple surface figure errors. For
these simple cases, they are effective. However, for complex cases
of off-axis telescopes (e.g., with complex surface figure errors,
freeform surfaces, or large FOV), the contributions of higher-
order aberrations should be considered, which can improve the
alignment accuracy and shorten the alignment period. As far
as we know, the analytical optical alignment method involving
higher-order aberrations for off-axis telescopes has been rarely
reported. Therefore, this paper proposes an alignment strategy
involving higher-order aberrations for complex perturbed off-
axis telescopes based on the extension of NAT, which uses the
inherent vector relationships between the derived aberrations of
off-axis telescopes.

This paper is organized as follows. In Section 2, the general
vector expansion of wave aberration function and the inherent
relationships between the derived aberration contributions for
perturbed off-axis systems are presented. Section 3 provides
an alignment strategy for complex cases of off-axis telescopes
based on these inherent relationships. Verification of system
alignment for the perturbed off-axis three-mirror anastigmatic
(TMA) telescope with misalignments and complex figure
errors (including Zernike astigmatism, trefoil, and tetrafoil) are
illustrated in Section 4. The paper is concluded in Section 5.

2. GENERAL VECTOR EXPANSION OF WAVE
ABERRATION FUNCTION AND INHERENT
VECTOR RELATIONSHIPS FOR PERTURBED
OFF-AXIS TELESCOPES

A. General Expansion of Wave Aberration Function
in the Vector Form for Perturbed Off-Axis Systems

The wave aberration in an optical system consists of all-surface
contributions. The vector form of wave aberration function in
rotationally symmetric systems is expressed as [11]

W =
∑

j

∞∑
p

∞∑
n

∞∑
m

(Wklm) j ( EH · EH)
p
( Eρ · Eρ)

n
( EH · Eρ)

m
,

(1)

Fig. 1. Representation of the relationship between the parent pupil
and the decentered pupil vector.

where k = 2p +m and l = 2n +m, EH denotes the normal-
ized field vector, Eρ designates the normalized pupil vector, and
(Wklm) j denotes the corresponding aberration coefficient.

The off-axis system in this paper refers to the pupil-offset off-
axis system, which can be considered to be an off-axis portion
of a rotationally symmetric on-axis system. The transformation
relationship between the parent pupil vector and the decentered
pupil vector is shown in Fig. 1, which can be expressed by

Eρ ′ = B Eρ + EL, (2)

where B denotes the scaling factor, and EL designates the pupil
decenter vector normalized by the pupil radius of the parent sys-
tem. Furthermore, Eρ ′ and Eρ denote the normalized pupil vectors
of the parent system and the decentered system, respectively.

The aberration properties of pupil decentered optical systems
without misalignment were described in [25,26]. To develop
a mathematical expression of the aberration field for a mis-
aligned system, an effective field vector was introduced [27].
The effective field vector for the j th surface is written as

EHA j = EH − Eσ j , (3)

where Eσ j denotes the aberration field decenter vector for surface
j , which is directly related to the corresponding misalignment
parameters.

In the presence of misalignment, the wave aberration
function in off-axis optical systems in vector form can be
expressed by

W =
∑

j

∞∑
p

∞∑
n

∞∑
m

(Wklm) j ( EHA j · EHA j )
p

× [(B Eρ + EL) · (B Eρ + EL)]n[ EHA j · (B Eρ + EL)]m . (4)

To facilitate the following discussion, the field and pupil
dependence of each term in Eq. (4) can be explicitly expressed
based on the rules of vector multiplication. In the derivation of
the following several equations, Eq. (2) and Eq. (3) in Ref. [16]
are used. The difference is that the corresponding variables
are different, and the variable substitution is needed. Here, we
will make a further discussion, which is more convenient and
direct to get the explicit expansion of the aberration function in
off-axis systems. The wave aberration function, in Eq. (4), can
be rewritten as

W =
∑

j

∞∑
p

∞∑
n

∞∑
m

EU( EHA j ) · ET( Eρ), (5)
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where

EU( EHA j )=W ′

klmj [(
EHA j · EHA j )

p( EHA j )
m
]

ET( Eρ)= [(B Eρ + EL) · (B Eρ + EL)]n(B Eρ + EL)m

W ′

klm =

s∑
t=0

1

2m+2t−1+δm0

(
m + 2t

t

)
Wkl(m+2t),

s =min{n, p}, (6)

and where EU( EHA j ) denotes the terms corresponding to the
effective field vector, ET( Eρ) denotes the terms corresponding
to the pupil vector, and δm,0 is the Kronecker delta function
(δm,0 = 0 if m 6= 0; δm,0 = 1 if m = 0). Equation (5) is the
aberration function for the misaligned off-axis systems, which
can analytically describe how the aberration fields of the off-axis
systems change with the pupil coordinate, field coordinate,
as well as misalignments. As can be seen, the field and pupil
dependence have been explicitly separated. The coefficients in
Eq. (4) are different from those in Eq. (5), and their relationships
have been given. The contributions of the intrinsic and extrinsic
aberrations are considered in the aberration coefficients.

