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ABSTRACT: We present analytic expressions for the electronic
contributions to the linear conductivity σ3d

(1)(ω) and the third-order
optical conductivity σ3d

(3)(ω1, ω2, ω3) of three-dimensional massless
Dirac Fermions, the quasi-particles relevant for the low energy
excitation of topological Dirac and Weyl semimetals. Although
there is no gap for massless Dirac Fermions, a finite chemical
potential μ can lead to an effective gap parameter, which plays an
important role in the qualitative features of interband optical
transitions. For gapless linear dispersion in three dimensions, the
imaginary part of the linear conductivity diverges as a logarithmic
function of the cutoff energy, while the real part is linear, with a photon frequency ω as ℏω > 2|μ|. The third-order conductivity
exhibits features very similar to those of two-dimensional Dirac Fermions, that is, graphene, but with the amplitude for a single Dirac
cone generally 2 orders of magnitude smaller in three dimensions than in two dimensions. There are many resonances associated
with the chemical-potential-induced gap parameters and divergences associated with the intraband transitions. The details of the
third-order conductivity are discussed for third-harmonic generation, the Kerr effect and two-photon carrier injection, parametric
frequency conversion, and two-color coherent current injection. Although the expressions we derive are limited to the clean limit at
zero temperature, the generalization to include phenomenological relaxation processes at finite temperature is straightforward and is
presented. In contrast with 2D materials, the bulk nature of materials that host three-dimensional Dirac Fermions allows for the
possibility of enhancing nonlinear signals by tuning the sample thickness; thus, broad applications of such materials in nonlinear
photonic devices can be envisioned.

KEYWORDS: Dirac semimetals, gapped graphene, third-harmonic generation, Kerr effect, parametric frequency conversion,
two-color coherent current injection, length gauge

Two-dimensional (2D), massless Dirac Fermions (DFs)
have been investigated extensively in condensed matter

systems since their first experimental realization in graphene,
and their properties are significantly different than those of
Fermions in the more usual parabolic bands.1,2 Their attractive
optical properties3 include broadband linear optical absorption
and the ability to use the chemical potential to tune both
plasmon resonances and an extremely strong nonlinear optical
response.4 The strong nonlinear response makes graphene a
potential candidate for integration in photonic devices5−7 as a
source of nonlinear functionality, and it has been the focus of a
large number of experimental8,9 and theoretical10−18 studies
over the past decade. Experiments have explored different
nonlinear phenomena, including third-harmonic generation
(THG), the Kerr effect and two-photon carrier injection,
parametric frequency conversion (PFC), and two-color
coherent current injection (CCI); the corresponding nonlinear
coefficients have been extracted for different photon energies
and chemical potentials. Theoretical studies have been mainly
at the level of independent particle approximation and have
presented perturbative expressions and numerical simulations.

Recently, many-body effects19−21 have been shown to play a
significant role in the nonlinear optical response. And in the
development of theories of topological materials, 2D massless
DFs have been shown to determine the properties of the low-
energy excitation of surface states of topological insulators,
despite the small energy range over which the linear dispersion
approximation is valid.
In a two-band model for 2D DFs, a mass can be introduced.

The resulting dispersion relation can be realized around the
band edge of the gapped graphene or around the band edge of
a monolayer of BN or MoS2, and in other 2D materials. The
optical nonlinearities of 2D massive DFs have also been
investigated both experimentally and theoretically. Jafari22
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presented a theory for THG using a Feynman diagrammatic
technique, describing the light−matter interaction in the
framework of a vector potential. However, in the limit of
vanishing mass, the result does not converge to the results of
other studies.11 Cheng et al. investigated various nonlinear
effects both by numerically solving the equations of motion13

and by approximation from the results of gapped graphene
under a perpendicular magnetic field.23 Recently, we derived
analytic expressions for the third-order conductivities of
gapped graphene24 at general frequencies, following earlier
work on graphene.12

There have also been a host of recent studies focused on the
prediction and discovery of three-dimensional (3D) Dirac and
Weyl semimetals,25−32 where the low-energy excitations can be
described by DFs with a 3D wave vector. As an analogue of 2D
massless DFs, 3D massless DFs32 possess gapless linear
dispersion and an interesting band topology around the
Dirac point, which leads to extraordinary optical properties. As
well, the chiral anomaly in Weyl semimetals can be probed
with the presence of both the electric field and magnetic
field.33 The nonlinear optical properties of 3D massless DFs
have also attracted attention.34−40 Experimentally, huge
nonlinear optical coefficients41 have been observed, although
probably at frequencies much higher than those at which the
linear dispersion approximation is valid. There are interesting
recent theoretical predictions42−44 for the Kerr effect and
THG, both within the framework of the Boltzmann equation
and in a treatment, including intraband and interband
transitions. In these studies, the focus was on frequencies in
the terahertz regime, and possible applications in terahertz
plasmonics have been investigated,45 including a promising
proposal for extinction modulations.42 However, the light−
matter interaction was described in a velocity gauge, and
additional care may be required to confirm that no nonphysical
divergences have been induced by band truncation; a
treatment based on the length gauge,46,47 where such
difficulties are not present, is clearly in order. Further, in
order to extend the application of these materials to various
nonlinear optical scenarios, it would be helpful to understand
the general frequency dependence of the third-order
conductivity, especially in a comparison with that of graphene;
this has not yet been done.
In this work, we derive analytic expressions for linear and

third order optical conductivities of 3D massless DFs. Our
strategy is based on employing earlier results found for the
linear and nonlinear optical response of gapped graphene. In
fact, we show that the response coefficients for 3D massless
DFs can be written as an integral over the results for gapped
graphene with different gaps. Our treatment includes the
intraband and interband optical transitions in a framework
where the light−matter interaction is described in the length
gauge. Our expressions for the third-order conductivities
describe a general input frequency dependence for the clean
limit at zero temperature. After analyzing the structures of the
conductivities, we discuss in detail the coefficients for THG,
the Kerr effect and two-photon carrier injection, PFC, and two-
color CCI. To better understand the physics of the nonlinear
processes, comparisons with that of graphene are made. Our
expressions can be used to generate input nonlinear parameters
for evaluating the performace of various photonic devices,
including some optical modulators42 and frequency generation
devices.48

We organized the paper as follows: in “Models”, we
summarize the symmetries of the frequency dependence of
the linear and nonlinear conductivities of 2D massive DFs. In
the next section, we describe how to construct the conductivity
of 3D massless DFs from the conductivity of 2D massive DFs
and present the analytic expressions for linear conductivity and
third-order conductivity; in “Results”, we discuss the details of
the conductivities for different optical phenomena, including
the linear optical response, THG, the Kerr effect and two-
photon carrier injection, PFC, and two-color CCI; in
“Conclusion and Discussion” we discuss and conclude,
indicating how the extension of our results to include finite
temperature and a phenomenological description of relaxation
processes can easily be implemented.

