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Abstract
One of the straightforward definitions of structural topology optimization is to design the optimal distribution of the holes and the
detailed shape of each hole implicitly in a fixed discretized design domain. However, typical numerical instability phenomena of
topology optimization, such as the checkerboard pattern and mesh dependence, all take the form of an unexpected number of
holes in the optimal result in standard density-type design methods, such as SIMP and ESO. Typically, the number of holes is
indirectly controlled by tuning the value of the radius of the filter operator during the optimization procedure, in which the choice
of the value of the filter radius is one of the most opaque and confusing issues for a beginner unfamiliar with the structural
topology optimization algorithm. Based on the soft-kill bi-directional evolutionary structural optimization (BESO) method, an
optimization model is proposed in this paper in which the allowed maximal number of holes in the designed structure is explicitly
specified as an additional design constraint. The digital Gauss-Bonnet formula is used to count the number of holes in the whole
structure in each optimization iteration. A hole-filling method (HFM) is also proposed in this paper to control the existence of
holes in the optimal structure. Several 2D numerical examples illustrate that the proposedmethod cannot only limit the maximum
number of holes in the optimal structure throughout the whole optimization procedure but also mitigate the phenomena of the
checkerboard pattern and mesh dependence. The proposed method is expected to provide designers with a new way to tangibly
manage the optimization procedure and achieve better control of the topological characteristics of the optimal results.
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1 Introduction

Topological optimization is one of the design methods used to
determine material distribution in a specified domain.
Currently, it has been extended to the areas of structural me-
chanics (Lazarov et al. 2016; Sigmund 2009; Rozvany 2001;
Chen et al. 2010), electromagnetism (Deng and Korvink
2018; Okamoto et al. 2016; Labbe and Dehez 2011),

thermology (Sigmund 2001b, c), and fluid mechanics (Deng
et al. 2011; Gersborg-Hansen et al. 2005; Evgrafov et al.
2008; Borrvall and Petersson 2003), among others.

However, in the standard density-type design methods, there
still exist various typical numerical instability phenomena, such
as the checkerboard pattern andmesh dependence, resulting from
the emergence of many holes. Hence, these phenomena are typ-
ical problems in topological optimization that have been widely
studied (Sigmund and Petersson 1998; Guest et al. 2004;
Rozvany 2009; Bourdin 2001; Buhl et al. 2000; Yamada et al.
2010; Talischi et al. 2012; Zuo and Saitou 2017).

This paper proposes a new method named the hole-filling
method (HFM) to mitigate the phenomena of the checker-
board pattern and mesh dependence by constraining the num-
ber of holes in a topological structure obtained in each itera-
tion of topological optimization. The general idea of the HFM
is to fill in the extra holes generated during iterative optimiza-
tion. Consequently, the peak in the number of holes that arise
during the topology optimization process is constrained to be
fewer than or equal to a certain allowed maximum number of
holes in the HFM. The mesh dependence phenomenon can be
controlled when the allowed maximum number of holes in the
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optimal structure (H) is set to an appropriate value. Moreover,
because the checkerboard pattern corresponds to the forma-
tion of regions of alternating solid and void elements ordered
in a checkerboard-like fashion, this phenomenon can also be
successfully suppressed by filling in holes of unit area in the
optimal structure with the HFM.

The HFM proposed in this paper is based on the soft-BESO
method (Huang and Xie 2009, Xie and Steven 1992) of solving
topology optimization problems while controlling the number of
holes. Although the SIMPmethod (BendsØe 1989; Bendsøe and
Sigmund 1999, Zhou and Rozvany 1991; Mlejnek 1992;
Sigmund 2001a; Andreassen et al. 2011), the level set method
(Osher and Sethian 1988), and the ESOmethod (Xie and Steven
1992) have all been widely used for structural topology optimi-
zation, the ESOmethod is chosen for the following reasons. The
level set method introduces a function with one more dimension
than the design domain and determines the boundary of the
structure using the zero-level set of this function. The maximum
number of holes during the optimization procedure is limited by
the initial value of the setup of level set surface in a two-
dimensional case. Hence, the level set method is out of the scope
of this article. The SIMP method and the ESO method are both
density-type methods. However, the original digital Gauss-
Bonnet theorem requires clear boundaries between solid ele-
ments and void elements. During the optimization process of
the SIMP method, grey-type domains exist at the boundaries
between solid domains and void domains. Because this article
focuses on the method of controlling holes rather than the bina-
rization of continuous variables, the SIMP method is also out of
the scope of the current study.

The ESO method was proposed by Xie and Steven in the
early 1990s and has been applied to a large number of topo-
logical optimization problems (Xie and Steven 1997). The
soft-kill BESO method, one of the extensions of the ESO
method, has the characteristic of binarization of the solution
obtained in each optimization iteration. This is a necessary
condition for the implementation of the digital Gauss-
Bonnet theorem for closed digital surfaces.