Using the binomial theorem, the pupil dependence of each
term can be expanded. In Eq. (5), each term can be rewritten as

EU · (B Eρ + EL)m[(B Eρ + EL) · (B Eρ + EL)]n

=

[
m∑

f=0

(
m
f

)
B f EU · ELm− f

Eρ f

]

×

[
n∑

g=0

(
n
g

)
[2B( Eρ · EL)+ ( EL · EL)]

n−g
[B2( Eρ · Eρ)]

g

]

=

[
m∑

f=0

(
m
f

)
B f EU · ELm− f

Eρ f

]

×

[
n∑

g=0

n−g∑
h=0

(
n
g

)(
n − g
h

)
2h B2g+h( EL · EL)

n−g−h
( Eρ · EL)

h
( Eρ · Eρ)

g

]

=

m∑
f=0

n∑
g=0

n−g∑
h=0

ξ f g h

[
( EL∗)

m− f
ELh( EL · EL)

n−g−h
EU

· Eρ f+h( Eρ · Eρ)
g
+ ( EL · EL)

n−g−h
( EV · Eρ | f−h|)( Eρ · Eρ)

r+g
]
,

(7)

where

ξ f g h =

q∑
t=0

1

2δh0

(
h + 2t

t

)(
m
f

)(
n

g − t

)

×

(
n − (g − t)

h + 2t

)
B f+2g+h , q =min{g , (n − g − h)}

EV =
{
( ELm− f+h)∗ EU , f ≥ h
ELm− f+h EU ∗, f < h

r =min{ f , h}. (8)

The asterisk superscript represents the conjugate of the cor-
responding vector. According to Eq. (7), the aberration terms in
Eq. (5) can be converted into existing aberration types.

By using the similar method, the expansion of the field
dependence of each term in Eq. (5) can also be obtained. It is
especially convenient for the expansion of high-order terms
of wave aberration function in off-axis systems. Based on the
general formula, the wave aberration expansion through fifth
order and partial seventh order, as examples, will be given in the
following.

B. Inherent Relationships between the Aberration
Contributions Generated through Pupil
Transformation for Perturbed Off-Axis Systems

The Zernike polynomials are particularly attractive in wave-
front analysis because of the orthogonality over the unit circle.
There are several definitions of the Zernike polynomials. Here,
the Fringe Zernike polynomials [28] are used, which employ
amplitude normalization. To make Zernike description related
to the NAT expression, the wave aberration function can also
be expanded over the Zernike polynomial vectors, which is
given by

W ( Eρ)=

∞∑
n′=0

n′∑
m′=0

ECn′m′ · EZm′
n′ ( Eρ) . (9)

Here, EZm′
n′ ( Eρ) denotes the Fringe Zernike vector, which can be

expressed as

EZm′
n′ ( Eρ)=

(n′−m′)/2∑
s=0

(−1)s (n′ − s )!

s !( n′+m′

2 − s )!( n′−m′

2 − s )!
( Eρ · Eρ)

n′−m′−2s
2 Eρm′ ,

(10)
where ECn′m′ denotes the corresponding Fringe Zernike coef-
ficient vector, and n′ and m′ are positive integers (including
zero) known as the radial degree and the azimuthal frequency,
respectively. It should be noted that n′ −m′ ≥ 0 and n′ −m′

must be an even number.
In a rotationally symmetric system, the relationships between

the Seidel aberrations and the Fringe Zernike aberrations are
relatively simple. However, in perturbed off-axis systems, the
relationships between them are complex due to the influence of
pupil coordinate transformation. In particular, the aberrations
with higher-order pupil dependence will generate some lower-
order aberrations through pupil transformation. According
to Eq. (7), the aberration expansion including higher-order
terms for perturbed off-axis systems can be obtained. Then,
according to Eq. (10), all the aberrations can be rewritten to the
form of Eq. (9). The contributions generated by the aberrations
of the on-axis parent systems through pupil transformation to
Zernike polynomial vectors are shown in Table 1 (expanded
through seventh order). The first column in Table 1 shows the
aberration types of the on-axis parent systems. The subscript M
indicates that the corresponding aberrations are obtained with
reference to the medial focal surface. The first row in Table 1,
the notations ( EZ2

2 , EZ1
3 , etc.), denote the corresponding Zernike

polynomial vectors. Among them, EZ0
4 , EZ0

6 , and EZ0
8 are scalars,

not vectors, but scalars can also be considered a special form
of vectors, which are the useful extension to unified vector
description. In Table 1, the black square indicates that there is
the contribution to the corresponding Zernike vector. Here,
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Table 1. Contributions Generated by the Aberrations of the On-Axis Parent Systems through Pupil Transformation
to Zernike Polynomial Vectors

Aberration
Type EZ2

2
EZ1

3
EZ0

4
EZ3

3
EZ2

4
EZ1

5
EZ0

6
EZ4

4
EZ3

5
EZ2

6
EZ1

7
EZ0

8

W131 � �

W222 �

W040 � � �

W331M � �

W422 �

W333 � �

W240M � � �

W242 � � � �

W151 � � � � � �

W060 � � � � � � �

W531M � �

W622 �

W444 � � �

W440M � � �

W533 � �

W260M � � � � � � �

W442M � � � �

W351M � � � � � �

W353 � � � � � �

W171 � � � � � � � � � � �

W262 � � � � � � � � �

W080 � � � � � � � � � � � �

in accordance with the tradition of optical testing, the x -axis
is chosen as the reference axis [29], and the angle is measured
counterclockwise.

Table 1 implies that the third-order coma of the on-axis
parent systems will make the contributions to Zernike coma
( EZ1

3) and Zernike astigmatism ( EZ2
2); the third-order spherical

aberration will make the contributions to Zernike astigma-
tism, Zernike coma, and Zernike spherical aberration ( EZ0

4); the
derived contributions of tetrafoil of the on-axis parent systems
include Zernike astigmatism, Zernike trefoil ( EZ3

3), and Zernike
tetrafoil ( EZ4

4); and the derived contributions of the seventh-
order spherical aberration include all the lower-order Zernike
aberrations. Almost all aberrations of the on-axis parent systems
have derived contributions to Zernike astigmatism. Most of the
aberrations have derived contributions to Zernike coma. With
the increase of the order of Zernike vectors, the number of aber-
rations that can generate effects on the Zernike vectors decrease.
These qualitative relationships are helpful to understand the
aberration behavior of off-axis systems.

