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Abstract

This paper presents topology optimization on general two-dimensional manifolds for phenomena described by second-order
partial differential equations, where the material interpolation is implemented by using the material distribution method. When
a physical field is defined on a two-dimensional manifold, the material interpolation is implemented on a material parameter
in the partial differential equation used to describe the distribution of the physical field. When the physical field is defined
on a three-dimensional domain with its boundary conditions defined on a two-dimensional manifold corresponding a surface
or an interface of this three-dimensional domain, the material density is used to formulate a mixed boundary condition of the
partial differential equation for the physical field and implement the penalization between two different boundary types. Based
on the homeomorphic property of two-dimensional manifolds, typical two-dimensional manifolds, e.g., sphere, torus, Möbius
strip and Klein bottle, are included in the numerical tests, which are used to demonstrate this topology optimization approach
for the design problems of fluidic mechanics, heat transfer and electromagnetics.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Topology optimization is a robust method used to determine the structural configuration, which corresponds to the
material distribution in a structure [1]. In contrast to designing devices by tuning a handful of structural parameters
in size and shape optimization, topology optimization utilizes the full-parameter space to design a structure based
on the user-desired performance, and it is more flexible and robust, because of the low dependence on the initial
guess of the optimization procedure. Optimization of structural topology was investigated as early as 1904 for
trusses by Michell [2]. Material distribution method for topology optimization was pioneered by Bendsøe and
Kikuchi for elasticity [3], and this method has been extended to a variety of areas, e.g., acoustics, electromagnetics,
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fluid dynamics and thermodynamics [4–21]. Several other methods also have been proposed and developed for the
implementation of topology optimization, e.g., the level set method [22–25], the evolutionary techniques [26–28],
the evolutionary structural optimization method [29,30], the method of moving morphable components [31,32] and
the phase field method [33].

In topology optimization, structures were usually defined on a three-dimensional (3D) domain in R3 or
reduced two-dimensional (2D) plane on R2. The current development of additive manufacturing, e.g., 3D-printing
technology, has effectively enlarged the design space of structures. Implementing topology optimization on two-
dimensional manifolds (2-manifolds) can effectively enlarge the design freedom of structures, where a 2-manifold is
a topological space with its arbitrary interior point having a neighborhood homeomorphic to a sub-region of R2 and
it can be used to describe a structural surface or a material interface. Related researches have been implemented for
the structural design based on the conformal geometry theory [34,35], the layouts of shell structures [36–40], the
electrode patterns for electroosmosis [41], the material interfaces for stiffness [42–50] and the structural interfaces
for fluid–structure interaction [51–53], energy absorption [54], cohesion [55] and actuation [56].

In this paper, topology optimization on 2-manifolds is implemented by using the material distribution method.
This implementation can be categorized into two types, where the distribution of a physical field is described
by a second-order partial differential equation (PDE). These two types correspond to the cases with the physical
fields defined on a 2-manifold and a 3D domain with the 2-manifold of codimension one in a 3D Euclidian space,
respectively.

When the physical field is defined on a 2-manifold, the material interpolation of topology optimization is
implemented on a material parameter in the PDE with the tangential gradient operator used to describe the variation
of the physical field. A typical problem corresponding to this case is topology optimization of microtextures on a
solid surface with complicated geometry. Wettability for example is an important aspect of fluidic mechanics [57].
The interfaces among the solid, liquid and vapor surfaces subjected to wetting behavior can be assumed to be
geometrical surfaces with zero thickness, when the characteristic size of these interfaces is much larger than
the molecular scale. Recently, topology optimization has been implemented to design microtextures on flat solid
surfaces [58]. On solid surfaces, the microtextures can support two modes of hydrophobicity, i.e., the Wenzel
mode with the liquid completely filling the microtextures, and the Cassie–Baxter mode with vapor pockets trapped
in the microtextures. The Cassie–Baxter mode can be transitioned into the Wenzel mode, when the liquid is
pressurized [59,60]. Therefore, it is desired to use reasonable microtextures to keep the Cassie–Baxter mode from
transition and enhance the stability of hydrophobic wettability.

When the physical field is defined on a 3D domain, and the boundary conditions of the PDE used to describe
the physical field are defined on the 2-manifold corresponding to an exterior surface or an interior interface of
this 3D domain, the material density representing the geometrical configuration of the surface structure is used to
implement the penalization between two different boundary types and formulate a mixed boundary condition of the
PDE. In this case, the material interpolation can mix Dirichlet and Neumann types of boundary conditions, when
the 2-manifold is an exterior surface; it can mix no-jump and Dirichlet types of boundary conditions, when the
2-manifold is an interior interface. Topology optimization of heat sinks for heat transfer and perfect conductors for
electromagnetics are typical problems corresponding to this case. For heat transfer problems, the heat sink boundary
with known temperature and the insulation boundary with zero heat flux can be used to truncate and separate the
temperature field towards infinite space [61–63]. In electromagnetics, a perfect conductor condition is widely used to
approximate a completely conductive and thin metal layer [64], and the corresponding perfect conductor boundary
with zero tangential component of the field variables can be used to truncate and separate the electromagnetic
field towards infinite space. Therefore, implementing topology optimization of the patterns of heat sink and perfect
conductor at the surface or the interface of an finite spatial domain can effectively enlarge the design freedom of
heat-transfer and electromagnetic structures.

The remaining sections of the paper are organized as follows. In Section 2, a monolithic description of
the topology optimization problem on a 2-manifold is presented, where the adjoint analysis and numerical
implementation are included. In Section 3, test problems are provided for the design problems of fluidic mechanics,
heat transfer and electromagnetics. In Section 4, this paper is concluded. All the mathematical descriptions are
performed in the Cartesian coordinate system.

2. Methodology

In this section, topology optimization implemented on a 2-manifold is presented by using the material distribution
method.
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Fig. 1. Typical examples of 2-manifolds.

2.1. 2-manifold

According to the classification theorem [65], a 2-manifold without boundary is compact if every open cover
of it has a finite subcover. The compact 2-manifolds can be exhausted by the two infinite families {S2 (sphere),
T2 (torus), T2#T2 (double torus), · · · } and {P2 (projective plane), P2#P2 (Klein bottle), · · · }, where # denotes the
connected sum of two manifolds. A 2-manifold with boundary can be derived by removing an open disk from a
2-manifold without boundary. All 2-manifolds without boundary can be derived by gluing the basic 2-manifolds
with boundaries. Disk, cylinder and Möbius strip are typical 2-manifolds with boundaries. Structural surfaces can
be described as the orientable 2-manifolds, on which the normal vector can be defined globally. Sphere is a typical
orientable 2-manifold. Structural interfaces can include both the orientable and non-orientable 2-manifolds. Non-
orientable 2-manifolds are the 2-manifolds on which the normal vector can be defined locally instead of globally.
Möbius strip is a typical non-orientable 2-manifold. Without losing the generality, topology optimization in this
paper is implemented on both the orientable and non-orientable 2-manifolds, which are homeomorphic to sphere,
torus, Möbius strip and their connected sum or glued counterparts (Fig. 1).