■ MODELS
Conductivities for 2D Dirac Fermions. Two-dimen-

sional massive DFs in one Dirac cone can be described by the
Hamiltonian

H v( , )d z2 Fκ κ σ σΔ = ℏ · + Δ (1)

where vF is the Fermi velocity, σ = σxx̂ + σyŷ + σzz ̂ has its
components as Pauli matrices, κ = κxx̂ + κyŷ is a 2D wave
vector, and Δ is a mass parameter to give a gap 2|Δ| at the
Dirac point. Depending on the material, there can exist
multiple Dirac cones, and for different materials, the model
Hamiltonian can take in different forms. For example, the low
energy excitations of gapped graphene are described by the
Hamiltonian

H v( , ) ( )y x x y zgg; Fκ τκ σ κ σ σΔ = ℏ − + Δτ (2)

where τ = ± is a valley index for two different Dirac cones.
For such Hamiltonians, we consider the linear optical

conductivity tensor σ(1);da(ω) and third order optical
conductivity tensor σ(3);dabc(ω1, ω2, ω3), where the Roman
letters d, a, b, and c refer to the Cartesian directions, and ω and
ωi refer to the optical frequencies. The second-order response
vanishes in the dipole approximation, as we discuss below. The
results of gapped graphene have been given earlier24 and will
be summarized in the following.

Symmetry Properties of Conductivities for Two-Dimen-
sional Massive Dirac Fermions. We denote the conductivities
for a 2D Dirac cone by σ2d

(1);da(ω) and σ2d
(3);dabc(ω1, ω2, ω3). The

Hamiltonian H2d(κ, Δ) satisfies the rotational symmetry
condition

U H R U H( , ) ( , )d d2 2κ κΔ = Δθ θ θ
†

(3)

where θ is a rotation angle about the z axis, Uθ = cos θ/2 − i
sin θ/2σz is a unitary transformation acting on the spinors, and

( )R cos sin
sin cos

θ θ
θ θ= −θ is rotation operation acting on κ. The

rotational symmetry determines that the linear conductivity
includes only two independent components, that is, the
diagonal component σ2d

(1);xx and the off-diagonal component
σ2d
(1);xy. The other nonzero components can be found from

,d
xx

d
yy

d
xy

d
yx

2
(1);

2
(1);

2
(1);

2
(1);σ σ σ σ= = − (4)

The off-diagonal components are nonzero because the Berry
curvature at the Dirac point behaves as the vector potential of a
magnetic monopole, and can contribute to a Hall conductivity.
For the third-order conductivity, there are in all six
independent nonzero components, which can be taken to be
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σ2d
(3);xxyy, σ2d

(3);xyxy, σ2d
(3);xyyx, σ2d

(3);yxyy, σ2d
(3);yyxy, and σ2d

(3);yyyx. The other
nonzero components are then given by

d
xxxx

d
xxyy

d
xyxy

d
xyyx

2
(3);

2
(3);

2
(3);

2
(3);σ σ σ σ= + + (5)

d
yxxx

d
yxyy

d
yyxy

d
yyyx

2
(3);

2
(3);

2
(3);

2
(3);σ σ σ σ= + + (6)

and

,d
xxxx

d
yyyy

d
yxxx

d
xyyy

2
(3);

2
(3);

2
(3);

2
(3);σ σ σ σ= = − (7)

,d
xxyy

d
yyxx

d
yxyy

d
xyxx

2
(3);

2
(3);

2
(3);

2
(3);σ σ σ σ= = − (8)

,d
xyxy

d
yxyx

d
yyxy

d
xxyx

2
(3);

2
(3);

2
(3);

2
(3);σ σ σ σ= = − (9)

,d
xyyx

d
yxxy

d
yyyx

d
xxxy

2
(3);

2
(3);

2
(3);

2
(3);σ σ σ σ= = − (10)

For a single Dirac cone, the independent components σ2d
(1);xy,

σ2d
(3);yxyy, σ2d

(3);yyxy, and σ2d
(3);yyyx are antisymmetric with respect to

{x ↔ y}, while the others, σ2d
(1);xx, σ2d

(3);xxyy, σ2d
(3);xyxy, and σ2d

(3);xyyx

are symmetric; we refer to these two different classes of tensor
components as “antisymmetric” and “symmetric” components,
respectively. Due to inversion symmetry

H H( , ) ( , )z d z d2 2κ κσ σ− Δ = Δ (11)

and there is no second order response in the dipole
approximation.
For 2D DFs, the sign of the mass parameter determines the

chirality, and the two different possibilities are connected
through

U H R U H( , ) ( , )m d m m d2 2κ κΔ = −Δ†
(12)

with Um = i/√2(σx − σy) and ( )R 0 1
1 0i = −

− . This relation

gives σ2d
(n);dab···(−Δ) = σ2d

(n); d̅ a ̅ b̅···(Δ), where the bar of a Roman
letter means d̅ = y, x for d = x, y. Furthermore, utilizing the
consequences of rotational symmetry, we find that all
symmetric (antisymmetric) components are even (odd)
functions of Δ.
Conductivities of Gapped Graphene. We denote the

conductivities that follow from the Hamiltonian Hgg;τ by
σgg;τ
(1);da(ω) and σgg;τ

(3);dabc(ω1, ω2, ω3). In the τ valley (τ = ±1), the
Hamiltonian connects to H2d(κ, Δ) through

H H R( , ) ( , )dgg; 2κ κΔ = Δτ τ (13)

with an orthogonal matrix ( )R 0
1 0

τ= −τ . From eq 13, the

symmetric components satisfy σgg;τ
(n);da···(Δ) = σ2d

(n); d̅a·̅··(Δ), and
antisymmetric components satisfy σgg;τ

(n);da···(Δ) = τσ2d
(1); d̅a·̅··(Δ).