The proposed HFM is a method that can fill in holes in a
solid domain. Therefore, the HFM method can restrict the
number of holes in an optimal structural design in two-
dimensional space. Although the filter scheme (Sigmund
2007; Bourdin 2001; Wang et al. 2011; Lazarov and
Sigmund 2011) also influences the number of holes and
offers a straightforward way to control the number of holes
in the optimal structure, it has the following disadvantages:
(a) there is no general rule governing the mapping between
the number of holes in the optimal structure and the filter
radius size; (b) a large filter radius may change the optimal
topology by causing thin parts of the structure to be filtered
out; and (c) the choice of the filter radius size is not
straightforward for a designer who is not already familiar
with topology optimization.

The rest of this paper is organized as follows. Section 2 intro-
duces the topology optimization problemwith a constraint on the
number of holes in the optimal structure as well as the underlying
theory, the implementation details, and the flow chart of the
HFM. Section 3 presents the numerical implementation results
for typical cantilever beams with different parameters. Section 4
discusses the HFM. Section 5 offers further discussions and sug-
gests possible directions of future research. Section 6 offers a
statement regarding the replication of the results.

2 The hole-filling method

2.1 Soft-kill BESO topology optimization model with
HFM

The aim of topology optimization is to find an optimal
distribution of material, i.e., the implementation of the
minimal compliance, subject to constraints on the volume
of the material and an allowed maximum number of holes.
The method presented in this paper is based on the soft-kill
BESO method. The design domain is assumed to be rect-
angular and discretized into square finite elements in the
horizontal (xh: the numbers of elements in this direction)
and vertical (yv: the numbers of elements in this direction)
direction. The Young’s modulus is interpolated from the
element density design variable as follows:

Ee xeð Þ ¼ E1ρ
p
e ð1Þ

where E1 is the Young’s modulus of the solid material and
p is the penalization power. The control of the allowed max-
imum number of holes is implemented as a constraint in the
topology optimization problem. In this paper, the topology
optimization problem can be expressed as (2-a) and (2-b):

min
ρ

: c ρð Þ ¼ ∑
N

e¼1

1

2
ρe

p ue
Tk0ue
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s:t: : V*−∑N
e¼1Veρe ¼ 0
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ρe ¼ ρmin; 1f g
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where c is the optimization objective; U is the global displace-
ment; F is the force vector;K is the global stiffness matrix; ue is
the element displacement vector; k0 is the element stiffness
matrix for an element with unit Young’s modulus; ρ is the
vector of design variables; N (= xh×yv) is the number of ele-
ments used to discretize the design domain; Ve is the volume of
an individual element (in this paper, Ve = 1); ρe is the design
variable for the e-th element; V∗ is the prescribed volume of the
final structure; h is the number of holes in the structure obtained
in each optimization iteration; H is the allowedmaximum num-
ber of holes in the structure; Si is the area of the i-th hole; and S

∗

is a prescribed value of minimum area of the hole in final
structure. In this paper, we only discuss the following two
cases: without controlling area of holes (based on the optimiza-
tion model in (2-a)) and controlling area holes lager than 1
(based on the optimization model in (2-b)).

2.2 Calculation of the number of holes in a structure
in 2D

Before counting the number of holes, the definition of a hole
in two-dimensional discretized space should be clarified. In
this paper, a hole is considered to be formed by a closed digital
curve composed of the edges of several solid square elements,
as shown in Fig. 1, where neither (a) nor (c) is a hole but (b) is
a hole.

According to the Gauss-Bonnet theorem for closed digital
surfaces in 3D digital space (Chen and Rong 2010 and Chen
2004), the genus g of a closed digital surface can be expressed
in terms of the properties of a set of digital points. A two-
dimensional digital space can be treated as a simplified
three-dimensional digital space with only one layer of square
elements on the x-y plane, as shown in Fig. 2. With this pre-
condition, the genus number of a three-dimensional structure
is equal to the number of holes in the corresponding two-
dimensional structure. Thus, the formula for g in a 2D digital
space can be expressed as follows:

g ¼ 1þ M 4j j− M 2j j
4

ð3Þ

where g is the number of holes in the connected structure and
theMi (i = 4, 2) are sets of digital points on the boundary of the
solid structure. A digital point represents a connection among
multiple edges of solid elements, where the number of con-
nected edges is i, as shown in Fig. 3. For the example of M4

shown in Fig. 3b, |M4| = 2.
However, during the topological optimization process

using the BESO method, one structure may have multiple
separate parts, in which case the Gauss-Bonnet formulation
is not suitable. Therefore, the formulation must be changed as
follows:

h ¼ nþ M4j j− M2j j
4

ð4Þ

where n is the number of connected structures in the cur-
rent iteration of topology optimization and is calculated as

Fig. 2 A three-dimensional digital structure with only one layer of square
elements, corresponding to the two-dimensional digital spatial structure
shown in Fig. 1

