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Abstract— Adopting the direct Z-transform (DZT) method due
to its higher accuracy instead of the approximate Z-transform
(AZT) methods and efficient and switchable truncations between
the 1st- and 2nd-order uniaxial perfectly matched layers
(UPMLs) with the complex-frequency-shifted (CFS) scheme are
shown to terminate the relevant finite-difference time-domain
(FDTD) regions. The proposed DZT-CFS-UPML formulations
can possess the switchable function in terms of relevant FDTD
problems so that the optimal performance can be obtained
with the tradeoff among memory requirement, CPU time, and
absorption accuracy. For the FDTD problem with the strong
evanescent and weak low-frequency propagating waves, the
proposed DZT-CFS-UPML formulations can be switched to the
1st-order PML truncation, and for the other cases with both
low-frequency propagating and strong evanescent waves, the 2nd-
order PML is the best choice. Two numerical simulations have
been carried out to illustrate the validity and flexibility of the
proposed approach.

Index Terms— Complex-frequency-shifted uniaxial perfectly
matched layer (CFS-UPML), direct Z-transform (DZT) method,
finite-difference time-domain (FDTD), switchable function.

I. INTRODUCTION

BY USING unsplitted-field implementations, the stretched
coordinate perfectly matched layer (SC-PML) [1]–[9]

and the uniaxial PML (UPML) [10], [11] have been developed
to consume less CPU time and memory to great extent,
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since the splitted-field-based PML method was first pro-
posed in 1994 [12] to terminate the regular finite-difference
time-domain (FDTD) computational region [13]. Generally,
PML expressions are usually defined and written in the
frequency domain. So far, several techniques have been suc-
cessfully utilized to discretize PML formulations by adopting
the auxiliary differential equations (ADEs) techniques [1], [2]
or the Z -transform methods [3]–[8]. Why are Z -transform
methods quite popular and prevailing for the discretization in
FDTD implementations? The main reason is that the convolu-
tion in the time domain is just a kind of multiplication in the
Z -domain; however, complicated convolutional computations
will be never circumvented if the transformation happens from
the frequency domain to the time domain [14], [15].

In addition, as described in [14] and [15], two classes of
the Z -transform techniques can be chosen. The first one is the
direct Z -transform (DZT) method, which is the most accurate
due to the fact that it can convert from terms in the frequency
domain to those in the Z domain via looking them up in a
table; and the another one is the matched Z -transform (MZT)
and bilinear Z -transform (BZT) methods that are always easier
due to using direct substitution.

To the best of our knowledge, however, the regular SC
and UPMLs have the same drawback as the regular PML,
leading to their low efficiencies in absorbing evanescent waves.
To conquer this problem, authors proposed the complex-
frequency-shifted PML (CFS-PML) formulations, resulting in
highly effective absorption for strong evanescent waves and
reducing the late-time reflections [16]–[21].

Recently, to pursuing higher accuracies, several higher order
PML implementations have been presented for truncating the
FDTD domain [22]–[27]. Besides, among these higher order
PMLs, the 2nd-order PML has been validated and proved to
be an optimal choice [28].

As is well known to all, for the problem with the
strong evanescent and weak low-frequency propagating waves,
the 1st-order PML is the optimal choice, so that more CPU
time and memory requirement can be saved; and for the other
cases with both the low-frequency propagating and strong
evanescent waves, the 2nd-order PML is the best choice for
higher accuracies, although more CPU time and memory are
required.

To achieve both higher accuracy in absorption perfor-
mance and lower consumption in CPU time and memory,
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the DZT-based FDTD implementation adopting SC-PML
formulations with the CFS scheme is shown in [29]. Depend-
ing on this successful work in [29], therefore, switch-
able truncations between the 1st- and 2nd-order DZT-based
CFS-UPMLs are studied in this work to enrich choices of
DZT-based UPML implementations and make themselves
easily mastered and used by beginners. In this paper, efficient
FDTD implementations of 1st- and 2nd-order DZT-based
CFS-UPMLs are proposed to truncate relevant FDTD cases,
and this method is here referred as the DZT-CFS-UPML.

This paper is properly organized as follows. In Section II,
the proposed DZT-based CFS-UPMLs are developed. Two
numerical examples are presented in Section III. Section IV
concludes this paper.