We can find that there are the quantitative relationships
between the contributions generated by the same aberration
through pupil transformation, which can further describe
the aberration behavior of off-axis systems. Table 2 shows the
inherent relationships between the aberration contributions
generated through pupil transformation for perturbed off-axis

systems based on the fifth-order expansion. In Table 2, the
notations ( E9131, E92

222, etc.) are applied, as defined in [30], and
the difference is that the symbol “9” replaces the symbol “[].”
The notation EE = EL/B denotes a coefficient related to the
optical system parameters. EC Wklm

n′m′ denotes the Fringe Zernike
coefficient vector ECn′m′ contributed from the aberration term
corresponding to Wklm of the on-axis parent systems. 1 desig-
nates the lowest-order aperture terms, which are not discussed
in this paper. These results give the corresponding vector rela-
tionships of the off-axis system with the decentered pupil center
located at any position of the parent pupil (not just on the y -axis
as the previous research). The inherent relationships between
the derived aberrations for perturbed off-axis systems based on
the partial seventh-order expansion, as examples, are listed in
Table 3. The inherent relationships for other seventh-order and
even higher-order derived aberrations can be obtained in the
same way, and they will not be repeated here.

Tables 2 and 3 show that, in perturbed off-axis systems,
the derived contributions for each aberration of the on-axis
parent systems include aberrations of the same order and lower-
order aperture as the original aberrations. Due to the loss of
rotational symmetry, the magnitude of the derived aberration
contributions is related to the magnitude and direction of the
pupil decenter vector EL and the corresponding misalignments.
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Table 2. Inherent Vector Relationships between Derived Aberrations for Perturbed Off-Axis Systems Based on
Fifth-Order Expansion

Aberration
Type

Derived Aberration Contributions Generated
through Pupil Transformation

Inherent Relationships between the
Derived Aberration Contributions

W131 B2 EL E9131 · Eρ
2
+ B3 E9131 · Eρ( Eρ · Eρ)+1 EC W131

22 = 3 EE EC W131
31

W222
1
2 B2 E92

222 · Eρ
2
+1 None

W040

[
B4W040( Eρ · Eρ)

2
+ 4B3W040( EL · Eρ)( Eρ · Eρ)

+2B2W040( EL2
· Eρ2)+1

] {
EC W040

22 = 12 EE 2 EC W040
40

EC W040
31 = 8 EE EC W040

40

W331M B3 E9331M · Eρ( Eρ · Eρ)+ B2 E9331M EL · Eρ2
+1 EC W331M

22 = 3 EE EC W331M
31

W422
1
2 B2 E92

422 · Eρ
2
+1 None

W333
1
4 B3 E93

333 · Eρ
3
+

3
4 B2 E93

333
EL∗ · Eρ2

+1 EC W333
22 = 3 EE ∗ EC W333

33

W240M

[
B4 E9240M( Eρ · Eρ)

2
+ 4B3 E9240M( EL · Eρ)( Eρ · Eρ)

+2B2 E9240M EL2
· Eρ2
+1

] {
EC W240M

22 = 12 EE 2 EC W240M
40

EC W240M
31 = 8 EE EC W240M

40

W242

[
1
2 B4( E92

242 · Eρ
2)( Eρ · Eρ)+ 3

2 B2( EL · EL) E92
242 · Eρ

2

+
1
2 B3 E92

242
EL · Eρ3

+
3
2 B3( E92

242
EL∗ · Eρ)( Eρ · Eρ)+1

] 
EC W242

22 = [3+ 12( EE · EE )] EC W242
42

EC W242
31 = 4 EE ∗ EC W242

42

EC W242
33 = 4 EE EC W242

42

W151


B5( E9151 · Eρ)( Eρ · Eρ)

2
+ B3( E9151 EL2

· Eρ3)

+3B4( E9151 · EL)( Eρ · Eρ)( Eρ · Eρ)+ 2B4( E9151 EL · Eρ2)( Eρ · Eρ)

+6B3( EL · EL)( E9151 · Eρ)( Eρ · Eρ)+ 3B3( E9∗151
EL2
· Eρ)( Eρ · Eρ)

+2B2( E9151 · EL)( EL2
· Eρ2)+ 2B2( EL · EL)( E9151 EL · Eρ2)+1





EC W151
22 =

[
15 EE EC W151

51 + 20 EE 2( EE · EC W151
51 )

+20( EE · EE ) EE EC W151
51

]
EC W151

40 = 5 EE · EC W151
51

EC W151
33 = 10 EE 2 EC W151

51

EC W151
42 = 5 EE EC W151

51

EC W151
31 =

[
4 EC W151

51 + 10 EE 2( EC W151
51 )∗

+20( EE · EE ) EC W151
51

]

W060


W060[B6( Eρ · Eρ)3 + 2B3( EL3

· Eρ3)+ 6B5( EL · Eρ)( Eρ · Eρ)2

+9B4( EL · EL)( Eρ · Eρ)2 + 18B3( EL · EL)( EL · Eρ)( Eρ · Eρ)

+6B4( EL2
· Eρ2)( Eρ · Eρ)+ 6B2( EL · EL)( EL2

· Eρ2)] +1





EC W060
22 = 120( EE · EE ) EE 2 EC W060

60 + 90 EE 2 EC W060
60

EC W060
31 = 48 EE EC W060

60 + 120( EE · EE ) EE EC W060
60

EC W060
40 = 5 EC W060

60 + 30( EE · EE ) EC W060
60

EC W060
33 = 40 EE 3 EC W060

60

EC W060
42 = 30 EE 2 EC W060

60

EC W060
51 = 12 EE EC W060

60

Generally speaking, the derived contributions and the misalign-
ment sensitivity of off-axis systems can be lowered by properly
reducing the magnitude of the pupil decenter vector. Although
each aberration generated by the same aberration of the on-axis
parent systems through pupil transformation changes due to
different misalignments, the quantitative relationships between
these derived aberrations do not change with the misalignments.
The quantitative relationships between them are the function
of EE .