2.2. PDEs for physical fields

To implement topology optimization on a 2-manifold, a design variable, which is a relaxed binary distribution,
is defined on this 2-manifold to represent the geometrical configuration of a surface structure. This design variable
is bounded in the typical interval [0, 1] with 0 and 1 representing two different material phases, respectively. An
optimization problem can be formulated by minimizing or maximizing a design objective used to evaluate the desired
performance of the surface structure with the pattern implicitly expressed on the 2-manifold. The physical field used
to evaluate the performance of the surface structure can be described by a PDE. This optimization problem is a
PDE constrained optimization problem. It is nonlinear and challenging to be solved directly. The iterative solution
procedure is thus widely utilized. To ensure the monolithic convergence of the iterative procedure, regularization
based on a surface-PDE filter and threshold projection can be imposed on the design variable. The projected design
variable is referred to as the material density. The iterative procedure including the surface-PDE filter and the
threshold projection can control the minimum length scale of the surface structure and remove the gray regions
from the derived pattern of the surface structure.

For the case with the physical field defined on a 2-manifold, the second-order PDE used to describe the
distribution of the physical field can be expressed in a typical abstract form with the material parameter interpolated
by the material density:⎧⎪⎨⎪⎩

∇s · [p (γ̄ ) g (∇su, u)] = cs, in ΣS

[p (γ̄ ) g (∇su, u)] · τ = cb, on ∂ΣS

u = u0, at P ⊂ ΣS

, (1)

where u is the physical variable; ΣS is the 2-manifold; cs and cb are the known distributions defined on ΣS and ∂ΣS ,
respectively; if ΣS is treated as the 2-manifold of codimension one in a 3D Euclidian space, ∇s = ∇ − (n · ∇) n
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is the tangential gradient operator defined on ΣS , with n and ∇ denoting the unitary normal vector on ΣS and the
gradient operator in the 3D Euclidian space, respectively; τ perpendicular to ∂ΣS is the unitary outward tangential
vector at the boundary curves of ΣS; P ⊂ ΣS is a finite point set; u0 is the known value of the physical variable
at the point set P; p (γ̄ ) is the material parameter interpolated by the material density γ̄ ∈ [0, 1], derived from
sequential filtering and projecting the design variable defined on ΣS [66–68]; g (∇su, u) is a vector functional of
∇su and u. Based on the Green’s formula including the tangential gradient operator [69], the PDE in Eq. (1) can
be transformed into the following variational formulation:

find u ∈ H (ΣS) with u = u0 at P, satisfying

e (u; γ̄ ) :=

∫
ΣS

−p (γ̄ ) g (∇su, u) · ∇s û − cs û ds +
∫

∂Σs

cbû dl = 0, ∀û ∈ H (ΣS)
(2)

where û is the test function of u; H (ΣS) =
{
u ∈ L2 (ΣS)

⏐⏐∇su ∈
(
L2 (ΣS)

)3} is the first-order Sobolev space
defined on ΣS , with L2 (ΣS) denoting the second-order Lebesgue integrable functional space defined on ΣS; ds and
dl are the corresponding Riemann metrics on ΣS and ∂ΣS , respectively.

For the case with the physical field defined on a 3D volume domain and the design variable defined on the
2-manifold corresponding to an exterior boundary surface of this volume domain, the second-order PDE used to
describe the physical field can be expressed in a typical abstract form as⎧⎪⎨⎪⎩

∇ · [pg (∇u, u)] = cs, in Ω

[pg (∇su, u)] · n = α (γ̄ ) (u − ud) , on ΣS = ∂Ω

u = u0, at P ⊂ Ω

, (3)

where ud is the known value of the physical variable on the surface structure defined on ΣS; Ω is the open and
bounded volume domain with the boundary of Lipschitz type; α (γ̄ ) is the material interpolation used to implement
the penalization between the Neumann and Dirichlet boundary types. Based on this material interpolation, the mixed
boundary condition is formulated at ΣS as that in Eq. (3). When the material density γ̄ takes on the value of 0, α

should be valued to be large enough to ensure the dominance of the Dirichlet term (u − ud). When α is valued as
0 with γ̄ taking on the value of 1, the mixed boundary condition degenerates into the Neumann type. Sequentially,
the pattern of the surface structure with the physical variable known as ud can be determined. The PDE in Eq. (3)
can be transformed into the variational formulation as

find u ∈ H (Ω) with u = u0 at P, satisfying

e (u; γ̄ ) :=

∫
Ω

−pg (∇u, u) · ∇û dΩ +
∫
ΣS

α (γ̄ ) (u − ud) û ds = 0, ∀û ∈ H (Ω)
(4)

where H (Ω) =
{
u ∈ L2 (Ω)

⏐⏐∇u ∈
(
L2 (Ω)

)3} is the first-order Sobolev space defined on Ω . When the design
variable is changed to be defined on an interior interface of the volume domain, the typical abstract form of the
second-order PDE used to describe the physical field can be expressed as⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇ · [pg (∇u, u)] = cs, in Ω

Jpg (∇su, u)K · n = α (γ̄ ) (u − ud) , on ΣS ↪→ Ω

u = ud , at P ⊂ ΣS

u = u0, on ∂Ω

, (5)

where J·K denotes the local jump of a variable across ΣS embedded in Ω ; ↪→ is the embedding operator.
Correspondingly, the variational formulation of the PDE in Eq. (5) is

find u ∈ H (Ω) with u = ud at P and u = u0 on ∂Ω , satisfying

e (u; γ̄ ) :=

∫
Ω

−pg (∇u, u) · ∇û dΩ +
∫
ΣS

α (γ̄ ) (u − ud) û ds = 0, ∀û ∈ H (Ω) .
(6)

The above abstract forms of second-order PDEs are expressed with divergence operator and the scalar variables
are considered for the PDEs. Those forms can be directly changed into the ones with the curl operator and the
vector variables used to describe the related physical phenomena, e.g., propagation of the electromagnetic waves.
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2.3. Regularization

The material density is derived by sequentially implementing the surface-PDE filter and threshold projection
operations on the design variable. Inspired by the PDE filter developed in [66], the surface-PDE filter for the
design variable is implemented by solving the following surface-PDE defined on the 2-manifold:{

∇s ·
(
−r2
∇s γ̃

)
+ γ̃ = γ, on ΣS

− r2
∇s γ̃ · τ = 0, at ∂ΣS

, (7)

where r is the filter radius; γ ∈ L2 (ΣS) is the design variable; γ̃ is the filtered design variable; ˆ̃γ is the test function
of γ̃ . The variational formulation of the surface-PDE filter in Eq. (7) is

find γ̃ ∈ H (Ω) satisfying

f (γ̃ ; γ ) :=

∫
ΣS

r2
∇s γ̃ · ∇s ˆ̃γ + γ̃ ˆ̃γ − γ ˆ̃γ ds = 0, ∀ ˆ̃γ ∈ H (ΣS) .