Fig. 1 Neither (a) nor (c) is a
hole; (b) is a hole
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follows. Consider multiple sets Ai, each representing one
singular connected structure that consists of solid ele-
ments; then, a set B that consists of the solid elements of
all connected structures can be expressed in terms of the
sets Ai as follows:

B ¼ ⋃
n

i¼1
Ai and ⋂

n

i¼1
Ai ¼ ∅ ð5Þ

The key to solving this formula (5) is to find the corre-
sponding set of solid elements of a connected structure that
exactly fits the concept of the burning method (Gu and Yau
2008). Given a virtual fire point, the fire will spread such that
the boundary of the burning area will gradually expand until it
reaches an incombustible boundary. In Fig. 4, the detailed
process is illustrated. The steps of the process are listed as
follows:

(a). Let all of the solid elements constitute a set B; choose a
solid element b1 from B.

(b). Find the elements constituting the set C connected to
solid element b1 by a shared edge and point.

(c). Select the elements fromC that are also solid elements in
B to construct a set D, and then clear set C.

(d). Let the elements of D and b1 together constitute set A1.
(e). Remove the elements in D from the solid element set B,

and then find the elements that constitute a new set C

connected to any of the solid elements in D by a shared
edge and point.

(f). Repeat Steps (c), (d) and (e) until the set C contains no
elements that are included in B, and then clear set D; the
set A1 thus obtained is a connected structure.

All Steps (a), (b), (c), (d), (e), and (f) are repeated until the
set B contains no elements and (5) has been solved. Thus, the
number of holes h (in (4)) is obtained in each iteration of the
topology optimization process.

2.3 Calculation of the areas of all holes in a
topological structure

Since the elements of a hole that are connected to each
other can be identified by checking whether void ele-
ments share edges, the calculation of the areas of all
holes in a topological structure in two-dimensional dig-
ital space is similar to the calculation of the number of
connected structures. Thus, the burning method is used
again. The steps are listed as follows:

a) Let all of the void elements constitute a set VB; choose a
void element vb1 from VB.

b) Find the elements that constitute the set VC connected to
void element vb1 by a shared edge.

Fig. 4 The relationship diagram
of the process of the burning
method

Fig. 3 The cases ofM2 (a) andM4

(b, c). The solid elements are
shown in grey, the edges of each
element are shown in black, and
the hole elements are shown in
white
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c) Select the elements fromVC that are also void elements in
VB to construct a set VD, and then clear set VC.

d) Let the elements of VD and vb1 together constitute set
VA1.

e) Remove the elements in VD from the void element set
VB, and then find the elements that constitute a new set
VC connected to any of the void elements in VD by a
shared edge.

f) Repeat Steps (c), (d), and (e) until the set VC contains
no elements that are also included in VB, and then find
the elements that constitute the set VC connected to
any of the void elements in VD by a shared edge. If
any element exists in VC that does not belong to the
design domain, then the void elements do not belong to
a hole; clear sets VD and VA1. Otherwise, the set VA1

is a hole.

All Steps (a), (b), (c), (d), (e), and (f) are repeated until the
set VB contains no void elements. Then, the cell {VA} is an
ordered set of the areas of all holes.

2.4 Implementation of the HFM

According to the underlying principle of the HFM, the imple-
mentation of hole number control requires two essential com-
ponents: (i) the number of holes h in the topological structure
in each iteration of topology optimization and (ii) an ordered
set of the areas of all holes in the topological structure in each
iteration of topology optimization.

Both of these essential components have been obtain-
ed in Sections 2.2 and 2.3. The next step is to control
the number of holes. The allowed maximum number of
holes in the topological structure in each iteration of
topological optimization is considered a constraint in
the optimization problem (2).

Because the area of a hole Si can be calculated as the
number of elements in which the density variable ρe is
equal to ρmin, a large hole contains more minimal den-
sity variables than a small hole. Heuristically, in the
optimization procedure, we assume that filling in a
smaller hole with solid material will cause a smaller
change in the value of the optimization objective than
filling in a larger one. Because the topology optimiza-
tion process of the BESO method begins from an initial
state in which the number of holes in the structure is
zero, the inequality constraint h ≤H is always satisfied
at the beginning of optimization. With the evolution of
structural optimization, the areas of newly generated
holes are calculated, and the smallest holes will be
filled in if the inequality constraint h ≤ H is violated.
Therefore, the idea of the HFM is to fill in a relatively
small hole when the number of holes in the current
iteration of topology optimization is greater than the

allowed maximum number of holes (H). The holes in
a structure can be arranged in order from the largest to
the smallest based on their areas. The formulation of the
HFM is expressed as follows:

ρe ¼
ρe; h≤H
1; h > H; ρe∈ G jjG j−1 > G j; h−H≤ j

� ��

ð6Þ
where G is the cell of the holes ranked in area from
largest to smallest, consisting of finite elements, and j
represents the position in the cell G corresponding to
the hole with the j-th largest area; hence, Gj represents
the j-th hole. Thus, the number of holes in the topolog-
ical structure in each iteration of topological optimiza-
tion can be kept within the allowed range.