In addition, when considering a certain Zernike aberra-
tion vector, its coefficient magnitude contributed from the

higher-order aperture aberrations is much larger than that con-

tributed from the lower-order aperture aberrations. That is to

say, the off-axis pupil transformation has a greater amplification

effect on the higher-order aperture aberrations. Therefore,

the lower-order aberrations contributed from higher-order

aberrations of the on-axis parent systems through pupil trans-

formation may be much larger than the original ones. Although

the higher-order aberrations are generally small, they may have

significant contributions to some low-order aberrations through

amplification.
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Table 3. Inherent Vector Relationships between Derived Aberrations for Perturbed Off-Axis Systems Based on
Partial Seventh-Order Expansion

Aberration
Type

Derived Aberration Contributions Generated
through Pupil Transformation

Inherent Relationships between the
Derived Aberration Contributions

W531M

 B3
∑

j
W531Mj [( EHA j · EHA j )

2
EHA j ] · Eρ( Eρ · Eρ)

+B2
∑

j
W531Mj [( EHA j · EHA j )

2 EHA j ] EL · Eρ2
+1

 EC W531M
22 = 3 EE EC W531M

31

W622
1
2 B2

∑
j

W622 j [( EHA j · EHA j )
2 EH2

A j ] · Eρ
2
+1 None

W444


1
8 B4

∑
j

W444 j
EH4

A j · Eρ
4
+

1
2 B3

∑
j

W444 j
EH4

A j
EL∗ · Eρ3

+
3
4 B2

∑
j

W444 j
EH4

A j (
EL2)∗ · Eρ2

+1

 {
EC W444

22 = 6( EE 2)∗ EC W444
44

EC W444
33 = 4( EE )∗ EC W444

44

W080

W080×

B8( Eρ · Eρ)
4
+ 8B7( EL · Eρ)( Eρ · Eρ)3 + 16B6( EL · EL)( Eρ · Eρ)3

+12B6( EL2
· Eρ2)( Eρ · Eρ)

2
+ 48B3( EL · EL)

2
( EL · Eρ)( Eρ · Eρ)

+36B4( EL · EL)
2
( Eρ · Eρ)

2
+ 8B5( EL3

· Eρ3)( Eρ · Eρ)+ 2B4( EL4
· Eρ4)

+32B4( EL · EL)( EL2
· Eρ2)( Eρ · Eρ)+ 48B5( EL · EL)( EL · Eρ)( Eρ · Eρ)2

+8B3( EL · EL)( EL3
· Eρ3)+ 12B2( EL · EL)

2
( EL2
· Eρ2)+1





EC W080
22 =

[
504 EE 2

+ 1680( EE · EE ) EE 2

+840( EE · EE )2 EE 2

]
EC W080

80

EC W080
40 = [35+ 280( EE · EE )+ 420( EE · EE )2] EC W080

80

EC W080
33 = [448 EE 3

+ 560( EE · EE ) EE 3
] EC W080

80

EC W080
42 = [280 EE 2

+ 560( EE · EE ) EE 2
] EC W080

80

EC W080
51 = [96 EE + 336( EE · EE ) EE ] EC W080

80

EC W080
60 = [7+ 56( EE · EE )] EC W080

80

EC W080
44 = 140 EE 4 EC W080

80

EC W080
53 = 112 EE 3 EC W080

80

EC W080
62 = 56 EE 2 EC W080

80

EC W080
71 = 16 EE EC W080

80

EC W080
31 =

[
224 EE + 1120( EE · EE )2 EE

+1344( EE · EE ) EE

]
EC W080

80

3. OPTICAL ALIGNMENT STRATEGY FOR
COMPLEX PERTURBED OFF-AXIS
TELESCOPES BASED ON THE EXPANSION OF
NODAL ABERRATION THEORY

Active optical systems can adjust the position and surface shape
of optical elements through the corresponding mechanisms.
When the correction type corresponds to the perturbation type,
the perturbation values of optical elements need to be deter-
mined quantitatively. The previous section gives the inherent
relationships between the derived aberrations for perturbed off-
axis telescopes. Here, these relationships will be used to establish
the active optical alignment model. When the high-order
aberrations are included, the alignment model can accurately
describe more complex systems and more complex surface figure
errors. It can better adapt to some complex cases. The derived
contributions of the third-order, fifth-order, and higher-order
astigmatism with the same pupil dependence are difficult to
separate from each other. For this reason, they are considered
together in the alignment model. Similarly, the derived con-
tributions of the third-order, field-cubed and higher-order
coma with the same pupil dependence are also considered
together. Some other aberrations can also be treated in a simi-
lar way. This section aims to give a general idea on the optical
alignment of complex cases of pupil-offset off-axis telescopes.

The alignment model involving fifth-order and partial higher-
order aberrations, as examples, will be established in the
following.

A. Alignment Model of Off-Axis Telescopes Using
Nodal Aberration Theory with Fifth-Order Aberration
Expansion

For perturbed off-axis telescopes, according to the relationships
between the derived aberrations and the Zernike aberrations
discussed in the previous section, the field dependence of some
aberration contributions with the same pupil dependence can
be expressed as a function of Zernike coefficient vectors, which
can be given by∑

κ

A · E9κ = f (. . . , EC22, EC31, . . . , EC51, . . .), (11)

where A · E9κ denotes the field dependence of the aberration
term considered, A denotes the corresponding conversion fac-
tor, κ is the number of the considered terms, and f (·) designates
the function of the Fringe Zernike coefficient vectors. The
specific expression will be given in the following.