Therefore, for gapped graphene only the symmetric
components survive, and they are

( ) 2 ( ) 4 ( )gg
xx xx

d
xx(1);

gg;
(1);

2
(1);∑σ ω σ ω σ ω= =

τ
τ

(14)

where the prefactor 2 comes from the spin degeneracy in
gapped graphene. Similarly, the third-order conductivities are

( , , ) 4 ( , , )dabc
d

dabc
gg
(3);

1 2 3 2
(3);

1 2 3σ ω ω ω σ ω ω ω= (15)

for dabc = xxyy, xyxy, and xyyx.
The optical conductivities of gapped graphene under the

linear dispersion approximation have been studied, and
analytical expressions for them have been obtained.24 For

later use, we list the expressions in the clean limit. The linear
conductivity is given by

i E
E( )

4 4 ( )
( )

( ; )xx c
cgg

(1); 0
2 2

2σ ω
σ
π ω

ω
ω

ω=
ℏ

− Δ + ℏ
ℏ

ℏ
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ (16)

Here σ0 = e2/4ℏ is a universal conductivity, Ec = max{|Δ|,|μ|} is
an effective gap parameter, and

E
E
E

i E( ; ) ln
2
2

( 2 )c
c

c
cω

ω
ω

πθ ωℏ =
ℏ +
ℏ −

+ |ℏ | −
(17)

with θ(x) being the usual step function. For the third order
conductivity, the cyclic permutation symmetry on {aω1, bω2,
cω3} of σgg

(3);dabc(ω1, ω2, ω3) gives

( , , ) ( , , ) ( , , )xxyy xyxy xyyx
gg
(3);

1 2 3 gg
(3);

2 1 3 gg
(3);

2 3 1σ ω ω ω σ ω ω ω σ ω ω ω= =
(18)

The third order conductivity is then

i
F E

F E

F E

F E

F E

F E

F E

( ) ( , , )
( ; , , ) ( ; ( ))

( ; , , ) ( ; ( ))

( ; , , ) ( ; ( ))

( ; , , ) ( ; ( ))

( ; , , ) ( ; )

( ; , , ) ( ; )

( ; , , ) ( ; ).

xxyy
3

1
gg
(3);

1 2 3

1 1 2 3 c 1 2 3

2 1 2 3 c 2 3

3 1 2 3 c 1 3

3 1 3 2 c 1 2

4 1 2 3 c 1

5 1 2 3 c 2

5 1 3 2 c 3

σ σ ω ω ω
ω ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω

ω ω ω ω

ω ω ω ω

= Δ ℏ ℏ ℏ ℏ + +

+ Δ ℏ ℏ ℏ ℏ +

+ Δ ℏ ℏ ℏ ℏ +

+ Δ ℏ ℏ ℏ ℏ +

+ Δ ℏ ℏ ℏ ℏ

+ Δ ℏ ℏ ℏ ℏ

+ Δ ℏ ℏ ℏ ℏ

−

(19)

with σ3 = σ0(ℏvFe)
2/π. The coefficients Fi are given by

F( ; , , ) ( , , ) ( , , ) ( , , )i i i i1 2 3 0 1 2 3
2

2 1 2 3
4

4 1 2 3Δ ϵ ϵ ϵ = ϵ ϵ ϵ + Δ ϵ ϵ ϵ + Δ ϵ ϵ ϵ
(20)

All the expressions of ij are given in “Methods”. By setting Δ
= 0, we get the third-order nonlinear conductivity for graphene
as

( , , ) ( , , )xxyy xxyy
gh
(3);

1 2 3 gg
(3);

1 2 3
0

σ ω ω ω σ ω ω ω=
Δ= (21)

We briefly discuss the asymptotic expression of these
conductivities as Δ → ∞. In that limit, Ec = max{|Δ|,|μ|} =
Δ, and all involved photon energies satisfy ℏωi/Ec → 0. As Δ
→ ∞, a direct expansion in the small quantities ℏωi/Δ gives

i( )
4
3

xx
gg
(1);

0σ ω σ ω
π

→ − ℏ
Δ (22)

i( , , )
2 ( )

45
xxyy

gg
(3);

1 2 3 3
1 2 3

5σ ω ω ω σ
ω ω ω

→ −
ℏ + +

Δ (23)

The effective gap parameters Ec in eq 19 appear only in
functions of , which determine possible resonances related to
the interband transitions. Considering the photon energies
involved in these functions, we note that the resonances can be
associated with one-photon, two-photon, and three-photon
processes. Both the one-photon and three-photon related
resonances are similar to that of the linear conductivity, while
the two-photon related resonance shows a different behavior.
Since F2(Δ; ϵ1, ϵ2, ϵ3) = 0 for ϵ2 + ϵ3 = 2Δ and F3(Δ; ϵ1, ϵ2, ϵ3)
= 0 for ϵ1 + ϵ3 = 2Δ, the two-photon related resonances
disappear for an undoped system.

Conductivities for Three-Dimensional Massless Dirac
Fermions. With the symmetry properties of the conductivities
for 2D massive DF in one Dirac cone in hand, and with the
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analytic expressions of the conductivities for 2D gapped
graphene already determined, we can now turn to the optical
response of 3D massless DF. In this work, we focus on the
optical response of an isotropic 3D Dirac cone, although more
generally, of course, Dirac cones can be anisotropic; this is
briefly discussed in “Methods”. For 3D massless DFs in a single
isotropic Dirac cone, the Hamiltonian43 is

k kH v( )d3 F σ= ℏ · (24)

where k = kxx̂ + kyŷ + kzz ̂ is a three-dimensional wave vector.
The two band energies are ε±k = ±ℏvF|k|, which touch at k = 0,
the Dirac point.
It is the conductivities following from this Hamiltonian in eq

24 that we study here, and we denote them by σ3d
(1);da(ω) and

σ3d
(3);dabc(ω1, ω2, ω3). The Hamiltonian H3d(k) is spherical
symmetric and so the only independent nonzero component of
the linear conductivity is σ3d

(1);xx(ω); for the third-order
conductivity, the independent nonzero components are the
symmetric ones σ3d

(3);xxyy, σ3d
(3);xyxy, and σ3d

(3);xyyx. All other
components can be obtained either by

d
xxxx

d
xxyy

d
xyxy

d
xyyx

3
(3);

3
(3);

3
(3);

3
(3);σ σ σ σ= + + (25)

or by permutation of the directions {x, y, z}. Due to the cyclic
permutation on {aω1, bω2, cω3} of σ3d