II. FORMULATIONS

In 3-D UPML regions, the modified Maxwell’s curl equa-
tions in the frequency domain can be described as follows:

jωε0εr (ω)�(ω)E(ω) = ∇ × H (ω) (1)

jωμ0μr (ω)�(ω)H (ω) = −∇ × E(ω) (2)

where both εr and μr are the relative permittivity and per-
meability in the FDTD domain, respectively, and �(ω) is a
diagonal tensor defined as follows:

�(ω) = diag

{
Sy Sz

Sx
,

Sx Sz

Sy
,

Sx Sy

Sz

}
(3)

where Sη , (η = x, y,z) are complex stretched coordinate
variables defined as follows:

Sη =
2∏

i=1

Siη =
2∏

i=1

(
κiη + σiη

αiη + jωε0

)
(4)

where κiη is real and ≥1, and σiη and αiη are assumed to be
the positive real. It should be noted that we here adopt the
one- and two-pole CFS-UPMLs. To let the CFS-UPML be
absolutely independent of the material attributes of the FDTD
computational domains, both (1) and (2) can be rewritten in
terms of the electric flux density D and the magnetic flux
density B , respectively, [23], [24]

jω�(ω)D(ω) = ∇ × H (ω) (5)

jω�(ω)B(ω) = −∇ × E(ω). (6)

Therefore, this kind of UPML can be used for truncating any
media, such as dispersive, lossy, inhomogeneous, anisotropic,
or nonlinear with no any changes. This method can be obtained
in [27] to get H from B [and E from D].

To simplify the left-hand side of expressions in (5) and (6),
two auxiliary variables F and G in the frequency domain can
be used to denote the right-hand side of (5) and (6), we have

F(ω) = jω�(ω)D(ω) (7)

G(ω) = jω�(ω)B(ω). (8)

Now, let us take the discretization of the x component of (7)
in the corner of UPML regions, which can be obtained as
follows:

Fx (ω) = jω�x(ω)Dx (ω). (9)

Rearranging (9), we obtain

Dx (ω) = jω−1
(

Sy Sz

Sx

)−1

Fx (ω). (10)

Here, the 1st-order CFS-UPML is considered in (10).
Multiplying ( jω−1/ jω−1) in the right-hand side of (10),

we have

Dx (ω) =
(

jωSy · jωSz

jωSx

)−1

Fx (ω). (11)

Let us assume Jη(ω) = jωSη(ω),(η = x, y, orz), we have

Jη = jω(κηαη + ση) + ( jω)2κηε0

jωε0 + αη
= jωκη( jω + A1η)

jω + A2η .

(12)

Tidying up (12), and we have

J−1
η = A3η

jω + A1η
+ A4η

jω
(13)

where

A1η = αη

ε0
+ ση

κηε0
, A2η = αη

ε0
,

A3η = 1

κη

(
1 − A2η

A1η

)
, A4η = A2η

κη A1η
.

Rearranging (13) with ϕη = J−1
η ,(η = x, y, orz) below

Dx (ω) = ϕyϕz

ϕx
Fx (ω). (14)

Next, introducing two auxiliary variables, φx , δx , we achieve

Dx(ω) = ϕz(ω)φx(ω) (15)

φx(ω) = ϕy(ω)δx(ω) (16)

δx(ω) = (1/ϕx(ω))Fx (ω). (17)

And then, we here adopt the DZT method and reach new
DZT-based equations, which can be discretized as follows:

Pn+1
x = (A3x + A4xe−A1x �t )

(A3x + A4x)
Pn

x + Fn+1
x − Fn

x (18)

δn+1
x = Pn+1

x − e−A1x �t Pn
x (19)

δ̂n+1
x = δ̂n

x + A4y�tδn+1
x (20)

φn+1
x = e−A1y�tφn

x + δ̂n+1
x − e−A1y�t δ̂n

x

+ A3y�tδn+1
x (21)

D̂n+1
x = D̂n

x + A4z�tφn+1
x (22)

Dn+1
x = e−A1z�t Dn

x + D̂n+1
x − e−A1z�t D̂n

x

+ A3z�tφn+1
x (23)

where Px , δ̂x , D̂x are introduced as auxiliary variables in
(18)–(23).

The simulation pseudo-code of (18)–(23) is as follows:
1st step:

temp_Fx = Fn
x , temp_δx = δn

x

temp_Px = Pn
x , temp_Dn

x = Dn
x

temp_φx = φn
x , temp_D̂n

x = D̂n
x , temp_δ̂n

x = δ̂n
x .
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Fig. 1. FDTD grid geometry in this simulation.

2nd step:

Pn+1
x = (A3x + A4xe−A1x �t )

(A3x + A4x)
temp_Px + Fn+1

x − temp_Fx.

3rd step:

δn+1
x = Pn+1

x − e−A1x �t temp_Px.

4th step:

δ̂n+1
x = temp_δ̂n

x + A4y�tδn+1
x .

5th step:

φn+1
x

= e−A1y�t temp_φx + δ̂n+1
x −e−A1y�t temp_δ̂n

x + A3y�tδn+1
x .