In perturbed off-axis systems, to determine the contributions
generated by the certain aberrations of the on-axis parent sys-
tems to the corresponding Zernike aberration, the contributions
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generated by other aberrations should be subtracted from the
corresponding total Zernike aberrations. Table 1 shows, that
the Fringe Zernike coma ( EZ1

3) of perturbed off-axis systems
contributes from seven parts when considering the fifth-order
aberration expansion. To determine the derived contributions
of the aberration terms corresponding to W131 and W331M of
the on-axis parent systems to Zernike coefficient vector EC31, it is
necessary to subtract the corresponding derived contributions
of the third-order spherical aberration (W040), a component of
oblique spherical (W240M), oblique spherical (W242), fifth-order
field-linear coma (W151), and fifth-order spherical aberration
(W060) from the total Zernike coefficient vector EC31. Similarly,
the Fringe Zernike coefficient vector EC22 of perturbed off-axis
systems contribute from 10 parts. To determine the derived
contributions of the aberration terms corresponding to W222

and W422 to Zernike coefficient vector EC22, the corresponding
derived contributions of the third-order coma (W131), third-
order spherical aberration (W040), field-cubed coma (W331M),
trefoil (W333), a component of oblique spherical (W240M),
oblique spherical (W242), fifth-order field-linear coma (W151),
and fifth-order spherical aberration (W060) need to be subtracted
from the total Zernike coefficient vector EC22. In the same way,
the derived contributions of other aberrations of the on-axis
parent systems to the corresponding Zernike vector can also be
obtained. Then, according to Tables 1 and 2, after some conver-
sion of aberration contributions, the optical alignment model
for perturbed off-axis telescopes based on NAT with fifth-order
aberration expansion can be obtained, which is given by

B2( E92
222 +

E92
422)

= 2( EC22 − EM31 − EM40 − EM33 − EM42 − EM51 − EM60)

B3( E9131 + E9331M)= 3( EC31 − EN40 − EN42 − EN51 − EN60)

B3 E93
333 = 4( EC33 − 4 EE EC42 + 10 EE 2 EC51 − 40 EE 3 EC60)

B4 E92
242 = 8( EC42 − 5 EE EC51 + 30 EE 2 EC60)

B5 E9151 = 10( EC51 − 12 EE EC60),

(12)
where

EM31 = 3 EE EC31

EM40 =−12 EE 2 EC40

EM33 = 3 EE ∗ EC33

EM42 = (3− 12 EE EE ∗) EC42

EM51 =−12 EE EC51 + 80 EE 2( EE · EC51)

−10( EE · EE ) EE EC51 − 30 EE 3( EC51)
∗

EM60 = (60 EE 2
− 120 EE 3 EE ∗) EC60

EN40 = 8 EE EC40

EN42 = 4 EE ∗ EC42

EN51 = 4 EC51 − 40 EE ( EE · EC51)+ 10 EE 2( EC51)
∗

EN60 =−40 EE EC60 + 120( EE · EE ) EE EC60,

(13)

where ECn′m′ denotes the Fringes Zernike coefficient vector
obtained by wavefront measurements. It can be seen that,
in Eq. (12), the left side is the function of the aberration

field decenter vectors, which can be directly related to the
misalignments of optical elements.

The contribution of surface figure errors at the large aperture
mirror should also be considered. If the surface with figure errors
is located at the stop, the contribution can be regarded as the
component of the corresponding aberrations independent of
the FOV [31]. In practical engineering, the surface figure errors
are generally complex, and it is difficult to describe them accu-
rately with a single component. It is more reasonable to regard
the surface figure errors as a combination of Zernike polynomial
terms. If there are surface nonsymmetric figure errors at the stop,
ECn′m′ in Eq. (12) should be equal to the wavefront Zernike mea-
surements minus the corresponding contributions of surface
figure errors, which can be given by

ECn′m′ = Total ECn′m′ − 2F ECn′m′ , (14)

where Total ECn′m′ denotes the wavefront Zernike measurements
of perturbed systems, and F ECn′m′ denotes the corresponding
surface Fringe Zernike figure errors. Namely, the surface figure
errors are introduced into the alignment model. Therefore, the
alignment model can be used to solve the misalignments and
surface figure errors. If the measurement information other than
wavefront measurement can be obtained, the accuracy of the
alignment model can usually be improved. For example, when
the boresight errors of the perturbed system can be measured,
the auxiliary equations related to the aberration field decenter
vectors can be obtained. This is equivalent to reducing the
number of unknowns of the above model, which is beneficial
to solving the alignment model. When multiple perturbations
need to be determined, multiple equations need to be solved
jointly. If the number of equations is more than the number of
unknowns, the least-squares method can be used to determine
the perturbations.

B. Alignment Model of Off-Axis Telescopes Using
Nodal Aberration Theory with Higher-Order
Aberration Expansion

For the approximation of third-order or fifth-order aberration
expansion, the accuracy is acceptable in some simple cases of off-
axis systems. However, in some complex systems, the aberration
series may converge slowly. If high accuracy is desired, the con-
tributions from higher-order aberrations should be considered
[32]. In addition, if the system has complex surface figure errors,
the higher-order aberrations should also be considered. Using
the procedure described in Section 3.A, the alignment model for
off-axis telescopes based on NAT with higher-order aberration
expansion, as a relevant example, is as follows:

B2( E92
222 +

E92
422 +

E92
622 + . . .)

= 2( EC W222
22 + EC W422

22 + EC W622
22 + . . .)

B3( E9131 + E9331M + E9531M + . . .)

= 3( EC W131
31 + EC 331M

31 + EC 531M
31 + . . .)

B3( E93
333 +

E93
533 + . . .)= 4( EC W333

33 + EC W533
33 + . . .)

B4( E94
444 + . . .)= 8( EC W444

44 + . . .),

(15)

where
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

E92
622 =

∑
j

W622 j [( EHA j · EHA j )
2 EH2

A j ]

E9531M =
∑

j
W531Mj [( EHA j · EHA j )

2
EHA j ]

E93
533 =

∑
j

W533 j [( EHA j · EHA j ) EH3
A j ]

E94
444 =

∑
j

W444 j
EH4

A j .