(3);dabc(ω1, ω2, ω3), and all
nonzero components can be written in terms of σ3d

(3);xxyy(ω1, ω2,
ω3), which we identify in the following. For a single 3D Dirac
cone, the second-order conductivity has nonzero components
σ3d
(2);xyz(ω1, ω2) = −σ3d(2);xzy(ω1, ω2) and those obtained by
permutation of the directions {x, y, z}. In Dirac semimetals, the
total second order responses vanish due to the cancellation
between the inversion symmetry related Dirac cones, while
they remain in Weyl semimetals without inversion symmetry.
However, since any of these nonzero components involves all
three directions, the procedure presented below for linear and
third-order response functions cannot be applied to second-
order response functions.
The Hamiltonian for 3D massless DFs is connected to that

of 2D massive DFs through the relation H3d(κ + kzz)̂ = H2d(κ,
ℏvFkz). In the calculation of both the linear and nonlinear
conductivities in the independent particle approximation, the
full response arises as the sum of the responses of each
independent particle, identified initially by its k. Thus, the
response of 3D massless DFs to electric fields in the x and y
directions is equivalent to an ensemble of responses of 2D
massive DFs with different gap parameters. In this manner, the
linear conductivity can be written as

dk
v k

v
d

v
d

2
( )

1
( )

1
4

( )

d
xx z

d
xx

z d
xx

xx

3
(1);

2
(1);

F
F 0

2
(1);

F 0
gg
(1);

∫ ∫

∫

σ
π

σ
π

σ

π
σ

= ℏ =
ℏ

Δ Δ

=
ℏ

Δ Δ

∞

∞

(26)

where we have used σ2d
(1);xx(Δ) = σ2d

(1);xx(−Δ) for the second
equal sign and eq 14 for the third equal sign. Similarly, we have

v
d

1
4

( )d
xxyy xxyy

3
(3);

F 0
gg
(3);∫σ

π
σ=

ℏ
Δ Δ

∞

(27)

Once these are determined, all other nonvanishing compo-
nents of the conductivities for 3D massless DFs follow from
the symmetry properties of those tensors.
Using the results for the conductivity of gapped graphene in

eqs 16 and 19, the integration can be done analytically, and the
result is given in “Methods”. Because σgg

(1);xx ∝ Δ−1 in eq 22, the

integration in eq 26 diverges; this is associated with the
assumption that the linear dispersion relation continues for all
k, no matter how large. Taking a cutoff energy EA as the upper
limit of the integration, to model the onset of more realistic
band dispersion, the linear conductivity of three-dimensional
Dirac Fermions in one cone is

ie
v

E

ie
v

( ) ( )
12

ln
2

,

( )
24

12 5( ) 3( ) ( ; )
3

d
xx

d
xx

d
xx

3
(1);

3 ,reg
(1);

2

2 2
F

A

3 ,reg
(1);

2

2
F

2 2 2

σ ω σ ω ω
π μ

σ ω
π

μ ω ω μ ω
π ω

= − ℏ
ℏ | |

=
ℏ

| | − ℏ + ℏ | | ℏ
ℏ (28)

where the function is given by

w w
i w w

w

( ; ) ln 4 ln
sgn( ) ( 2 )

2 2 2μ μ μ
π θ μ

μ

| | = | − | −
− | | − | |

=
| |

i
k
jjjj

y
{
zzzz

(29)

where

x x i x x( ) ln 4 sgn( ) ( 2)2 π θ= | − | − − (30)

with sgn(x) the sign function. It is worth noting that EA is not
an cutoff energy for the energies of the DFs, but rather for the
gap parameter; hence, the expression in eq 28 is not exactly the
same as those in literature that involve an energy cutoff.45,49,50

However, our result for the real part of the conductivity, which
is the physically meaningful term, is consistent with earlier
results in literature.
For the third-order conductivity, the integration converges

due to σ(3);xxyy ∝ Δ−5 in eq 23. Therefore, the third-order
conductivity of 3D Dirac Fermions is insensitive to the energy
cutoff, and it is

iv e
( , , )

16
8

45

( , , ) ( ; ( ))

( , , ) ( ; ( ))

( , , ) ( ; ( ))

( , , ) ( ; ( ))

( , , ) ( ; )

( , , ) ( ; )

( , , ) ( ; )

d
xxyy

3
(3);
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where i is given by
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Note that the coefficients i in σ3d
(3);xxyy satisfy
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■ RESULTS
Since 3D massless DFs form an isotropic system, the current
density response can be written as
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where Eω = ∫ dtE(t)eiωt is the Fourier transform of the electric
field. In this section, we consider the nature of this response for
different optical phenomena.
Several General Properties of the Conductivities. We

begin by discussing some general properties of the expressions
for the linear and third-order conductivities in eqs 28 and 31.

1. For all the nonlinear phenomena we discuss, the third-
order conductivity of 3D massless DFs exhibits features
very similar to that of graphene,11,12,24 as we show
below, including the appearance of resonances and
divergences. In 3D massless DFs, the conductivities
involve the function ( ; )μ ω| | ℏ , instead of the function

( ; )μ ω| | ℏ relevant for graphene. Both functions
describe the interband optical transition, but they are
weighted by different densities of states. However, there
are always singularities at |ℏω| = 2|μ|, around which the
real part diverges logarithmically and the imaginary part
shows a step function. Similar to the frequency
dependence of the nonlinear response of graphene, the
third-order conductivity of 3D massless DFs involves
photon energies ℏωi, ℏωi + ℏωj, and ℏ(ω1 + ω2 + ω3),
which appear in the second argument of the function

( ; )μ ω| | ℏ . Thus, when any of these energies matches
2|μ|, a resonant interband transition may appear. When
any of these energies is zero, an intraband divergence
may appear and lead to a divergent conductivity value in
the clean limit at zero temperature.

2. Scaling all energies by the chemical potential, the third-
order conductivity can be written as
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where the dimensionless function S3d
(3);dabc can be

obtained from σ3d
(3);dabc. To better understand the third-

order optical response of 3D massless DFs, we can
compare it to that of graphene.11 If we introduce an
effective bulk conductivity of graphene by associating a
thickness deff ≈ 3.3 Å with a graphene sheet, that
effective bulk third-order conductivity σgh;eff

(3);dabc can be
obtained from eq 21 by σgh;eff

(3);dabc = σgh
(3);dabc/deff, and it can

be written as
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where Sgh
(3);dabc is a dimensionless function11 that can be

obtained from σgh
(3);dabc. Besides the different detailed

structures given in the dimensionless functions S3d
(3);dabc

and Sgh
(3);dabc, the two conductivities above also show a

different dependence on the Fermi velocity vF and the
chemical potential |μ|. Their ratio gives

d
v

S

S4
d

xxyy

xxyy
d

xxyy

xxyy
3
(3);

gh;eff
(3);

eff

F

3
(3);

gh
(3);

σ

σ
μ

π
=

| |
ℏ (37)

The prefactor is inversely proportional to the Fermi
velocity vF and proportional to the chemical potential |μ|.
By taking the Fermi velocity to be that of graphene (vF =
106 m/s), the prefactor is about 0.04 for |μ|= 1 eV.
Therefore, the third optical conductivity of 3D massless
DFs in one Dirac cone is about 2 orders of magnitude
smaller than the corresponding effective bulk third order
conductivity of graphene. Note that σ3d

(3);dabc is for one
Dirac cone only; if there exists degeneracy g of the Dirac
cones, the third order conductivity σ3d

(3);dabc is g times as
large.