2.5 Checkerboard pattern and mesh dependence

The checkerboard pattern is one type of numerical instability
phenomena, which are typically solved by using filters for sen-
sitivity or density variables. In the case that the design domain is
discretized into square elements of unit length, the checkerboard
pattern can be phenomenologically treated as corresponding to
holes with an area of 1. Theoretically, the area of each hole can
be obtained in the HFM, thus making it possible to suppress
holes with a specific area value. Hence, holes of unit area in
the optimal structure will be filled in by default in the HFM.
Because the checkerboard pattern corresponds to the formation
of regions of alternating solid and void elements ordered in a
checkerboard-like fashion, this phenomenon can be prevented
by automatically filling in holes of unit area.

The primary function of the HFM is to control the
number of holes to be fewer than or equal to the max-
imum number of holes H. It is theoretically possible to
choose an appropriately small value of H to maintain
mesh independence. The reason for this is that reason-
able optimal structures inherently have both a lower
bound and an upper bound on the number of holes they
can contain. H is such an upper bound. As the upper
bound H decreases, the range of the possible number of
holes in the optimal structure will be restricted.
Therefore, the HFM may mitigate the phenomenon of
mesh dependence.

2.6 Flow chart of optimization with the HFM

The iterative topology optimization procedure of the proposed
HFM is described as follows:

a) Discretize the design domain using a finite element mesh,
and assign initial parameters for the topology optimiza-
tion program.
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b) Perform finite element analysis (FEA), and then calculate
the elemental sensitivity number according to the original
BESO method.

c) Apply a filter module to filter based on the elemental
sensitivity number.

d) Update the design variables and then calculate the number
of holes h in the topological structure.

e) Determine whether the number of holes satisfies the
constraint h ≤ H. If h ≤ H, proceed to Step f; oth-
erwise, apply the HFM and then proceed to Step f.

f) Calculatethetargetvolumeforthenextdesign.Ifthevolume
of the structure satisfies the volumeconstraint, determine
whether any holes of unit area exist in the structure. If so,
apply theHFMto fill them;otherwise, determinewhether
theprogrammeetstheconvergencecriterion.

Steps b–f are repeated until the program meets the conver-
gence criterion. The program flow chart is shown in Fig. 5.

3 Numerical examples

In this section, several numerical examples are presented to
illustrate the working principle of the HFM and its ability to
suppress the checkerboard pattern and mesh dependence
phenomena. Section 3.1 demonstrates the essential function
of the HFM, which is to control the number of holes, underFig. 6 A cantilever beam with a right-middle point force
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a) b) 
Fig. 5 Flow chart of the optimization process with the HFM corresponds to a topology optimizationmodel in (2-a) and b topology optimizationmodel in
(2-b)
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the condition that the area of the holes is not controlled
(based on the topology optimization model in (2-a)). It
shows that restricting the number of holes can alleviate
the checkerboard pattern. However, when h increases, it is
possible to appear the checkerboard pattern. Section 3.2
demonstrates the extended functionality of the HFM, which
is to suppress checkerboard pattern, under the condition
that the area of the holes is controlled (based on the topol-
ogy optimization model in (2-b)). And we compare its re-
sults with those of the original BESO. Section 3.3

demonstrates the ability to use the HFM to mitigate the
mesh dependence and checkerboard pattern phenomena
(based on the topology optimization model in (2-b)).

A typical cantilever beam example is shown in Fig. 6,
where the design domain is discretized with square ele-
ments and a unit load vector acts on a point in the mid-
dle of the right boundary of the design domain. Unless
stated otherwise, the filter radius size r is set to a multi-
ple of the unit length by default, and the unit length is
equal to the edge length of the elements . The

a) b) c)

d) e) f)

g) h) i)

j) k) l)

Fig. 7 Results of the HFM without controlling unit-area holes. The filter
radius is equal to 1; the mesh comprises 80 × 60 unit square elements; and
the maximum number of holes H is equal to 1, 2, 3, 5, 9, 11, 13, 17, 21,
29, 36, or 55. Here, h denotes the number of holes in the optimal structure.

(a) H=1, h=0 (b) H=2, h=1 (c) H=3, h=3 (d) H=5, h=5 (e) H=9, h=9 (f)
H=11, h=10 (g) H=13, h=11 (h) H=17, h=17 (i) H=21, h=20 (j) H=29,
h=17 (k) H=36, h=18 (l) H=55, h=47
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evolutionary volume ratio er is equal to 0.01, and the
prescribed volume of the final structure is equal to 0.4.