(16)

In Eq. (15), only the expressions related to astigmatism,
coma, trefoil, and tetrafoil are given. The expressions related to
other aberrations can also be obtained in the same way, and they
will not be repeated here. Although the higher-order aberration
coefficients used in the model may be small, the accuracy of
the model for some systems can be significantly improved by
considering these aberrations.

It should be pointed out that the general description of the
alignment model for complex cases of off-axis telescopes is given
here. In specific problems, the higher-order aberration terms
with less contributions to the alignment model can be ignored,
which can reduce the complexity of the model and the accuracy
requirement of wavefront measurements. In addition, the net
aberration contributions induced by perturbations can be used
in the alignment model. This can be easily obtained directly
from the above model. In this way, the influence of some higher-
order aberrations that are not considered in the model and are
not affected by perturbations can be eliminated.

C. Solving Method of the Alignment Model Using
Particle Swarm Optimization

The above alignment model is a nonlinear system of equations.
When the nonlinearity of the model is strong, it is difficult to
solve them accurately. The optimization method can be used
to solve the nonlinear equations. The key is to construct the
objective function, which is the starting point of solving the
optimization problem. The alignment model in Eqs. (12) and
(15) can be converted into the following form:

ετ (X )=
∑
κ

Aτ · E9τ,κ − fτ ( EC22, EC31, . . . , EC51, . . .), (17)

where X = (X 1, X 2 · · · X M)
T denotes the decision variables

(perturbation variables or their functions), M is the number of
decision variables, ετ (X ) denotes the error of the corresponding
equation, τ = 1, 2, · · · , γ, and γ is the number of equations
considered. To reduce the complexity of the alignment model,
each equation in Eq. (17) can be solved separately. To determine
the decision variables, overdetermined equations are often used
in practical engineering. The unknowns of overdetermined
equations can be obtained by solving the least square solutions.
The weighted square sum of each equation in Eq. (17) at rep-
resentative field points can be taken as the objective function,
which is expressed asmin

N∑
j=1
λ j [ετ, j (X )]2, j = 1, 2, · · · , N,

s.t. X ∈ D,
(18)

where λ j is the field weighting factor, N is the number of rep-
resentative field points, ετ, j (X ) represents the error of Eq. (17)

Evaluate the evolutionary states and 
adjust the parameters

Update corresponding position 
and velocity of the particle i

Xmin Xi Xmax

Evaluate the particle i and
update pBesti and gBest

Y

N

N

Yi<P

Y

N

Meet stopping criteria?

End

Start

Define the space of alignment 
problem, initialize parameters and 

particle positions and velocities 
(population size is P)

Fig. 2. Flow chart of PSO algorithm for the alignment model.

at the j th field point, and X ∈ D denotes the decision space,
which can be inequality constraints or equality constraints (if
necessary), such as the equality constraints related to boresight
errors. The number of inequality and equality constraints can be
none or many, depending on the specific application. The fea-
sible region will be a multi-dimensional space satisfying bounds
on variables, inequality, and equality constraints. In Eq. (17),
the equation with the surface figure errors of Zernike higher-
order aperture is solved first because of fewer unknowns. The
higher-order aperture figure errors can be obtained, and then
they are substituted into other equations to be solved sequen-
tially. The equation with the surface figure errors of lowest-order
aperture is finally solved. Thus, the problem of solving nonlinear
equations is transformed into the optimization problem.

Here, the particle swarm optimization algorithm (PSO)
[33] is utilized to solve the alignment model. PSO is a general
optimization method, which has the advantages of good global
search ability, fast calculation speed, and less parameters to be
adjusted; thus, it is becoming increasingly utilized in the field of
function optimization. The flow chart of the PSO algorithm for
the alignment problem is shown in Fig. 2. The procedure of the
algorithm for the alignment problem is described as follows:

Step 1: Define the space of alignment problem and initialize
parameters.

Step 2: Initialize the particle positions and velocities (pop-
ulation size is P ). These particle positions represent the set of
alignment solutions, which are the aberration field decenter
vectors and the surface figure errors of optical elements.
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Step 3: Evaluate the evolutionary states and adjust the
parameters.

Step 4: Update the position X i and velocity Vi of the
corresponding particle. The range of particle position is
[X min, X max].

Step 5: Evaluate the associated particle state and update the
individual particle best (pBesti ) and global optimal position
(g Best).

Step 6: Repeat Steps 3–5 until the terminal condition is satis-
fied, and present the results.

The decision variables of the above alignment model of per-
turbed off-axis systems can be determined by using the steps
mentioned above. Of course, if the accuracy requirement of
the decision variables is not high, the alignment model can be
simplified and solved analytically.

4. VERIFICATION OF SYSTEM ALIGNMENT OF
THE PERTURBED OFF-AXIS THREE-MIRROR
ANASTIGMATIC TELESCOPE WITH
MISALIGNMENTS AND COMPLEX SURFACE
FIGURE ERRORS BASED ON THE PROPOSED
METHOD

A. Alignment Example

To verify the effectiveness and accuracy of the approach
proposed above, in this section, a system alignment is demon-
strated. As an example of complex perturbed off-axis systems,
the off-axis TMA telescope with misalignments and complex
surface figure errors is considered. Most large optical telescopes
have the aperture stop located on PM. So here, the stop is
located on PM, which is chosen as the coordinate reference.
The aberration field decenter vectors of SM and TM can be
expressed as