(8)

The filtered design variable is projected by using the threshold projection method [67,68], and the material density
is derived as

γ̄ =
tanh (βξ)+ tanh (β (γ̃ − ξ))

tanh (βξ)+ tanh (β (1− ξ))
, (9)

where β and ξ are the projection parameters and their values are chosen based on numerical experiments. For more
details on the choice of the projection parameters, one can refer to [68].

2.4. Topology optimization problem

The 2-manifold and the material density together composes a fiber bundle [70], where ΣS is the base manifold
and γ̄ : ΣS → [0, 1] is the fibers. This fiber bundle can be expressed as (ΣS × γ̄ (ΣS) ,ΣS, proj1, γ̄ (ΣS)), where
proj1 is the natural projection proj1 : ΣS × γ̄ (ΣS) → ΣS satisfying proj1 (x, γ̄ (x)) = x for ∀x ∈ ΣS . Then
the topology optimization problem can be formulated as an optimization problem of a fiber bundle constrained by
the PDEs defined on a 2-manifold or a volume domain with this 2-manifold as an exterior surface or an interior
interface. In sum, the topology optimization problem can be described in the following form:

find γ (ΣS) ∈ [0, 1] for (ΣS × γ (ΣS) ,ΣS, proj1, γ (ΣS)) ,

to minimize J (u; γ̄ ) constrained by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e (u; γ̄ ) = 0 (Physical PDE)
f (γ̃ ; γ ) = 0 (Surface− PDE filter)

γ̄ =
tanh (βξ)+ tanh (β (γ̃ − ξ))

tanh (βξ)+ tanh (β (1− ξ))
(Threshold projection)⏐⏐⏐⏐ 1

|ΣS|

∫
ΣS

γ̄ ds − V f

⏐⏐⏐⏐ ≤ 10−3 (Area constraint)

,

(10)

where J : H (ΣS)×H (ΣS)→ R or H (Ω)×H (ΣS)→ R is a bounded continuous mapping operator; V f ∈ (0, 1)

is the area fraction of the surface structure on the 2-manifold with an admissible tolerance of 10−3 chosen to be
much less than 1; |ΣS| =

∫
ΣS

1 ds is the area of the 2-manifold ΣS .

2.5. Adjoint analysis

Adjoint analysis can be implemented to derive the adjoint derivative of the design objective and define the descent
direction for the evolution of the design variable during the iterative solution procedure. For the second-order PDEs
used to describe the distribution of the physical fields, the usual situation is that the operator e in Eqs. (2), (4) and (6)
is continuously Fréchet-differentiable and the derivative of e to the field variable eu (u; γ̄ ) is a linear operator with
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a bounded inverse. According to the implicit function theorem [71], e (u; γ̄ ) = 0 can locally define a continuously
Fréchet-differentiable map γ̄ ↦→ u (γ̄ ) with the following Fréchet derivative:

u γ̄ (γ̄ ) = −e−1
u (u; γ̄ ) eγ̄ (u; γ̄ ) ; (11)

and the surface-PDE filter in Eq. (7) can define a continuously Fréchet-differentiable map γ ↦→ γ̃ (γ ) with the
following Fréchet derivative:

γ̃γ (γ ) = − f −1
γ̃

(γ̃ ; γ ) fγ (γ̃ ; γ ) . (12)

Then, the Gâteaux derivative of J can be derived as⟨
J ′, t

⟩
L2(ΣS),L2(ΣS)

=
⟨
Ju, u γ̄ γ̄γ̃ γ̃γ t

⟩
U∗(Ω),U(Ω)

+
⟨
Jγ̄ , γ̄γ̃ γ̃γ t

⟩
H(ΣS),H(ΣS)

=
⟨
γ̃ ∗γ γ̄γ̃

(
u∗γ̄ Ju + Jγ̄

)
, t
⟩
L2(ΣS),L2(ΣS)

=

⟨
− f ∗γ

(
f −1
γ̃

)∗
γ̄γ̃

(
−e∗γ̄

(
e−1

u

)∗
Ju + Jγ̄

)
, t
⟩
L2(ΣS),L2(ΣS)

, ∀t ∈ L2 (ΣS)

(13)

where ∗ denotes the adjoint of an operator; ⟨·, ·⟩ denotes the pairing between a functional space and its dual. Under
the precondition that J is Fréchet-differentiable, the adjoint equations and the adjoint derivative can be derived from
the Gâteaux derivative, according to the Karush–Kuhn–Tucker condition of the optimization problem constrained
by PDEs [72].

When the physical field is defined on the 2-manifold ΣS , e (u; γ̄ ) can include the terms of surface-integral and
curve-integral, and it can be expressed to be the sum of these two types of terms as

e (u; γ̄ ) = eΣS (u; γ̄ )+ e∂ΣS (u) . (14)

By setting⎧⎨⎩µ := −
(
e−1

u

)∗
Ju =

(
eΣS∗

u + e∂ΣS∗
u

)−1
Ju

ν := −
(

f −1
γ̃

)∗
γ̄γ̃ Jγ̄ =

(
f ∗γ̃
)−1

γ̄γ̃ Jγ̄

, (15)

the adjoint equations can be derived as

find µ ∈ H (ΣS) and ν ∈ H (ΣS) , satisfying⎧⎨⎩
⟨(

eΣS∗
u + e∂ΣS∗

u

)
µ, v

⟩
H(ΣS),H(ΣS)

= ⟨−Ju, v⟩H(ΣS),H(ΣS) , ∀v ∈ H (ΣS)⟨
f ∗γ̃ ν, y

⟩
H(ΣS),H(ΣS)

=
⟨
−Jγ̄ γ̄γ̃ , y

⟩
H(ΣS),H(ΣS)

, ∀y ∈ H (ΣS)
,

(16)

where µ and ν are the adjoint variables of u and γ̃ , respectively. The adjoint derivative of J can be derived as⟨
J ′, t

⟩
L2(ΣS),L2(ΣS)

=

⟨
f ∗γ ν J−1

γ̄

(
eΣS
γ̄

)∗
µ+ f ∗γ ν, t

⟩
L2(ΣS),L2(ΣS)

, ∀t ∈ L2 (ΣS) (17)

where the adjoint variables µ and ν are derived by solving Eq. (16).
When the physical field is defined on the 3D volume domain Ω , e (u; γ̄ ) includes the terms of volume-integral

and surface-integral, and it can be expressed to be the sum of these two types of terms as

e (u; γ̄ ) = eΩ (u)+ eΣS (u; γ̄ ) . (18)

By setting⎧⎨⎩µ := −
(
e−1

u

)∗
Ju =

(
eΩ∗u + eΣS∗

u

)−1
Ju

ν := −
(

f −1
γ̃

)∗
γ̄γ̃ Jγ̄ =

(
f ∗γ̃
)−1

γ̄γ̃ Jγ̄

, (19)

the adjoint equations can be derived as

find µ ∈ H (Ω) and ν ∈ H (ΣS) , satisfying⎧⎨⎩
⟨(

eΩ∗u + eΣS∗
u

)
µ, v

⟩
H(Ω),H(Ω)

= ⟨−Ju, v⟩H(Ω),H(Ω) , ∀v ∈ H (Ω)⟨
f ∗γ̃ ν, y

⟩
H(ΣS),H(ΣS)

=
⟨
−Jγ̄ γ̄γ̃ , y

⟩
H(ΣS),H(ΣS)

, ∀y ∈ H (ΣS)
,

(20)
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Table 1
Pseudocode for the iterative solution of topology optimization on 2-manifolds. In the loop, nsub is the loop-
index, nsub

max is the maximal value of nsub , nupt is the updating interval of the projection parameter β, Jnsub is
the objective value corresponding to the loop-index nsub , mod is the operator used to take the remainder and
⌊·⌋ is the operator used to represent the floor function of a real number.