3. When all involved frequencies satisfy ℏωi/|μ| ≪ 1, the
third-order nonlinear response in a doped Dirac
semimetal should be mostly due to the intraband
transitions. This limit can be obtained by taking ℏωi
→ xℏωi and x → 0, and we find an approximate
conductivity is given by
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It is independent of the chemical potential |μ|, showing a
different dependence on that quantity than that of
graphene (∝ |μ|−1). Comparing this conductivity to the
effective bulk conductivity of graphene, we find
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Taking the Fermi velocity to be that of graphene (vF =
106 m/s), for |μ| = 1 eV, the ratio is about 0.042.
The expression in eq 38 can be used to evaluate the

susceptibility for THG of Cd3As2
51 in the terahertz

regime directly. Taking a typical frequency f = 0.8
THz,51 with ω = 2πf, and an anistropic Fermi velocity43

(vF
x, vF

y , vF
z) = (1.28, 1.30, 0.327)vF, the susceptibility is

obtained from the conductivity (see “Method”) as

v
v v v v

g
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with the cone degeneracy gc = 4. It gives χ3d
(3);xxxx ≈

χ3d
(3);yyyy ≈ 2.34 × 10−9 m2/V2 and χ3d

(3);zzzz ≈ 0.009 × 10−9

m2/V2. The x and y components are at the same order of
magnitude of the experimental value ∼10−9 m2/V2.

4. In the undoped limit as the chemical potential μ → 0,
the conductivities depend only on the frequencies. In
this limit, the third-order conductivity of graphene is
very simple:11 σ(3);xxyy ∝ [(ω1 + ω2)(ω2 + ω3)(ω3 +
ω1)(ω1 + ω2 + ω3)]

−1. For 3D massless DFs, the
expression for the third-order conductivity in this limit is
more complicated. Although the function ( ; )μ ω| | ℏ
includes a term ln μ2, it does not lead to any divergence
because the prefactor vanishes due to eq 33; thus, the
conductivity itself has no singularity at |μ| = 0 and is well
behaved as μ → 0.

5. Considering the dependence on the Fermi velocity vF,
the conductivities of graphene give σgh;eff

(n) ∝ vF
n−1, while

those of 3D massless DFs give σ3d
(n) ∝ vF

n−2. For graphene,
the universal conductance appears in the linear optical
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response.52 For Dirac Fermions, the response independ-
ent of the material parameter should occur at second
order, and in our simple model, this is absent. But for
Weyl semimetals, where inversion symmetry is broken,
the universal optical response does appear in the circular
photogalvanic effect.33,37

Linear Optical Response. For 3D massless DFs, the cutoff
energy appears only in the imaginary part of the linear
conductivity. The real part in the clean limit is given by

e
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(41)

which is proportional to the frequency ω. This leads to a
frequency independent imaginary part of the susceptibility
Im[χ(ω)] = Re[σ3d

(1);xx(ω)]/(ωϵ0) = e2/(24πℏvFϵ0) for ℏω >
2|μ|, which is inversely proportional to the Fermi velocity vF.
Again, taking the Fermi velocity to be the same as the value for
graphene, vF = 106 m/s, the absorption coefficient is Im[χ(ω) ]
≈ 0.36.
In the low-frequency regime, the term involving the cutoff

energy may contribute little due to its prefactor ℏω, and the
main contribution comes from the Drude term
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It is proportional to the square of the chemical potential |μ|2,
following the dependence of the density of states. The term
σ3d,reg
(1);xx(ω) can be rewritten as
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with a dimensionless function

S x
i x x x

x
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π
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(44)

Its real and imaginary parts are plotted in Figure 1. Around x =
2, there appears a logarithmic divergence in its imaginary part
and a step change in its real part. For x > 2, the real part is
linearly dependent on x.

Third-Harmonic Generation. The third-order conductiv-
ity for THG satisfies σ3d

(3);xxyy = σ3d
(3);xyxy = σ3d

(3);xyyx = σ3d
(3);xxxx/3.

The quantity S3d
(3);xxyy(x, x, x) is given by
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Each term is associated with one optical transition involving
photon energy nℏω (n = 1, 2, or 3). Similar to the expression
for the response tensor describing THG in graphene, the
prefactors of these terms have different signs, indicating the
existence of interference between these transitions. The real
part is
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For x > 2, Re[S3d
(3)(x, x, x)] = 0 gives a complete cancellation

due to interference. For graphene, the cancellation is not
complete.8,11 In Figure 2, we plot the spectra of S3d

(3);xxyy and
Sgh
(3);xxyy. They show very similar amplitudes and structures.

We close the summary of our results by presenting the
conductivity in the limit of μ → 0. It corresponds to taking x
→∞ in S3d

(3);xxyy(x, x, x); thus, the real part is fully canceled and
the imaginary part is given by
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Finally, we compare our results with those obtained in a
velocity gauge using Floquet states by Zhang et al.43 and
Zhong et al.44 At zero temperature, the real part of their results
for one Dirac cone gives
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with the imaginary part obtained using Kramers−Kronig
relations.43 The results differ from ours in the first two factors
for one and two photon resonant processes, and the difference
may arise from the choice of the velocity or length gauge to
describe the light−matter interaction. Considering the well-
known problems that can result using the velocity gauge, a
further investigation is required to clarify what causes the
different results of these two methods.

Kerr Effect and Two-Photon Absorption. For a
monochromatic laser beam, another important optical non-
linearity involves the corrections to the linear response due to
the Kerr effect and two-photon absorption, which are
described by the tensor σ3d

(3);dabc(−ω, ω, ω). For the frequency
set (−ω, ω, ω), there are only two independent components
σ3d
(3);xxyy(−ω, ω, ω) and σ3d

(3);xyyx(−ω, ω, ω) = σ3d
(3);xyxy(−ω, ω,

ω). Intraband divergences exist for this third-order con-
ductivity, which are illustrated by

Figure 1. x dependence of S3d
(1)(x) for 0 < x < 4.