Eσ
s ph
SM = (

ES + c SM ET)/G M,

Eσ
as ph
SM = ET/G P ,

Eσ
s ph
TM =

EP + 2(1+ cTMd2)[(1+ c SMd1)ūPM]Eσ
s ph
SM /G S ,

Eσ
as ph
TM =

EQ + 2d2(1+ c SMd1)ūPM Eσ
s ph
SM /G A,

(19)
where

ES =

[
BDESM

−ADESM

]
, ET =−

[
XDESM

YDESM

]
,

EP = cTM
G S

[
XDETM

YDETM

]
+

1
G S

[
−BDETM

ADETM

]
, EQ = 1

G A

[
XDETM

YDETM

]
,

G M = (1+ c SMd1)ūPM,

G P = d1ūPM,

G S = [c TM(d2 − d1)+ 2c SM(c TMd1d2 + d1)+ 1]ūPM,

G A = [d2 + d1(2c SMd2 − 1)]ūPM,

(20)
where Eσ s ph

TM and Eσ as ph
TM designate the aberration field decenter

vectors for TM; Eσ s ph
SM and Eσ as ph

SM denote the aberration field
decenter vectors for SM; XDETM, YDETM, ADETM, and
BDETM denote the misalignments of TM; XDESM, YDESM,
ADESM, and BDESM are the misalignments of SM; cTM denotes
the curvature of TM. c SM is the curvature of SM, ūPM is the

Fig. 3. Optical layout of the off-axis TMA telescope.

Table 4. Introduced Figure Errors (I-V) and Computed
Figure Errors (C-V)

a

F CPM
5 F CPM

6 F CPM
10 F CPM

11 F CPM
17 F CPM

18

I-V 0.0600 −0.0500 −0.0600 0.0400 −0.0400 0.0500
C-V 0.0595 −0.0496 −0.0596 0.0403 −0.0398 0.0502

a
F C PM

i denotes the surface figure errors. The Fringe Zernike coefficients are
in λ.

incidence angle of the chief ray at the primary mirror, d1 is the
mirror spacing between PM and SM, d2 is the spacing between
SM and TM, and the superscript sph and asph denote contribu-
tions of the spherical base and aspheric departure, respectively.
For the spherical base, the relevant optical characteristic point is
the location of the center of curvature of the surface.

Here, both misalignments and complex surface figure errors
are considered. The perturbation values can be determined in
two steps. The first step is to solve the surface figure errors and
the aberration field decenter vectors. They can be obtained by
solving the Eq. (17). The second step is to determine the mis-
alignments of SM and TM, which can be obtained by solving
the Eq. (19).

The optical layout of the off-axis TMA telescope used in
this paper is shown in Fig. 3. It has a stop aperture diameter
of 1000 mm with a 2.3◦ × 0.3◦ FOV. The radius values of
PM, SM, and TM are −8004.06, −2021.03, and −2712.44,
respectively. The conic values of PM, SM, and TM are−0.921,
−4.717, and −0.293, respectively. The thickness values
between mirrors are −3446.93 and 3491.15, respectively. To
perform this example, several FOVs were selected, which were
(1.15◦,−0.15◦), (−1.15◦,−0.15◦), (−1.15◦,−0.45◦), (1.15◦,
−0.45◦), (0◦, −0.3◦), (0.58◦, −0.15◦), (0.58◦, −0.45◦),
(−0.58◦, −0.15◦), and (−0.58◦, −0.45◦), respectively. It is
assumed that the figure errors of PM were complex, including
the components of Zernike astigmatism EZ2

2 (i.e., Fringe Zernike
terms Z5 and Z6), trefoil EZ3

3 (i.e., Z10 and Z11), and tetrafoil EZ4
4

(i.e., Z17 and Z18). The introduced misalignments were the mis-
alignments of SM and TM. The search space of the aberration
field decenter vectors was (−1, 1). The search space of the sur-
face figure errors was (−0.5, 0.5). The population size of PSO
was 40. The maximum number of iterations of PSO was 2000.
By using the proposed method, the perturbation values of the
off-axis TMA telescope can be obtained. The introduced and
computed figure errors are presented in Table 4. The introduced
and computed misalignments of SM are listed in Table 5. The
introduced and computed misalignments of TM are presented
in Table 6.
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Table 5. Introduced Misalignments (I-M) and
Computed Misalignments (C-M) of SM

a

XDESM YDESM ADESM BDESM

I-M 0.1500 −0.1500 −0.0150 0.0150
C-M 0.1489 −0.1513 −0.0151 0.0149

aXDE and YDE are in mm. ADE and BDE are in degrees.

Table 6. Introduced Misalignments (I-M) and
Computed Misalignments (C-M) of TM

a

XDETM YDETM ADETM BDETM

I-M −0.2500 0.2500 0.0200 −0.0200
C-M −0.2478 0.2473 0.0197 −0.0202

aXDE and YDE are in mm. ADE and BDE are in degrees.

As can be seen in Tables 4–6, the introduced and computed
results are nearly the same magnitude, showing that the method
proposed above is very effective. The accuracy of the lateral TM
misalignments was lower than that of the lateral SM misalign-
ments. The reason may be that SM is more sensitive to the wave
aberration of the off-axis TMA telescope than TM. Therefore,
the accuracy of the lateral SM misalignments is more easily guar-
anteed. To correct the perturbed off-axis telescope, the negative
values of the computed misalignments and surface figure errors
were introduced into the perturbed system in the optical simu-
lation software. The full field displays (FFDs) before and after
correction for coupling paired Fringe Zernike coefficient terms
are show in Fig. 4. As can be seen, after the system is corrected
based on the proposed method, the typical aberration fields can
be nearly restored to nominal states. Although only the figure
errors on the primary mirror were considered in this section, the

(a) (b)

(c) (d)

Fig. 4. Full-field displays (FFDs). (a) FFDs (anamorphic scaling) for Z5/Z6 before correction, which includes the contributions from mirror fig-
ure errors and misalignments. (b) FFDs for Z5/Z6 after correction. (c) FFDs for Z7/Z8 before correction. (d) FFDs for Z7/Z8 after correction.
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Table 7. Four Different Cases Considered in Monte
Carlo Simulations

a

XDE, YDE ADE, BDE F CPM
i M-E

Case 1 [−0.05, 0.05] [−0.005, 0.005] [−0.02, 0.02] \

Case 2 [−0.5, 0.5] [−0.02, 0.02] [−0.05, 0.05] \

Case 3 [−1.5, 1.5] [−0.05, 0.05] [−0.1, 0.1] \

Case 4 [−0.5, 0.5] [−0.02, 0.02] [−0.05, 0.05] 3%
aXDE and YDE are in mm, ADE and BDE are in degrees, the Fringe

Zernike coefficients are in λ, and M-E denotes the measurement errors,
i = 5, 6, 10, 11, 17, 18.

method could be extended to take into account the figure errors
on the surface away from the stop through the specific pupil
footprint for each field point.