Algorithm: iterative solution of Eq. (10)

Choose r , V f and nsub
max ;

Set i ← 1, γ ← V f , nsub
← 1, ξ ← 0.5 and β ← 1;

loop
Derive γ̄ by filtering and projecting γ , and evaluate V ;
Solve u from the physical PDE, evaluate J , and set Jnsub ← J ;
Solve µ and ν from the adjoint equations for J , and evaluate J ′;
Solve ν from the adjoint equation for V , and evaluate V ′;
Update γ based on J ′ and V ′;
if mod

(
nsub, nupt )

== 0
β ← 2β;

end(if)

if
(
nsub
== nsub

max
)

or

⎧⎪⎪⎪⎨⎪⎪⎪⎩
β == 2

⌊
nsub

max−1
nupt

⌋
1
5
∑4

m=0

⏐⏐Jnsub − Jnsub−m
⏐⏐ /J0 ≤ 10−3⏐⏐V − V f

⏐⏐ /V f ≤ 10−3

break;
end(if)
nsub
← nsub

+ 1
end(loop)

where µ and ν are the adjoint variables of u and γ̃ , respectively. The adjoint derivative of J can be derived in the
same form as that in Eq. (17), with the adjoint variables µ and ν derived by solving Eq. (20).

Similarly, for V = 1
|ΣS |

∫
ΣS

γ̄ ds in the area constraint, the adjoint derivative of V can be derived as⟨
V ′, t

⟩
L2(ΣS),L2(ΣS)

=
⟨
f ∗γ ν, t

⟩
L2(ΣS),L2(ΣS)

, ∀t ∈ L2 (ΣS) (21)

where the adjoint variable ν is derived by solving the adjoint equation:

find ν ∈ H (ΣS) satisfying⟨
f ∗γ̃ ν, y

⟩
H(ΣS),H(ΣS)

=
⟨
−Vγ̄ γ̄γ̃ , y

⟩
H(ΣS),H(ΣS)

, ∀y ∈ H (ΣS) .
(22)

Based on the derived adjoint derivatives with adjoint variables solved from the corresponding adjoint equations,
the design variable can be evolved and updated iteratively.

2.6. Numerical implementation

By using an iterative procedure, the design variable is evolved towards an approximated binary distribution on
the 2-manifold. The iterative procedure is implemented by using the algorithm outlined in Table 1. The surface finite
element method is utilized to solve the variational formulations of the related PDEs and the adjoint equations defined
on the 2-manifold [73]. Linear surface elements are used to discretize the 2-manifold, on which the physical fields,
the design variable, the filtered design variable and the material density are defined. In this paper, the numerical
solutions are implemented by choosing a software-package (e.g., COMSOL Multiphysics [74]) including a surface
finite element solver. In the iterative procedure, the projection parameter β with the initial value of 1 is doubled
after every updating interval with a specified iteration number and ξ is set to be 0.5 [68,75]; the loop for solving the
optimization problem in Eq. (10) is stopped when the maximal iteration number is reached, or the averaged variation
of the design objective over continuous 5 iterations and the residual of the area constraint are simultaneously less
than the specified tolerance of 10−3 chosen to be much less than 1; and the design variable is updated using the
method of moving asymptotes [76], which has the merits on dealing with the multiple integral constraints and the
bound constraint of the design variable.
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3. Test problems

In this section, the first type of topology optimization on 2-manifolds is demonstrated by implementing topology
optimization of the microtextures for wetting behaviors on the solid surfaces in the forms of 2-manifolds; and the
second type is demonstrated by implementing topology optimization of the patterns of the heat sink for heat transfer
and the perfect conductor for electromagnetics.

3.1. Microtextures for wetting behaviors in Cassie-Baxter mode

Topology optimization of microtextures is implemented in this section to enhance the stability of hydrophobic
wettability of a solid surface with complicated geometry by keeping the Cassie–Baxter mode from transition. Based
on the principle of free energy minimization at the interface of two immiscible fluids, the liquid/vapor interface
supported by the microtextures on a solid surface is a surface with constant mean curvature determined by the
static pressure imposed on the liquid. On a solid surface with complicated geometry, the pattern of the microtextures
is defined on a 2-manifold used to describe the solid surface, and the mean curvature of the liquid/vapor interface
supported by the microtextures can be regarded to be a physical field defined on the 2-manifold. The mean curvature
of the liquid/vapor interface supported by the microtextures can be described by the dimensionless Young–Laplace
equation [77,78]:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∇s ·

(
σ̄

∇s z̄√
(L/z0)

2
+ |∇s z̄|2

)
= 1, on ΣS

σ̄
∇s z̄√

(L/z0)
2
+ |∇s z̄|2

· τ = 0, at ∂ΣS

z̄ = 0, at P

, (23)

where z̄ = z/z0 is the normalized displacement of the liquid/vapor interface relative to the 2-manifold ΣS , with
z0 denoting the magnitude of the original displacement z; σ̄ = σ/ (L P) is the dimensionless surface tension,
with L , σ and P denoting the characteristic size of the solid surface, the surface tension and the static pressure
at the liquid/vapor interface, respectively. To ensure the uniqueness of the solution, the liquid/vapor interface is
constrained at a specified point set P localized on the 2-manifold. The variational formulation of the dimensionless
Young–Laplace equation is

find z̄ ∈ H (ΣS) with z̄ = 0 at P, satisfying∫
ΣS

−σ̄
∇s z̄ · ∇s ˆ̄z√

(L/z0)
2
+ |∇s z̄|2

− ˆ̄z ds = 0, ∀ˆ̄z ∈ H (ΣS)
(24)

where ˆ̄z is the test function of z̄.
For the wetting behavior in the Cassie–Baxter mode, the performance of the microtextures can be measured

by the volume of the liquid bulges enclosed by the convex liquid/vapor interface and untextured solid surface.
Therefore, topology optimization of the microtextures is implemented by minimizing the normalized volume of the
liquid bulges expressed as

J =
1
|ΣS|

2

∫
ΣS

z̄2 ds, (25)

which is constrained by an area constraint with the specified area fraction of V f . In topology optimization of
the microtextures, the material density is used to interpolate the dimensionless surface tension and distinguish the
liquid/vapor and liquid/solid interfaces:

σ̄ = σ̄l + (σ̄s − σ̄l) q
1− γ̄

q + γ̄
, (26)

where q chosen to be 10−4 is the parameter used to tune the convexity of the interpolation function; σ̄l is the
dimensionless surface tension of the liquid; σ̄s is the dimensionless surface tension used to approximate the
liquid/solid interface. Theoretically, σ̄s should be infinite; numerically, a finite but large enough value satisfying
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σ̄s ≫ σ̄l can be chosen for σ̄s , to simultaneously ensure the stability of the numerical implementation and
approximate the liquid/solid interface with an acceptable tolerance. σ̄s is set as 105σ̄l in this paper.