3.1 Only the number of holes is controlled in the HFM

In this example, we deal with topology optimization problem
as shown in (2-a), and the topological optimization problem is
implemented with topological constraints via the HFM, where
the mesh comprises 80 × 60 (xh × yv) unit square elements,
and the allowed maximum number of holes H is 1, 2, 3, 5, 9,
11, 13, 17, 21, 29, 36, or 55. The optimized results without

sensitivity filtering (filter radius equal to 1) and with sensitiv-
ity filtering (filter radius equal to 1.2) are shown in Figs. 7 and
8, respectively. Table 1 shows the numbers of holes in the

a) b) c)

d) e) f)

g) h) i)

j) k) l)

Fig. 8 Results of the HFM without controlling unit-area holes. The filter
radius is equal to 1.2; the mesh comprises 80 × 60 unit square elements;
and the maximum number of holes H is equal to 1, 2, 3, 5, 9, 11, 13, 17,
21, 29, 36, or 55. Here, h denotes the number of holes in the optimal

structure. (a) H=1, h=1 (b) H=2, h=1 (c) H=3, h=3 (d) H=5, h=3 (e) H=9,
h=8 (f) H=11, h=10 (g) H=13, h=12 (h) H=17, h=14 (i) H=21, h=16 (j)
H=29, h=5 (k) H=36, h=12 (l) H=55, h=15

Table 1 Numbers of holes in the optimized results corresponding to
Figs. 7 and 8

H 1 2 3 5 9 11 13 17 21 29 36 55

Figure 7 h (r = 1) 0 1 3 5 9 10 11 17 20 17 18 47

Figure 8 h (r = 1.2) 1 1 3 3 8 10 12 14 16 5 12 15

H. Han et al.46



optimized results. It is clearly shown that the HFM can work
well under the constraint of a maximum allowed number of
holes both with and without filtering.

3.2 Pictographic avoidance of the checkerboard
pattern via the HFM

The checkerboard pattern in the 2D case can be heuristically
seen from the presence of holes with an area equal to 1.
According to the theory of the HFM, the checkerboard pattern
phenomenon can be pictographically avoided by controlling

the presence of unit-area holes. For this purpose, we deal with
topology optimization problem as shown in (2-b) and com-
pare its results with those of the original BESO.

As shown in Fig. 9, we tested the ability of the HFM to
eliminate the checkerboard pattern by only filling in holes
with an area equal to 1. Initially, the checkerboard pattern
appears when no filter for sensitivity or density is used. This
corresponds to the case in which the value of the filter radius is
chosen to be 1 (see Fig. 9a). Usually, the checkerboard pattern
can be suppressed by choosing a reasonably large value of the
filter radius, such as 1.2, as shown in Fig. 9c; however, there

a) b)

c) d)

Fig. 9 a, b Results obtained a
using the original BESO method
and b by constraining the
occurrence of unit-area holes
(S∗ = 1) in BESO with the HFM,
with the filter radius equal to 1.
c,d Results obtained c using the
original BESO method and d by
constraining the occurrence of
unit-area holes (S∗ = 1) in BESO
with the HFM, with a filter radius
equal to 1.2. For all examples, the
mesh contains 80 × 60 unit square
elements. (a) Original BESO
mesh=80×60; r=1 (b) BESO with
controling unit hole by HFM
mesh=80×60; r=1 (c) Original
BESO mesh=80×60; r=1.2 (d)
BESO with controling unit hole
by HFM mesh=80×60; r=1.2

a) b)

c) d)

Fig. 10 History of the number of
holes throughout the topological
optimization process
corresponding to the cases shown
in Fig. 9. The vertical axis
represents the number of holes
calculated in real time after each
iteration, and the horizontal axis
represents the iteration number
(a) Original BESO mesh=80×60;
r=1 (b) BESO with controlling
unit hole by HFM mesh=80×60;
r=1 (c) Original BESO
mesh=80×60; r=1.2 (d) BESO
with controlling unit hole by
HFM mesh=80×60; r=1.2
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may exist several holes with an area equal to 1 even when
using sensitivity filtering. Straightforwardly, a filter with a
sufficiently large radius will suppress the checkerboard pat-
tern completely, but this may also change the optimized to-
pology by smearing out thin parts of the structure during the
optimization procedure.