Figure 2. x dependence of S3d
(3);xxyy(x, x, x) and Sgh

(3);xxyy(x, x, x). Values
in the regime x > 1.5 are scaled by 50 times.
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Here, the first term indicates all the intraband divergences with
respect to δ1 and δ2, but they are nonzero only when one-
photon absorption exists at |x| > 2, which is consistent with the
general properties of intraband divergences.24 The function Bd
is given by
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The second term Bn is well behaved and given by
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In Figure 3 we plot S3d
(3);dabc(−x, x, x) for 0 < x < 2 and

compare it with Sgh
(3);dabc(−x, x, x). In general, both functions

show very similar structures and amplitudes, except for two
obvious differences: (1) Im[S3d

(3);xxyy] diverges to −∞ as x → 2,
while Im[Sgh

(3);xxyy] diverges to +∞; (2) For graphene, the real
parts of these two components satisfy Re[Sgh

(3);xxyy] = −Re-
[Sgh

(3);xyxy]; however, for 3D massless DFs S3d
(3);xxyy this does not

hold. For x > 2, the intraband divergences dominate, and in
practice both the relaxation processes and pulse shape effects
will determine the magnitude of the response. As a

comparison, in the clean limit the results of Zhong et al.,44

Zhang et al.,43 and Ooi et al.42,45 give Re[σ3d
(3);xxxx] ∝ θ(ℏω −

2|μ|), which contains no two-photon absorption. (The results
in ref 44 have an obvious typographical error, as a comparison
with those in ref 43.) We are not sure whether or not such a
difference occurs due to the different choices for the light−
matter interaction.
Next we present our results for two-photon carrier injection.

When one-photon absorption is absent (x < 2), the two-
photon absorption coefficient can be calculated through
ξ2
abcd(ω) = 3(ℏω)−1Re[σ(3);abcd(−ω, ω, ω)].11 It can be written
as
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with
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The first term comes from the intraband divergences, part of
which enters in the second term giving contributions
proportional to θ(x2 − 4). The first term exists only in the
presence of one-photon absorption (x > 2), and physically, the
divergences are induced by the stimulated Raman scattering
process. For 1 < x < 2 (i.e., |μ| < ℏω < 2|μ|), two-photon
absorption gives

Figure 3. x dependence of (a) S3d
(3);dabc(x, x, − x) and (b) Sgh

(3);dabc(x, x, − x) for the xxyy and xyxy components.

Figure 4. xs dependence of the spectra for (a) S3d
(3);dabc(−xs, xp, xp) for three-dimension massless Dirac Fermions and (b) Sgh

(3);dabc(−xs, xp, xp) for
graphene. The pump frequency is chosen as xp = 1.5.
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Compared to the results for graphene, the frequency
dependence changes from ω−5 to ω−4.
Parametric Frequency Conversion. When there are two

laser beams, one with pump frequency ωp and the second with
signal frequency ωs, a new frequency 2ωp − ωs can be
generated through parametric frequency conversion (PFC);
the current density responsible for it is determined by
σ3d
(3);dabc(−ωs, ωp, ωp). For 3D massless DFs, this process has
only two independent components: σ3d

(3);xxyy and σ3d
(3);xyxy =

σ3d
(3);xyyx. Defining xs,p ≡ ℏωs,p/|μ|, the term S3d

(3);dabc(−xs, xp, xp)
shows interband divergences under the conditions xs = ±2, xp
= ±2, xp = ±1, xp − xs = ±2, or 2xp − xs = ±2, and intraband
divergences at 2xp − xs = 0, xs = 0. As an illustration, we fix xp
= 1.5 and show different components in Figure 4. The possible
divergences appear at xs = −2, −0.5, 1, 3, and 3.5 (interband),
and at xs = 0 and 5 (intraband). All these divergences exist for
S3d
(3);dabc, but two of these divergences, those at xs = 1 and 2, are
removed for Sgh

(3);dabc. Both conductivities exhibit similar
amplitudes and structures. For the intraband divergences,
that at xs = 0 is associated with a field/current-induced second-
harmonic generation, and the other at xs = 2xp corresponds to
two-color CCI, which is discussed in the next section. Around
these two divergences, the conductivities diverge as xs

−1 around
xs ∼ 0, and (xs − 2xp)

−1 as xs ∼ 2xp. Obviously, the spectra
diverge much faster around intraband divergences than around
interband divergences, where the divergences are logarithmic.
Two-Color Coherent Current Injection. The intraband

divergence of σ3d
(3);dabc(−ω, −ω, 2ω + δ) as δ → 0 corresponds

to a well-known nonlinear phenomenon, two-color coherent
current injection, in which a quasi-static current can be
generated due to the interference of one-photon absorption
and two-photon absorption processes. The divergence means
that the current is continually injected or

dJ t
dt

E E E c c
( )

( ) . .
a

d
abcd b c d

3 2η ω= +ω ω ω− − (55)

with

i( ) lim 3 ( , , 2 )d
abcd

d
abcd

3 0
3
(3);η ω δσ ω ω ω δ= [− − − + ]

δ→ (56)

After simple algebra, for ω > 0, we get

iv e( )
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(57)

The term involving θ(ℏω − |μ|) is associated with the
interference between the transition channels induced by a two-
photon absorption (ω + ω) and a one-photon absorption
(2ω), while the other term involving θ(ℏω − 2|μ|) is
associated with the interference of stimulated electronic
Raman scattering (for photon frequencies 2ω and − ω) and
one-photon absorption (ω). Compared to the injection in
graphene, the injection coefficients in 3D massless DFs are
proportional to (ℏω)−2, instead of (ℏω)−3 in graphene;11 the
relative amplitudes between different components are also
different.

■ CONCLUSION AND DISCUSSION

We have calculated the linear and third order conductivities for
a single Dirac cone of 3D massless Dirac Fermions. In our
simple model, we treat the light−matter interaction in the
length gauge, in which the kind of unphysical divergences
associated with band truncation that can appear in the velocity
gauge do not arise. Analytic expressions for general input
frequencies were obtained in the clean limit at zero
temperature. Utilizing these expressions, we discussed in detail
the frequency dependence of THG, the Kerr effect and two-
photon absorption, parametric frequency conversion, and two-
color coherent current injection. The dimension affects the
optical response of Dirac Fermions in several ways, and a
comparison between two and three-dimensional massless Dirac
Fermions allows us to identify the following qualitative
features: (1) the dependence on the Fermi velocity vF, which
is the relevant material parameter in these systems, changes
from vF

n−1 in 2D to vF
n−2 in 3D for the nth order conductivity,

(2) the chemical potential dependence of the third order
conductivity changes from μ−1 to μ0 for a lightly doped sample,
(3) the frequency dependence of the two photon carrier
injection changes from ω−5 to ω−4, (4) the frequency
dependence of two color current injection changes from ω−3