Based on the adjoint analysis introduced in Section 2.5, the adjoint derivative of J is derived as⟨
J ′, t

⟩
L2(ΣS),L2(ΣS)

= −

∫
ΣS

γ̃a t ds, ∀t ∈ L2 (ΣS) . (27)

The adjoint variable γ̃a in Eq. (27) can be derived by solving the following variational formulations of the adjoint
equations:

find z̄a ∈ H (ΣS) with z̄a = 0 at P, satisfying∫
ΣS

2
|ΣS|

2 z̄ ˆ̄za − σ̄
∇s z̄a · ∇s ˆ̄za√

(L/z0)
2
+ |∇s z̄|2

+ σ̄
(∇s z̄ · ∇s z̄a)

(
∇s z̄ · ∇s ˆ̄za

)
(√

(L/z0)
2
+ |∇s z̄|2

)3 ds = 0, ∀ˆ̄za ∈ H (ΣS) ;
(28)

find γ̃a ∈ H (ΣS) , satisfying∫
ΣS

−r2
∇s γ̃a · ∇s ˆ̃γa + γ̃a ˆ̃γa −

∂σ̄

∂γ̄

∂γ̄

∂γ̃

∇s z̄ · ∇s z̄a√
(L/z0)

2
+ |∇s z̄|2

ˆ̃γa ds = 0, ∀ ˆ̃γa ∈ H (ΣS)
(29)

where z̄a is the adjoint variable of z̄. For V = 1
|ΣS |

∫
ΣS

γ̄ ds in the area constraint, the adjoint derivative is⟨
V ′, t

⟩
L2(ΣS),L2(ΣS)

= −

∫
ΣS

γ̃a t ds, ∀t ∈ L2 (ΣS) (30)

where the adjoint variable γ̃a is derived by solving the following variational formulation of the adjoint equation:

find γ̃a ∈ H (ΣS) , satisfying∫
ΣS

1
|ΣS|

∂γ̄

∂γ̃
ˆ̃γa ds + r2

∇s γ̃a · ∇s ˆ̃γa + γ̃a ˆ̃γa ds = 0, ∀ ˆ̃γa ∈ H (ΣS) .
(31)

After adjoint analysis, the topology optimization problem can be solved by the iterative procedure introduced in
Section 2.6.

Topology optimization of the microtextures is implemented for the sphere- and torus-shaped surfaces discretized
by the quadrangular surface meshes shown in Fig. 2. The dimensionless surface tension of the liquid, the
characteristic size of the solid surface and the magnitude of the original displacement are set as σ̄l = 102, L = 10 µm
and z0 = 1 µm, respectively. The maximal iteration number and the updating interval are set as nsub

max = 315 and
nupt
= 30, respectively. The area fraction of the patterns of the microtextures is set as V f = 0.2. Then, the patterns

of the microtextures are derived for different choices of the points in the point set P . For the sphere, the surface
is divided into regular spherical-triangles (Fig. 3a) and spherical-quadrangles (Fig. 4a), respectively. The point set
P is set as the central points of those spherical-polygons. For the torus, the surface is divided by two sets of
circles (Figs. 5a and 6a), where P is set as the intersection points of the circles. The patterns of the microtextures
are derived as shown in Figs. 3b and 6b, with the corresponding liquid/vapor interfaces shown in Figs. 3c and
6c. In Figs. 3d, e, 6d and e, the derived patterns and the corresponding liquid/vapor interfaces are shown in the
deformation views. The convergent histories of the normalized optimization objective and the area constraint are
shown in Figs. 3f and 5f, including the snapshots for the evolution of the material density. From the convergent
histories and the snapshots, the convergent performance of the topology optimization procedures can be confirmed.

The topology optimization of the microtextures is further implemented on a Möbius ring derived by gluing three
Möbius strips shown in Fig. 7a, where the point set P is set as the six points sketched in the cutaway view shown
in Fig. 7b. The microtextures are derived as shown in Fig. 7c with the corresponding liquid/vapor interface shown
in Fig. 7d, where the triangular surface meshes shown by the partial view included in Fig. 7a are used to discretize
this Möbius ring.

In Table 2, the volumes of the liquid-bulges are cross compared for the derived microtextures on the sphere and
torus for the cases with two different dimensionless surface tension of 102 and 103, respectively. The point set P
is set to be the same as that in Figs. 3 and 5. From a cross comparison of the values in every row of the sub-tables
in Table 2, the improved performance of the microtextures corresponding to the derived patterns can be confirmed.
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Fig. 2. Quadrangular surface meshes used to discretize the sphere- and torus-shaped surfaces.

Fig. 3. (a–c) Perspective and top views of the sphere surface divided by regular spherical-triangles, the derived pattern of the microtextures,
and the normalized displacement of the liquid/vapor interface supported on the microtextures with the derived pattern; (d–e) deformation
views of the microtextures and the liquid/vapor interfaces; (f) convergent histories of the optimization objective and the area constraint,
including the snapshots for the evolution of the material density.

When the solid objects are textured using the derived patterns, the three-phase contact lines of the liquid/vapor
interfaces can be anchored at the geometrically singular corners formed by the top and side walls of the
microtextures. This anchoring effect is caused by the hysteresis of the contact angle. The wetting behaviors are
thus in the Cassie–Baxter mode.

If the difference between the static pressure imposed on the liquid is large enough to make the contact angle
between the liquid/vapor interface and the side wall of the microtextures reach the critical advancing angle, the
liquid/vapor interface can burst, and transition can occur from the Cassie–Baxter mode to the Wenzel mode. As the
contact angle evolves towards the critical advancing angle, the robustness of the Cassie–Baxter mode decreases.
Simultaneously, the liquid/vapor interface supported on the microtextures becomes more convex, and the volume of
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Fig. 4. (a–c) Perspective and top views of the sphere surface divided by regular spherical-quadrangles, the derived pattern of the microtextures,
and the normalized displacement of the liquid/vapor interface supported on the microtextures with the derived pattern; (d–e) deformation
views of the microtextures and the liquid/vapor interfaces.