Under condition that the HFM is only used to fill in holes
with an area equal to 1, as shown in Fig. 9 b and d (which
present the optimized results without and with filtering, cor-
responding to filter radii of 1 and 1.2, respectively), the value

of H can be chosen to be much larger than the maximum
number of holes that appear during the optimization process
in standard soft-kill BESO (e.g., H = 200 is much larger than
the peak numbers of holes seen in Fig. 10a and c, which are 59
and 157, respectively), meaning that the constraint h ≤ H is
always satisfied throughout the whole optimization process.
Figure 11 presents the results of a test of the ability of the
HFM to pictographically suppress the checkerboard pattern
under the conditions that the mesh is fixed and the number
of holes is controlled.

a) b) c)

d) e) f)

g) h) i)

j) k) l)

Fig. 11 Results of the HFMwith S∗ = 1 under the conditions that the filter
radius is equal to 1, the mesh contains 80 × 60 elements, and the allowed
maximum number of holes H is equal to 1, 2, 3, 5, 9, 11, 13, 17, 21, 29,
36, or 55. Here, h denotes the number of holes in the optimal structure (a)

H=1, h=0 (b) H=2, h=1 (c) H=3, h=3 (d) H=5, h=5 (e) H=9, h=9 (f)
H=11, h=10 (g) H=13, h=11 (h) H=17, h=13 (i) H=21, h=16 (j) H=29,
h=9 (k) H=36, h=10 (l) H=55, h=35
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Figure 11 corresponds to an example of a cantilever
beam, as shown in Fig. 6, where the design domain con-
sists of 80 × 60 square elements and the filter radius is
equal to 1. The checkerboard pattern appears in Fig. 9a,
which shows the result obtained using the original BESO
method under the same conditions; by contrast, the re-
sults in Fig. 11 are obtained using the HFM with the
maximum number of holes H set equal to 1, 2, 3, 5, 9,
11, 13, 17, 21, 29, 36, or 55. By controlling the occur-
rence of unit-area holes, the checkerboard pattern is

pictographically suppressed. However, while some of
the optimal structures have a reasonable topology, others
do not. These findings reveal that even if the checker-
board pattern can be pictographically suppressed, the rea-
sonability of the optimized structure might not be guar-
anteed merely by using the HFM.

Figure 12 shows more reasonable design results ob-
tained via a combination of sensitivity filtering and the
HFM with control of the occurrence of unit-area holes.
Table 2 lists the numbers of holes in the optimized

a) b) c)

d) e) f)

g) h) i)

j) k) l)

Fig. 12 Results of the HFM with S∗ = 1. The filter radius is equal to 1.2;
the mesh comprises 80 × 60 unit square elements; and the maximum
number of holes H is equal to 1, 2, 3, 5, 9, 11, 13, 17, 21, 29, 36, or 55.
Here, h denotes the number of holes in the optimal structure. a H=1, h=1

b H=2, h=1 c H=3, h=3 d H=5, h=3 e H=9, h=6 f H=11, h=6 g H=13,
h=10 h H=17, h=10 i H=21, h=14 j H=29, h=5 k H=36, h=8 l H=55,
h=11
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results for each corresponding allowed maximum num-
ber of holes H. Figure 13 illustrates the topological
optimization processes of the HFM corresponding to

Fig. 12. Figure 13 shows how the number of holes
varies with the iteration number during topological
optimization.

3.3 Test of using the HFM to mitigate the mesh
dependence and checkerboard pattern phenomena

In this section, we test of using the HFM to mitigate the mesh
dependence and checkerboard pattern phenomena based on
the topology optimization model in (2-b).

a) b) c)

d) e) f)

g) h) i)

j) k) l)

Fig. 13 History of the number of holes in each iteration of topology
optimization corresponding to Fig. 12. The vertical axis represents the
number of holes calculated in real time after each iteration, and the

horizontal axis represents the iteration number. a H=1, h=1 b H=2, h=1
c H=3, h=3 d H=5, h=3 e H=9, h=6 f H=11, h=6 g H=13, h=10 h H=17,
h=10 i H=21, h=14 j H=29, h=5 k H=36, h=8 l H=55, h=11

Table 2 Numbers of holes in the optimized results corresponding to
Figs. 11 and 12

H 1 2 3 5 9 11 13 17 21 29 36 55

Figure 11 h (r = 1) 0 1 3 5 9 10 11 13 16 9 10 35

Figure 12 h (r = 1.2) 1 1 3 3 6 6 10 10 14 5 8 11
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3.3.1 Examples of the HFM under the condition of a fixed
filter radius

Figure 14a shows how the number of holes in the optimized
structure obtained using the original BESO method differs
when the filter radius is 1.2 and the mesh dimensions are
64 × 48, 80 × 60, 96 × 72, 112 × 84, and 128 × 96. This well-
known phenomenon is referred to as mesh dependence.
Figure 14b and c show that the HFM can limit the changes
to the topology under different mesh discretizations. In partic-
ular, the mesh dependence can be limited by imposing a

stringent constraint on the allowed maximum number of
holes, such as H = 3. When the allowed maximum number
of holes H increases, the topology of the structure changes
within a certain range, such as H = 5. Figure 15 shows the
history of the number of holes throughout each topology op-
timization process corresponding to Fig. 14.