B. Monte Carlo Simulation

To further demonstrate the correctness and accuracy of the
method proposed in this paper, the Monte Carlo simulation
was performed for the off-axis TMA telescope. Four different
cases were adopted in the process, which are shown in Table 7.

In Case 1, Case 2, and Case 3, the perturbation ranges increase
in sequence without measurement errors. In Case 4, it has
the same perturbation ranges as Case 2, but with 3% relative
measurement errors for the corresponding Fringe Zernike
coefficients.

In the simulation, 100 trial perturbation states were ran-
domly generated following a uniform distribution for each case.
There are 400 pairs of perturbations for all cases. Then, the
simulation for each trial system could be performed by using the
proposed method and the ST method.

The root mean square deviations (RMSDs) were used for
each case to evaluate the accuracy, which are given by

RMSD j =

√√√√ 1

100

100∑
n=1

[X j (n)− x j (n)]2, (21)

where X j (n) and x j (n) represent the introduced and computed
values for the j th perturbation, respectively. The RMSD results
of perturbations for each case using the proposed method and
the ST method are shown in Fig. 5.

Fig. 5. RMSDs using the proposed method and the ST method for different cases. (a)–(d) for misalignments of SM, (e)–(h) for misalignments of
TM, and (i)–(n) for surface figure errors. The triangular marks denote the RMSDs using the ST method. The square marks denote the RMSDs using
the proposed method.
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Fig. 6. System WFEs (average RMS) before and after correction for four cases using proposed method. (a) WFEs for Case 1, (b) Case 2, (c) Case 3,
and (d) Case 4. The square marks denote system WFEs before correction. The dot marks denote system WFEs after correction.

As in Fig. 5, the results for Cases 1–3 demonstrate the cor-
rectness and accuracy of the method proposed in this paper.
In contrast, the proposed method is more accurate than the
ST method. The ST method is limited by the nonlinear rela-
tionships between the measurement values and perturbation
parameters. As the perturbation ranges increase, the calculated
perturbation values using the ST method may be inaccurate.
A comparison of the results for Case 4 show the proposed
method is also affected by the measurement errors. Even so,
the proposed method is more accurate than the ST method
at the considered level of measurement errors. To overcome
the uncertainty of measurement errors, it is suggested that
more measurements at different azimuthal FOVs are carried
out.

To evaluate the results more fully, the average RMS WFEs
were given for each trial system with equally spaced field points
in 2.3◦ × 0.3◦. The system WFEs (average RMS) before and
after correction using the proposed method are shown in Fig. 6.

The system WFEs before and after correction using ST method

are shown in Fig. 7. As can be seen in Figs. 6 and 7, the trial

optical systems in Case 1 can be nearly aligned to the nomi-

nal state based on two methods. In Cases 2 and 3, the system

WFEs after correction based on the ST method are bigger in

most conditions. Namely, as the perturbation ranges increase,

the average RMS WFEs based on the ST method become sig-

nificantly larger. The ST method is suitable for small range

perturbations because of the nonlinear sensitivity. However, the

accuracy of the proposed method is almost unaffected by the

perturbation ranges. In Case 4, as measurement errors are con-

sidered, the average RMS WFEs based on both methods become

larger. Even so, the proposed method is also more reliable than

the ST method. The results show that the method proposed

in this paper is a better choice for alignment of the off-axis

telescope.
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Fig. 7. System WFEs (average RMS) before and after correction for four cases using the ST method. (a) WFEs for Case 1, (b) Case 2, (c) Case 3,
and (d) Case 4. The square marks denote system WFEs before correction. The dot marks denote system WFEs after correction.

5. CONCLUSION

This paper aimed to give a general idea of optical alignment
using NAT for complex perturbed pupil-offset off-axis tele-
scopes. The direct vector expansion of the wave aberration
function for perturbed off-axis systems was given, which can
conveniently convert the corresponding higher-order terms
into the existing aberration types. The inherent vector relation-
ships between the contributions generated by the aberrations
of the on-axis parent systems through pupil transformation
were obtained, which are helpful to understand the aberration
behavior of off-axis systems. According to the inherent vector
relationships, the analytical alignment model based on NAT for
complex cases of perturbed off-axis telescopes was established.
It can quantitatively separate the effects of misalignments and
surface figure errors from the total aberration fields. By taking
the weighted square sum of each function in the alignment
model as the objective function, the nonlinear alignment model
was solved by particle swarm optimization algorithm. Then the
off-axis TMA telescope with misalignments and complex figure

errors (including Zernike astigmatism, trefoil, and tetrafoil)
was taken as an example, and the system alignment results were
given. The misalignments and complex surface figure errors
can be determined accurately. After correction, the system
aberration fields were nearly restored to the nominal states.
Monte Carlo simulations were carried out and demonstrated
the correctness and accuracy of the proposed method. The pro-
posed alignment method can well adapt to the case of perturbed
pupil-offset off-axis telescopes. As long as the off-axis telescopes
can be accurately characterized by NAT, they can be well aligned
based on the idea proposed in this paper. This work can provide
a helpful reference for optical alignment and analysis of complex
perturbed off-axis systems.
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