Fig. 5. (a–c) Perspective, top and front views of the torus surface divided by the illustrated circles, the derived pattern of the microtextures,
and the normalized displacement of the liquid/vapor interface supporting on the microtextures with the derived pattern; (d–e) deformation
views of the microtextures and the liquid/vapor interfaces; (f) convergent histories of the optimization objective and the area constraint,
including the snapshots for the evolution of the material density.

the liquid bulges suspended at the liquid/vapor interface increases. Therefore, reasonable microtextures on a solid
surface can keep the Cassie–Baxter mode from transition by keeping the contact angle aloof of the crucial advancing
angle.
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Fig. 6. (a–c) Perspective, top and front views of the torus surface divided by the illustrated circles, the derived pattern of the microtextures,
and the normalized displacement of the liquid/vapor interface supporting by the microtextures with the derived pattern; (d–e) deformation
views of the microtextures and the liquid/vapor interfaces.

Fig. 7. (a) Sketch for gluing three Möbius strips to derive a Möbius ring, where a partial view of the meshes used to discretize this
Möbius ring is included; (b) cutaway view of the Möbius ring used to sketch the points of the point set P; (c–d) deformation views of the
microtextures and the liquid/vapor interfaces.

Table 2
Volume of the liquid bulges supported by the microtextures with the derived patterns on the sphere and the torus for the
dimensionless surface tension 102 and 103, respectively. The optimized entries are noted in bold.

3.2. Heat sink for heat transfer problem

Heat transfer problems have been investigated by using topology optimization to find the layouts of the
heat conductive materials [61–63] and optimal match of the structural topology and the heat source [79]. To
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enlarge the freedom of temperature control in the related engineering areas, topology optimization on 2-manifolds
is implemented for heat transfer problems to determine the patterns of heat sinks by minimizing the thermal
compliance. The temperature distribution in a 3D domain can be described as⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∇ · (k∇T ) = Q, in Ω

T = Td , on Γd

− k∇T · n = 0, on Γn

T = T0, at P

, (32)

where k is the thermal conductivity; T is temperature; Q is the heat source; Γd is heat sink with known temperature
Td and it is attributed to the Dirichlet type; Γn is the insulation boundary, attributed to the Neumann type; Γd and
Γn satisfy Γd ∪ Γn = ΣM , with ΣM denoting the 2-manifold without boundary corresponding to the union of Γd

and Γn; Ω is the domain enclosed by ΣM ; T0 is the known temperature at the points in the point set P . By setting
the design domain as ΣS = ΣM , topology optimization can be implemented to determine the crosswise distribution
of the heat sink Γd (γ̄ = 0) and the insulation Γn (γ̄ = 1) on ΣS . The material interpolation is implemented on ΣS

to define the mixed boundary condition:

− k∇T · n = α (γ̄ ) (T − Td) , on ΣS (33)

where α (γ̄ ) is the interpolation function of the material density. The interpolation function α (γ̄ ) is expressed as

α (γ̄ ) = αmax
q (1− γ̄ )

q + γ̄
, (34)

where αmax and q are the parameters used to implement the penalization and tune the convexity of the interpolation
function, respectively. The value of αmax should be chosen to be large enough to ensure the domination of the term
(T − Td) in Eq. (33), when the material density takes on the value of 0; Eq. (33) degenerates into the insulation
boundary condition, when the material density takes on the value of 1. Based on numerical experiments, αmax and
q are set as 104 and 10−6, respectively. The variational formulation of Eq. (10) is

find T ∈ H (Ω) with T = T0 at P, satisfying∫
Ω

k∇T · ∇ T̂ − QT̂ dv +

∫
ΣS

α (T − Td) T̂ ds = 0, ∀T̂ ∈ H (Ω)
(35)

where T̂ is the test function of T ; H (Ω) is the first order Sobolev space on Ω .
The distribution of the heat sink on ΣS is determined to minimize the thermal compliance:

J =
∫
Ω

k∇T · ∇T dΩ . (36)

Based on the adjoint analysis introduced in Section 2.5, the adjoint derivative of J is derived as⟨
J ′, t

⟩
L2(ΣS),L2(ΣS)

= −

∫
ΣS

γ̃a t ds, ∀t ∈ L2 (ΣS) . (37)

The adjoint variable γ̃a in Eq. (37) can be derived by sequentially solving the following adjoint equations:

find Ta ∈ H (Ω) with Ta = 0 at P, satisfying∫
Ω

2k∇T · ∇ T̂a + k∇Ta · ∇ T̂a dv +

∫
ΣS

αTa T̂a ds = 0, ∀T̂a ∈ H (Ω) ;
(38)

find γ̃a ∈ H (ΣS) satisfying∫
ΣS

∂α

∂γ̄

∂γ̄

∂γ̃
(T − Td) Ta ˆ̃γa ds + r2

∇s γ̃a · ∇s ˆ̃γa + γ̃a ˆ̃γa ds = 0, ∀ ˆ̃γa ∈ H (ΣS)
(39)

where Ta is the adjoint variables of T . For the area constraint, the adjoint derivative and the adjoint equation have
the same forms as Eqs. (30) and (31).

Based on the numerical implementation introduced in Section 2.6, the computational domain Ω is set to be the
volume domains with the genus of 0 and 1, respectively. The corresponding typical 2-manifolds are sphere and



14 Y. Deng, Z. Liu and J.G. Korvink / Computer Methods in Applied Mechanics and Engineering 364 (2020) 112937

Fig. 8. (a) Perspective, top and front views of the derived pattern of the heat sink on the sphere; (b) temperature distribution in the
cross-sections of the spherical domain; (c) convergent histories of the optimization objective and the area constraint, including the snapshots
for the evolution of the material density.

torus discretized by the quadrangular surface meshes shown in Fig. 2. The coordinate origin is set as the centers
of the sphere and torus; the radius of the sphere is 1; the inner radius and outer radii of the torus are 3/4 and 7/4,
respectively. For both the sphere and the torus, the thermal conductivity is set as 1; the temperature of the heat sink
Td and the known point-temperature T0 are set as 0; the heat source is set as Q = 1/

(
1+ x2

)
; the area fractions

are set as 0.75 and 0.7, respectively; the maximal iteration number and the updating interval are set as nsub
max = 200

and nupt
= 40, respectively. For the sphere, the point set P is set as the one composed of the vertexes of a cube

with the center and one of the vertexes localized at the sphere center and (0.5, 0.5, 0.5), respectively. For the torus,
P is set as {(−1.65, 0, 0) , (0, 1.25, 0.4) , (0.85, 0, 0) , (0,−1.25,−0.4)}. The patterns of the heat sinks are derived
as shown in Figs. 8 and 9, including the corresponding convergent histories and the snapshots for the evolution
of the material density. From the convergent histories, the convergent performance of the topology optimization
procedure can be confirmed for the heat transfer problems. The temperature distributions in the cross-sections of
the volume domains are shown in Figs. 8b and 9b. The results show that the heat insulations are localized at the
parts of the manifolds nearest the zero-temperature points and the heat sinks distribute around the heat insulations.
Such distributions of the heat sinks and the insulations can preserve the thermal energy in the regions around the
zero-temperature points and reduce the temperature gradient to minimize the thermal compliance.