Figure 16 shows the capabilities of the HFM without sen-
sitivity filtering. The checkerboard pattern and mesh depen-
dence phenomena can be simultaneously limited by imposing
a rigorous constraint on the allowed maximum number of
holes, such as H = 3. When the allowed maximum number

b)a)

mesh=64×48

mesh=80×60

mesh=96×72

mesh=112×84

mesh=128×96

c)

Fig. 14 Results of a the original BESO method and b,c the HFM with
S∗ = 1, where the filter radius is equal to 1.2 and the mesh contains 64 ×
48, 80 × 60, 96 × 72, 112 × 84, or 128 × 96 unit square elements. The

allowed maximum number of holes H is equal to 3 in (b) and 5 in (c). a
Original BESO b H=3 c H=5
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of holes H = 5, the topology of the structure has changed with-
in a certain range h ≤ 5.

3.3.2 Examples of the HFM under the condition that the filter
radius is defined by a fixed scaling factor

The phenomenon of mesh dependence can be partially miti-
gated by choosing a fixed scaling factor. Figures 17a and 18a
show the performance of the standard BESO method with
different filter radii but a fixed scaling factor for the filter
radius. Figures 17b and c and 18b and c show the performance

of the HFMwith the filter radius when H is chosen to be 3 and
5, respectively.

From Fig. 16c (mesh = 112 × 84), Fig. 17c (mesh = 72 × 54),
and Fig. 18c (mesh = 88 × 66), we can observe that very thin
branches exist in the optimized topologies even with a small
upper bound H on the allowed number of holes. The HFM can
only be used to adjust the number of holes (void subdomain) in
the optimized structure. Therefore, the HFM cannot directly con-
trol the minimal characteristic size of the structure (solid
subdomain). Instead, a sensitivity filter with a reasonable radius
should be applied as an effective method to filter out very thin

b)a)

mesh=64×48

mesh=80×60

mesh=96×72

mesh=112×84

mesh=128×96

c)

Fig. 15 History of the number of holes in each iteration of topology optimization corresponding to Fig. 14. The vertical axis represents the number of
holes calculated in real time after each iteration, and the horizontal axis represents the iteration number. a Original BESO b H=3 c H=5
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branches in the optimal structure. In addition to the filtering
methods, we also recommend using the minimum size control
method (Yang et al. 2019, Zhou et al. 2015) to suppress the
production of very thin branches in optimal structure.

4 Discussion

In this paper, we have proposed the HFM as a method
of filling in holes when the number of holes in an
optimized topological structure exceeds the constraint

on the allowed maximum number of holes. The algo-
rithm checks the number of holes in the structure and
chooses which hole will be filled. Based on the working
principle of the HFM, the user can specify that holes
with a specific area should be filled in (such as holes of
unit area, as done in this paper) and diverse other ap-
proaches. For example, we can order the sequence of
holes based on the hole area during the topological op-
timization process. When the number of holes is greater
than the allowed maximum number of holes H, the
holes will be filled in order from smallest to largest

b)a)

mesh=64×48

mesh=80×60

mesh=96×72

mesh=112×84

mesh=128×96

c)

Fig. 16 Results of a the original BESO method and b,c the HFM with
S∗ = 1 under the conditions that the filter radius is equal to 1; the mesh
contains 64 × 48, 80 × 60, 96 × 72, 112 × 84, or 128 × 96 (xh×yv)

elements; and the allowed maximum number of holes H is equal to 3 or
5. a Original BESO b H=3 c H=5
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c)b)a)

mesh=64×48

r=1.05

mesh=72×54

r=1.1813

mesh=80×60

r=1.3125

mesh=88×66

r=1.4438

mesh=104×78

r=1.7063

mesh=112×84

r=1.8375

mesh=120×90

r=1.9688

Fig. 17 Results of a the original BESOmethod and b,c the HFMwith S∗ = 1, when the allowed maximum number of holes is bH= 3 and cH = 5, with
different mesh sizes. The filter radius is defined by a scaling factor of 21/1280 relative to the length of the horizontal side of the design domain
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c)b)a)

mesh=64×48

r=1.2

mesh=72×54

r=1.35

mesh=80×60

r=1.5

mesh=88×66

r=1.65

mesh=104×78

r=1.95

mesh=112×84

r=2.1

mesh=120×90

r=2.25

Fig. 18 Results of a the original BESOmethod and b,c the HFMwith S∗ = 1, when the allowed maximum number of holes is bH= 3 and cH = 5, with
different mesh sizes. The filter radius is defined by a scaling factor of 3/160 relative to the length of the horizontal side of the design domain
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until the constraint on the number of holes is satisfied.
Through this method, we can indirectly avoid an opti-
mized topology with many tiny holes. However, this
method alone cannot guarantee a reasonable solution.

The BESO method has the feature that the solution is
binarized in each iteration of topology optimization. To
enable the use of the HFM, as shown in this paper, it
might also be necessary to binarize the design variables
in each iteration of the SIMP method. Therefore, if we
can present a unified criterion for binarizing the design
variables that is also compatible with the SIMP method,
the HFM can also be used to constrain the number of
holes for SIMP optimization.