to ω−2, and (5) for nonzero chemical potential, both frequency
spectra show very similar structures in general, but their
amplitude can differ up to 2 orders of magnitude. We
emphasize that despite of the smaller nonlinear conductivities,
strong and tunable nonlinear response could be generated
from materials hosting 3D Dirac Fermions by changing the
sample thickness, a tuning parameter not available for 2D
materials.
Although our results are obtained in the clean limit at zero

temperature, they provide a general picture for third order
response in three-dimensional massless Dirac Fermions, and
they can be treated as a starting point for future study in
nonlinear response of Dirac and Weyl semimetals.
Finally, we discuss the inclusion of phenomenological

relaxation parameters and finite temperature, both of which
are straightforward. For the third order conductivity of gapped
graphene in our previous work,24 the gap parameter appears in
the conductivities as functions of 1/Ec

i (i = 1, 3, 5), E w( ; )n
cΔ

, E w E w( ; ) ( ; )n
w

n
c cΔ = [Δ ]∂

∂
, a n d

E w E w( ; ) ( ; )n
w

n
c cΔ = − [Δ ]∂

∂ for n = 0, 2, and 4. The

integration of the latter two functions with respect to Δ can be
derived from those for E w( ; )n

cΔ . The integrations of
∫ 0
EAEc

−idΔ can also be obtained easily. Therefore, the third-
order conductivity with finite phenomenological relaxation
p a r a m e t e r s c a n b e o b t a i n e d b y r e p l a c i n g

E w w( ; ) ( ; )n
nc μΔ → | | , E w w( ; ) ( ; )n

w nc μΔ → | |∂
∂ , and

E w w( ; ) ( ; )n
w nc

2

2 μΔ → − | |∂
∂

, and leaving the divergent

terms with respect to EA in the integration of ∫ 0
EAEc

−idΔ. The
complicated but analytic expressions could be evaluated
numerically. Starting from the chemical potential dependence
of the conductivity σ3d

(1);xx(|μ|;ω) and σ3d
(3);xxyy(|μ|;ω1, ω2, ω3) at

zero temperature, the corresponding dependence at finite
temperature can be constructed using the technique presented
earlier.12 With this in hand, an investigation of the effects of
the relaxation parameter and finite temperature on the optical
conductivities of three-dimensional Dirac Fermions can be
undertaken.
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However, we want to emphasize that even with such a
treatment of phenomenological relaxation parameters and the
consideration of finite temperature, a detailed comparison with
experiments on materials exhibiting three-dimensional massless
Dirac Fermions only makes sense for low-light frequencies due
to a small energy range over which the assumption of a linear
regime in the band dispersion is valid. While experiments on
the Dirac semimetal Cd3As2 indicate that the energy scale of
the linear regime could be as large as about an electronvolt,
most theoretical calculations of Dirac semimetals limit this
linear regime to a few tens of millielectron volts.53 Realistic
calculations based on full band structures will be required.
Nonetheless, the study we have presented here will serve as a
benchmark for identifying when those full band structure
calculations show a significant difference from ideal Dirac
Fermion behavior.

■ METHODS
Comparing Responses. We consider the relation between

the optical conductivities of two different systems with
Hamiltonians, HA(k) and HB(k), that are connected via a
unitary matrix U and a real matrix R through

k kUH R U H(( ) ) ( )A T B1 =− † (58)

The dynamics of these two systems can be described by
density matrices ρk

A(t) and ρk
B(t). Under the application of

electric field E(t), they satisfy the equation of motion11

k Et i H t e t t( ) ( ), ( ) ( ) ( )k k k kt
A A A Aρ ρ ρ∇ℏ∂ = − [ ] + · (59)

k Et i H t e t t( ) ( ), ( ) ( ) ( )k k k kt
B B B Bρ ρ ρ∇ℏ∂ = − [ ] + · (60)

To clearly indicate the field that leads to the response, we
denote the solutions of these two equations as ρk

A/B(t; E(t)).
The current density responses are functionals of the field E(t)
and can be calculated as

J E E kt t
e

t t H( ; ( )) Tr ( ; ( )) ( )
k

k k
A A A∑ ρ ∇= −

ℏ
[ ]

(61)

J E E kt t
e

t t H( ; ( )) Tr ( ; ( )) ( )
k

k k
B B B∑ ρ ∇= −

ℏ
[ ]

(62)

Now we determine the connection between ρk
A(t; E(t)) and

ρk
B(t; E(t)) induced by the relation in eq 58. Considering a

transformation

Et U t t U( ) ( ; ( ))k kR
A

( )
1

T 1ρ ρ̅ = −
− (63)

from eq 59, the dynamics of ρ̅k(t) is

k Et i UH R U t e R t t( ) (( ) ) , ( ) ( ) ( )k k k kt
A T T1 1ρ ρ ρ∇ℏ∂ ̅ = − [ ̅ ] + [ ]· ̅

− − (64)

Utilizing eq 58, it is transformed into eq 60, and we can find
the solution is

Et t R t( ) ( ; ( ))k k
B Tρ ρ̅ = (65)

Then from eq 63 the connection between ρk
A(t) and ρk

B(t) is

E Et R t U t t U( ; ( )) ( ; ( ))k k
B T

R
A

( )
1

T 1ρ ρ= −
− (66)

In eq 62, by replacing E(t) → RTE(t) and utilizing eq 66 and
then comparing to eq 61, we get

J E J Et t R R t R t( ; ( )) ( ; ( ))A B T1= | |−
(67)

For a weak electric field E(t), the induced current density can
be expanded in a power series of this field, and the expansion
coefficients are the conductivity tensors, which satisfy

R R RA
da dd aa

B
d a(1); 1 (1);σ σ= | |− ′ ′ ′ ′

(68)

R R R R RA
dabc dd aa bb cc

B
d a b c(3); 1 (3);σ σ= | |− ′ ′ ′ ′ ′ ′ ′ ′

(69)

Note that for all of these analyses, R is not limited to be a
orthogonal matrix, and therefore such transformation can be
used to connect the response of an anisotropic Dirac cone, that
is, HA(k) = ℏvFk·R·σ, to that of an isotropic cone HB(k) =
ℏvFk·σ. For an anisotropic Dirac cone with Fermi velocities vF

d

along the d direction, the R matrix has only diagonal
components Rdd = vF

d/vF, then the conductivity for an
anisotrpic Dirac cone σA can be obtained from those for an
isotropic one σB as

v v v
v v vA

da
d a

x y z B
da(1); F F F

F F F

(1);σ σ=
(70)

v v v v
v v v vA

dabc
d a b c

x y z B
dabc(3); F F F F

F F F F

(3);σ σ=
(71)