The thermal compliance on 2-manifolds can also be minimized by using topology optimization, where the 2-
manifolds are imbedded in a block-shaped 3D domain Ω enclosed by the insulation boundaries and the center of
Ω is localized at the coordinate origin. In this case, the optimization objective is

J =
∫
ΣS

k∇s T · ∇s T ds, (40)
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Fig. 9. (a) Perspective and lateral views of the derived pattern of the heat sink on the torus; (b) temperature distribution in the cross-sections
of the torus domain; (c) convergent histories of the optimization objective and the area constraint, including the snapshots for the evolution
of the material density.

where the 2-manifold ΣS is an interface of Ω . The material interpolation implemented on ΣS is the mixture of the
Dirichlet (T = Td ) and no-jump (−kJ∇T K · n = 0) boundary conditions:

− kJ∇T K · n = α (γ̄ ) (T − Td) , on ΣS. (41)

The adjoint equation in Eq. (38) is changed to be

find Ta ∈ H (Ω) with Ta = 0 at P, satisfying∫
Ω

k∇Ta · ∇ T̂a dv +

∫
ΣS

2k∇s T · ∇s T̂a + αTa T̂a ds = 0, ∀T̂a ∈ H (Ω) .
(42)

By setting the area fraction as V f = 0.6 and keeping the other parameters without change, topology optimization
for the patterns of the heat sinks is implemented on the Möbius strip and the Klein bottle which can be derived by
gluing two Möbius strips (Fig. 10a). The partial views of the used triangular surface meshes have been included in
Fig. 10a. Because the Möbius strip and the Klein bottle are non-orientable, the unitary normal vector n is defined
locally on them. The patterns of the heat sinks corresponding to different choices of the point set P (Fig. 10b) are
derived as shown in Figs. 11 and 12, where the temperature distributions on the Möbius strip and the Klein bottle
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Fig. 10. (a) Sketch for the Klein bottle derived by gluing two Möbius strips, where the partial views of the triangular surface meshes used
to discretize the Möbius strip and the Klein bottle are included; (b) sketches for the points of the point set P .

Fig. 11. Derived patterns of the heat sinks and the corresponding temperature distributions on the Möbius strip: (a1–a2) for the case with
P = {P1}; (b1–b2) for the case with P = {P2}. P1 and P2 have been sketched in Fig. 10b.

are included. The derived patterns of the heat sinks change the temperature distribution in the volume domain Ω

with the tendency to reduce or eliminate the temperature gradient on the remained part of the interface ΣS . From
the temperature distributions, the performance of the derived patterns of the heat sinks on minimizing the thermal
compliance can be confirmed.
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Fig. 12. Perspective and cutaway views of the derived pattern of the heat sink and the corresponding temperature distribution on the Klein
bottle: (a1–a2) for the case with P = {P3}; (b1–b2) the case with P = {P4}. P3 and P4 have been sketched in Fig. 10b.

Table 3
Values of the thermal compliance corresponding to the patterns of the heat sinks on the Möbius strip and the
Klein bottle for the different choices of the point set P . The optimized entries are noted in bold.

(a) Möbius strip (b) Klein bottle

Fig. 11(a1) Fig. 11(b1) Fig. 12(a1) Fig. 12(b1)

P1 1.31 2.58 P3 0.09 0.34
P2 2.23 1.21 P4 0.20 0.14

To check the improved performance, the thermal compliance is cross-compared as listed in Table 3 for the derived
patterns of the heat sinks in Figs. 11a1, b1, 12a1 and b1. From the cross comparison of the values in every row of
the sub-tables in Table 3, the optimized performance of the derived patterns can be confirmed.

3.3. Perfect conductor for electromagnetics

To determine the patterns of the perfect conductor for electromagnetics, topology optimization on 2-manifolds
is implemented in this section. The electric field scattered by the perfect conductor can be described by the wave
equation, where the tangential component of the electric field on the 2-manifolds is zero. The scattering field of the
perfect conductor is described as{

∇ ×
[
µ−1

r ∇ × (Es + Ei )
]
− k2

0ϵr (Es + Ei ) = 0, in Ω

∇ · [ϵr (Es + Ei )] = 0, in Ω
, (43)

where Es and Ei are the scattering and incident fields, respectively; the electric field E = Es +Ei is the total field;
the second equation is the divergence-free condition of the electric displacement; Ω is a cuboid-shaped domain. The
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infinite computational space is truncated by the perfectly matched layers (PMLs). In the PMLs, the wave equations
with the complex-valued coordinate transformation is defined as [80,81]{

∇x′ ×
(
µ−1

r ∇x′ × Es
)
− k2

0ϵr Es = 0, in ΩP

∇ · Es = 0, in ΩP
, (44)

where x′ is the complex-valued coordinate transformed from the original Cartesian coordinate in ΩP ; Es in the PMLs
satisfies the divergence-free condition described in the original Cartesian coordinate system, because the fields are
source-free in the PMLs; ∇x′ is the gradient operator in the PMLs in the transformed coordinate system; ΩP is the
union of the PML domains. The original and transformed coordinates satisfy the following transformation:

x′ = Tx, ∀x ∈ ΩP (45)

where T and x are the transformation matrix and the original Cartesian coordinate, respectively. The transformation
matrix T is [80]

T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

diag ((1− j) λ/d, 1, 1) , in Ω f b

diag (1, (1− j) λ/d, 1) , in Ωlr

diag (1, 1, (1− j) λ/d) , in Ωtd

diag (1, (1− j) λ/d, (1− j) λ/d) , in Ω f be

diag ((1− j) λ/d, 1, (1− j) λ/d) , in Ωlre

diag ((1− j) λ/d, (1− j) λ/d, 1) , in Ωtde

diag ((1− j) λ/d, (1− j) λ/d, (1− j) λ/d) , in Ωc

(46)

where λ the wavelength of the incident wave; d the thickness of the PMLs; Ω f b, Ωlr and Ωtd are the PMLs attached
at the surfaces of Ω with normal vector parallel to x , y and z axes, respectively; Ω f be, Ωlre and Ωtde are the PMLs
attached at the edges of Ω with tangential vectors perpendicular to yOz, zOx and x Oy planes, respectively; Ωc

are the PMLs attached at the vertexes of Ω . The no-jump boundary condition for the scattering field is imposed on
the interface ∂Ω between ΩP and Ω :

µ−1
r (∇ × Es −∇x′ × Es)× n = 0, on ∂Ω . (47)

The perfect electric conductor condition n × Es = 0 is imposed on the external boundaries ΓD = ∂ (Ω ∪ ΩP) of
the PMLs.

The perfect conductor layer is attached on the 2-manifold ΣS immersed in Ω . The design variable defined on ΣS

is used to indicate the no-jump boundary and perfect conductor parts, where µ−1
r J∇ × EK× n = 0 and n× E = 0

are satisfied, respectively. The corresponding material interpolation is implemented as

µ−1
r J∇ × (Es + Ei )K× n = α (γ̄ ) [n× (Es + Ei )] , on ΣS (48)

where α (γ̄ ) is the interpolation function in Eq. (34). In this interpolation function, αmax is chosen as a large but
finite value to ensure the domination of the term n×(Es + Ei ) at the perfect conductor boundary, when the material
density takes on the value of 0; Eq. (48) degenerates into the no-jump boundary condition, when the material density
takes on the value of 1. Based on numerical tests, αmax and q are chosen to be 1× 104 and 1× 100, respectively.