The numerical instability phenomenon of mesh depen-
dence can be mitigated under the condition that the maximum
number of holes H is set to an appropriately small value.
Numerical examples also show that if an appropriately large
filter radius is chosen, then the HFM can suppress the mesh
dependence within a wide range of the maximum number of
holes H.

Based on the numerical examples presented in Section 3, it
seems that an excessively stringent constraint on the allowed
maximum number of holes, such as H < 3, will result in poor
convergence. The results also suggest that the allowed maxi-
mum number of holes H should be chosen to be a reasonably
large value at the beginning of optimization and then decreased
during the optimization procedure. If the initial constraints are
too tight, the optimization may converge to a poor solution.

Since both the digital Gauss-Bonnet formulation, which is
used to calculate the number of holes (or handles, in 3D), and
the burning method, which is used to calculate the areas of the
holes (or the volumes of voids), can also be implemented for a
3D structure, the proposed HFM for the 2D case can optimis-
tically be extended to the 3D case. Such an extension deserves
considerable further research work to determine the imple-
mentation details.

5 Conclusion

The HFM based on the soft-kill BESO method is proposed to
achieve structural topology optimization while strictly satisfy-
ing an inequality constraint on the allowed maximum number
of holes throughout the whole optimization procedure. The
HFM can pictographically suppress the checkerboard pattern
phenomenon under the constraint that the area of any hole must
be larger than 1 (S∗ = 1 in (2-b)). The mesh dependence phe-
nomenon can be mitigated by imposing a very tight constraint
on the allowed maximum number of holes. Numerical exam-
ples reveal that the performance of the HFM is reliable. Based
on these features, even a practitioner who is not familiar with
topology optimization can use the HFM in combination with
filtering to directly limit the complexity of the topology of an

optimized structure. The current implementation of the HFM
for use in combinationwith an optimization algorithm is limited
to the benchmark case of performing a two-dimensional opti-
mization of a structure while minimizing its compliance. The
extension of the current version of the HFM to corresponding
benchmark examples in three dimensions will be more chal-
lenging and will be further studied in the future.

Acknowledgments The authors are grateful to Yimin Xie and Xiaodong
Huang for providing the MATLAB codes for BESO. The authors thank
Prof. Xianfeng David Gu (Stony Brook University) for valuable discus-
sions about algebra topology.

Funding This research was funded by the National Science Foundation
of China under grant no. 51675506 and under National Science and
Technology Major Project 2017ZX10304403.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Replication of results The original Soft-BESO MATLAB code by
Yimin Xie and Xiaodong Huang can be downloaded at http://www.isg.
rmit.edu.au.

The results presented in Section 3 were obtained via the HFM using a
MATLAB function defined as follows:

Soft_BESO_HFM (xh, yv, V, r, er, H, flag).
The complete MATLAB code is given as an Appendix file.

Nomenclature A1, The set consisting of all elements of a connected
structure; Ai, The i-th set of solid elements that belong to a connected
structure; b1, A solid element; B, The set of solid elements; c, The opti-
mization objective; C, The set consisting of solid elements connected by
an edge to b1 or an element of D; D, The set consisting of solid elements
included in both C and B; er, The evolutionary volume ratio; E1, The
Young’s modulus of the solid material; F, The force vectors; g, The
number of holes in the connected structure;G,The cell consisting of holes
in order of area size from largest to smallest, consisting of finite elements;
Gj, The hole at the j-th position in G; h, The number of holes in the
topological structure in each iteration; h0, The peak value of the number
of holes during the topology optimization process; H, The allowed max-
imum number of holes in the optimal structure as defined by the user; k0,
The element stiffness matrix for an element with unit Young’s modulus;
K, The global stiffness matrix;Mi, (i = 4, 2) The set of digital points with i
neighboring edges; n, The number of connected structures in the current
iteration of topology optimization; N, The number of elements used to
discretize the design domain; p, The penalization power; r, The filter
radius, relative to the unit length; Si, The area of the i-th hole; S∗, A
prescribed minimum area of the hole in final structure. In this paper, we
set S∗ = 1; ue, The element displacement vector; U, The global displace-
ment;VA1,The set consisting of void elements connected to each other by
an edge; VA, The cell consisting of void elements, where each element of
VA is a hole; vb1, A void element; VB, The set consisting of all void
elements; VC, The set consisting of void elements connected by an edge
to a void element of VD or vb1; VD, The set consisting of void elements
included in both VC and VB; Ve, The volume of an individual element;
V*, The prescribed volume of the final structure; xh, The numbers of
elements in the horizontal direction of design domain; yv, The numbers
of elements in the vertical direction of design domain; ρ, The design
variables; ρe, The design variable of the e-th element; ρmin, A fixed value
equal to 0.001
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