Expressions of ij for Gapped Graphene. Using ϵij = ϵi
+ ϵj and ϵ = ϵ1 + ϵ2 + ϵ3, we write

( , , )
( , , )

6ij
ij

1 2 3
1 2 3

1
2

2
2

3
2

12 23 31
ϵ ϵ ϵ =

̅ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ ϵ ϵ ϵ (72)

where ( , , )ij 1 2 3̅ ϵ ϵ ϵ are given by

( , , ) 3 ( 2 )

(2 )
10 1 2 3

2
1
3

23 2 3 1
2

1 23 23
2

1 2 3 23 1

̅ ϵ ϵ ϵ = ϵ [ ϵ ϵ + −ϵ ϵ + ϵ − ϵ ϵ ϵ

+ ϵ ϵ ϵ ϵ − ϵ ] (73)

( , , ) 8 3 ( )12 1 2 3 1
2

2 3 1
3

23 23
2

2 3 1 23̅ ϵ ϵ ϵ = − [ ϵ ϵ ϵ + ϵ ϵ − ϵ ϵ ϵ + ϵ ϵ ] (74)

( , , ) 16( )14 1 2 3 2 3 1 23̅ ϵ ϵ ϵ = − ϵ ϵ + ϵ ϵ (75)

( , , )20 1 2 3 12 13 23
4̅ ϵ ϵ ϵ = ϵ ϵ ϵ (76)

( , , ) 822 1 2 3 12 13 23
2̅ ϵ ϵ ϵ = − ϵ ϵ ϵ (77)

( , , ) 1624 1 2 3 12 13̅ ϵ ϵ ϵ = ϵ ϵ (78)

( , , ) 3 2 3 (2 )30 1 2 3 12 13
2

23 1
2

1 2 2 3 1 3 23̅ ϵ ϵ ϵ = −ϵ ϵ ϵ [ ϵ + ϵ ϵ − ϵ ϵ + ϵ − ϵ ϵ ]
(79)

( , , ) 8 ( ) ( )32 1 2 3 12 1 3 23 2̅ ϵ ϵ ϵ = ϵ ϵ − ϵ ϵ ϵ + ϵ (80)

( , , ) 1634 1 2 3 12 23̅ ϵ ϵ ϵ = ϵ ϵ (81)

( , , ) ( ) ( ) (3 )40 1 2 3 1
2

2 3 23
2

23 23 23̅ ϵ ϵ ϵ = ϵ [ϵ ϵ ϵ + ϵ + ϵ ϵ − ϵ ϵ ϵ + ϵ ] (82)

( , , ) 8 ( 3 )42 1 2 3
3

23 23
3

2 3
2

23
2̅ ϵ ϵ ϵ = − [ϵ ϵ − ϵϵ + ϵ ϵ − ϵ + ϵ ]
(83)

( , , ) 16( )44 1 2 3 2 3 23̅ ϵ ϵ ϵ = − −ϵ ϵ + ϵ ϵ (84)

( , , ) ( ) ( 3 )50 1 2 3 2
2

1 23 3
2

2 3 23 23 3̅ ϵ ϵ ϵ = −ϵ [ϵϵ ϵ + ϵ + ϵ ϵ ϵ ϵ + ϵ ] (85)

( , , ) 8( 3 )52 1 2 3 3
3

23 3 23
3

1 3
2

1 23
2̅ ϵ ϵ ϵ = −ϵ ϵ + ϵ ϵ − ϵ ϵ ϵ + ϵ ϵ ϵ (86)

( , , ) 16( )54 1 2 3 3 23 1̅ ϵ ϵ ϵ = − ϵ ϵ + ϵ ϵ (87)

Conductivity for 3D Dirac Fermions. The linear
conductivity and third order conductivity of three-dimensional
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Dirac Fermions are constructed from eqs 26 and 27,
respectively. The upper limit of the integration is infinity,
and thus it is necessary to introduce a cutoff energy A to
analyze the integration

I A
v

d( )
1

4
( )n

A
n( )

F 0
gg
( )∫π

σ=
ℏ

Δ Δ
(88)

and then I Alim ( )d
n

A

n
3
( ) ( )σ =

→∞
. As Δ → ∞, from eqs 22 and 23,

we have σgg
(1);xx(Δ → ∞) → − 4iσ0ℏω/(3π)Δ−1 and σgg

(3);xxyy(Δ
→∞) ∼ Δ−5. It is obvious that I(1);xx(A→∞) diverges as ln A
and I(3);xxyy(A → ∞) converges.
The Δ dependence in the conductivities of gapped graphene

appears in Δ or E w( ; )n
cΔ for n = 0, 2, and 4. By extending

the definition of E w( ; )c to a complex w = wr + iwi, we get

E w i E w E w( ; ) ( ; ) ( ; )c c cπ= + − − (89)

with

x w iw w x w i
w x

w
( ; )

1
2

ln ( 2 ) arctan
2

r i r i
r

i

2 2+ = [ + + ] −
+

(90)

As wi → 0+, it becomes

x w w x i w x( ; ) ln 2
2

sgn( 2 )r r r
π= | + | − +

(91)

with sgn(x) as the sign function.
For the term E w( ; )n

cΔ , the integration is
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with
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n

x x w x w( ; )
1

1
( ; ) ( ; )n

n
n
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+

[ − ]+
(93)
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Taking A→∞, A w( ; )n diverges as ∝ln(2EA), EA
2 , and EA

4 for
n = 0, 2, and 4. We collect all divergent terms into A w( ; )n

and write E w w E w( ; ) ( ) ( ; )n n nA A= ̅ + with

w w w w w( ) 0, ( )
1
8

, ( )
5

1920 2
3

4
5̅ = ̅ = − ̅ = − (95)

Therefore, the integration becomes

x x w x w A w(max , ; )d ( ; ) ( ; )
E

n
n n

0

A∫ μ μ{| | } = | | + (96)

with

w w
n

w( ; ) ( )
1

1
( ; )n n nμ μ| | = ̅ +

+
| |

(97)

Now we can construct the conductivity σ3d
(n) from that of σgg

(n)

by replacing E w( ; )n
cΔ with w( ; )n μ| | . For the linear

conductivity σ3d
(1);xx(ω), the divergent term can be obtained

from eq 22 directly. Based on eq 19, in the clean limit the third
order conductivity for Dirac Fermions is

iv e
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+ ℏ ℏ ℏ × | | ℏ

+ ℏ ℏ ℏ | | ℏ }

=

(98)

It can be s impl ified in terms of the funct ion
x w x w( ; ) ( ; )+ − , and we then get the expression in eq

31.
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