The perfect conductor layer is optimized to maximize the energy of the scattering field:

J =
∫
Ω

Es · E∗s dΩ . (49)

Based on the adjoint analysis introduced in [82], the adjoint derivative is derived with the same form as Eq. (37).
The adjoint variables are derived by solving the adjoint equations in the following variational formulations:

find Esa with Re (Esa) ∈ VE, I m (Esa) ∈ VE and n× Esa = 0 on ΓD, satisfying∫
Ω

2E∗s · Êsa + µ−1
r

(
∇ × E∗sa

)
·

(
∇ × Êsa

)
− k2

0ϵr E∗sa · Êsa dΩ+∫
ΩP

µ−1
r

(
T∇ × E∗sa

)
·

(
T∇ × Êsa

)
|T|−1

− k2
0ϵr E∗sa · Êsa |T| dΩ = 0, ∀Êsa ∈ VE;

(50)
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Fig. 13. (a–b) Sketches of the torus and Möbius strip immersed in the volume domain Ω ; (c–d) sketches of the point set P on the torus
and the Möbius strip.

find γ̃a ∈ H (Σs) , satisfying∫
Σs

r2
∇γ̃a · ∇ ˆ̃γa + γ̃a ˆ̃γa +

∂α

∂γ̄

∂γ̄

∂γ̃

[
Re (n× (Es + Ei )) · Re

(
n× E∗sa

)
+

I m (n× (Es + Ei )) · I m
(
n× E∗sa

) ]
ˆ̃γa dΣ = 0, ∀ ˆ̃γa ∈ H (Σs)

(51)

where Re and I m are operators used to extract the real and imaginary parts of a complex; Esa is the adjoint variable
of Es ; VE is the functional space

{
u ∈ H (curl;Ω ∪ ΩP)

⏐⏐∇ ·u = 0
}

with H (curl;Ω ∪ ΩP) denoting the functional
space of

{
u ∈

(
L2 (Ω ∪ ΩP)

)3 ⏐⏐∇ × u ∈
(
L2 (Ω ∪ ΩP)

)3} and L2 (Ω ∪ ΩP) denoting the second order Lebesgue
space for the real functionals defined on Ω ∪ ΩP .

Based on the numerical implementation in Section 2.6, topology optimization for the patterns of the perfect
conductor is implemented on the torus (Fig. 13a) and the Möbius strip (Fig. 13b), respectively. Those two 2-
manifolds are immersed into the 3D domain Ω , a brick-shaped domain enclosed by the PMLs. The size of Ω is
2.4 × 2.4 × 0.96 in the unit of meter. This domain is discretized by the cubic elements with a size of 0.08. The
coordinate origin is set as the center of Ω . For both the torus and the Möbius strip, the area fraction in the area
constraint is set as 0.5; the point set P is set as shown in Fig. 13c and d; the maximal iteration number and the
updating interval are set as nsub

max = 315 and nupt
= 30, respectively; the incident waves are set to propagate in the

+z with a wavelength of 0.8 m. For three different polarizations of the incident waves, the optimized patterns of
the perfect conductor are derived as shown in Figs. 14 and 15. The evolution snapshots for the material density
are shown in Figs. 16 and 17 for the incident waves with circular polarization. From the evolution snapshots, the
performance of the topology optimization procedures can be confirmed for the electromagnetic problems.

The performance of the derived patterns of the perfect conductor on maximizing the energy of the scattering
fields can be confirmed from the vector distribution of the scattering fields compared with that of the incident fields
(Figs. 18 and 19). The comparison of the vector distribution shows that the perfect layers can enhance the energy
of the scattering field by effectively reflecting and disturbing the incident waves.

To check the improved performance, the optimized patterns of the perfect conductor in Figs. 14 and 15 are used
to scatter the incident waves with different polarizations and the energy of the scattering fields is cross-compared,
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Fig. 14. Derived patterns of the perfect conductor on the torus: (a) for the incident wave polarized in the x-axis; (b) for the incident wave
polarized in the y-axis; (c) for the incident wave right-circularly polarized in the x Oy-plane.

Fig. 15. Derived patterns of the perfect conductor on the Möbius strip: (a) for the incident wave polarized in the x-axis; (b) for the incident
wave polarized in the y-axis; (c) for the incident wave right-circularly polarized in the x Oy-plane.

Fig. 16. Snapshots for the evolution of the material density in the topology optimization of the patterns of the perfect conductor on the
torus, where the incident wave is right-circularly polarized in the x Oy-plane.
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Fig. 17. Snapshots for the evolution of the material density in the topology optimization of the patterns of the perfect conductor on the
Möbius strip, where the incident wave is right-circularly polarized in the x Oy-plane.

Fig. 18. Distributions of the vectors of the scattering field (red arrows) and the incident field (blue arrows) correspond to the three cases
in Fig. 14, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 19. Distributions of the vectors of the scattering field (red arrows) and the incident field (blue arrows) correspond to the three cases
in Fig. 15, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

where the other parameters are kept without change. From the cross comparison of the values in every row of the
sub-tables in Table 4, the improved performance of the derived patterns of the perfect conductor can be confirmed.

4. Conclusions

This paper discussed a topology optimization approach implemented on two-dimensional manifolds for phenom-
ena described by second order partial differential equations. When a physical field is defined on a two-dimensional
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Table 4
Energy of the scattering field corresponds to the patterns of the perfect conductor optimized on
the torus and the Möbius strip for the incident waves with different polarizations. The optimized
entries are noted in bold.

(a) Torus

Fig. 14(a) Fig. 14(b) Fig. 14(c)

x-polarization 107.8 81.7 97.9
y-polarization 58.2 110.1 68.5
Circular polarization 54.3 102.1 125.5

(b) Möbius strip

Fig. 15(a) Fig. 15(b) Fig. 15(c)

x-polarization 22.8 12.9 10.1
y-polarization 18.3 19.9 8.4
Circular polarization 16.0 15.8 16.7

manifold, the topology optimization is implemented by interpolating a material parameter in the partial differential
equation used to describe this physical field. This case has been demonstrated by the topology optimization of the
microtextures for the wetting behaviors in the Cassie–Baxter mode. When the physical field is defined on a three-
dimensional domain and its boundary conditions are defined on a two-dimensional manifold corresponding to the
exterior surface or the interior interface of this domain, the material density is used to formulate a mixed boundary
condition of the partial differential equation and implement the penalization between two different boundary types.
This case has been demonstrated by the topology optimization of the patterns of the heat sinks for heat transfer
and the perfect conductor for electromagnetics. Typical two-dimensional manifolds, e.g., sphere, torus, Möbius
strip and Klein bottle, have been included in the numerical examples. Based on the homeomorphic property of
two-dimensional manifolds, it can be concluded that this topology optimization approach can be implemented on
any compact two-dimensional manifold.
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