6th step:

D̂n+1
x = temp_D̂n

x + A4z�tφn+1
x .

7th step:

Dn+1
x

= e−A1z�t temp_Dn
x + D̂n+1

x −e−A1z�t temp_D̂n
x + A3z�tφn+1

x .

Similar operations can be applied to 2nd-order DZT-CFS-
UPML.

III. NUMERICAL RESULTS

To reflect preferable performances between the proposed
1st- and 2nd-order DZT-CFS-UPML approaches for relevant
FDTD cases so that we can judge which one is the best
choice for the corresponding FDTD case, we get ready to
adopt commonly used 2-D and 3-D cases for assessing their
comprehensive performances.

In the first case, a 2-D TE-polarized electromagnetic wave
interaction with an infinitely long perfectly electric conduc-
tor (PEC) sheet with the finite width is applied to illustrating
the validity of the proposed DZT-CFS-UPMLs.

The space is discretized with �x = �y = 1 mm and time
step is �t = 1.1785 ps. The FDTD computational domain
consists of a 100-cell wide PEC sheet surrounded by free
space. The ten cell-thick PML layers are used to terminate
the grid and are placed only three cells away from the PEC
sheet in all directions, shown in Fig. 1.

A y-polarized line electric current source, infinitely long in
the z-direction, is placed at the center position and excited
with the differentiated Gaussian pulse [26]. The y-component
of the electric field is measured at the observing point P, where
we expect very strong evanescent waves to appear.

The relative reflection error (in dB) versus time steps is
computed at the observation point P. The reference grid is

Fig. 2. Relative reflection error versus time steps.

TABLE I

PERFORMANCES FOR DIFFERENT PML IMPLEMENTATIONS

sufficiently large such that there are no reflections from its
outer boundaries during 1500 time steps, which are well past
the steady-state response.

The details of PML parameters have been presented to
obtain the lowest reflection, shown as follows.

1) For the conventional PML, κmax = 9 and σmax = 0.6σopt
are chosen.

2) For the CFS-PML,κmax = 9, σmax = 0.9σopt, and αη =
0.05 are chosen.

3) For the 2nd-order PML, the following parameters are
chosen:

κ1η = 1, α1η = 0, σ1ηopt = 0.075/150π�x, σ1η = σ1ηoptρ
4

σ2ηopt = 4/150π�x, σ2η = σ2ηoptρ
2, κ2η = 1 + κ2ηoptρ

2,

κ2ηopt = 10, andα2η = 0.08 + σ1η.

These optimum parameters are empirically chosen to reach the
lowest reflection.

The results are illustrated in Fig. 2. The maximum relative
reflection errors (MRRE), memory requirements, and CPU
time consumption (time steps = 20 000) for these PMLs are
shown in Table I.

As it is reflected in Fig. 2 and Table I that the case has
been used to validate all FDTD methods with PML scheme.
In Fig. 2, the proposed 1st-order DZT-CFS-UPML has similar
accuracy with the 1st-order DZT-CFS-SCPML.

However, for this 2-D case, we can see in Fig. 2 that
the 2nd-order one has more obvious improvement than the
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Fig. 3. FDTD grid geometry in this simulation.

1st-order one, although a bit more time and memory are
required, shown in Table I. Therefore, the 2nd-order DZT-
CFS-UPML can be considered as the preferable choice when
solving 2-D FDTD problems.

It should be noted in the first case, however, that the
advantages of the 1st-order DZT-CFS-UPML is not quite
obvious due to only solving the 2-D case. To better reflect its
advantages, therefore, the 3-D problem of the electromagnetic
scattering by a highly elongated object is studied [29].

The thin plate with the 100 mm ×25 mm size is immersed
in a background media [29] with constitutive parameters σ
and ε, shown in Fig. 3. For the purpose of this study,
the constitutive parameters for soil are assumed, using εr =
7.73 and σ = 0.273. The numerical test is implemented
and composed of a 126 ×51 ×26 grid, which includes ten
cell-thick PML. The space is discretized with the FDTD lattice
with �x = �y = �z = 1 mm and the time step is �t =
5.3 ps. In total, 2000 time steps are used for computing the
relative reflection error versus time at an observation point.
All similar details of this numerical simulation can be found
in [29].

The details of PML parameters have been presented to
obtain the lowest reflection, shown as follows.

1) For the conventional PML, κmax = 14 and σmax =
0.56σopt are chosen.

2) For the CFS-PML,κmax = 11, σmax = 0.4σopt, and αη =
0.05 are chosen.

3) For the 2nd-order PML, the following parameters are
chosen:

κ1η = 1, α1η = 0, σ1ηopt = 0.075/150π�x, σ1η = σ1ηoptρ
4,

σ2η = σ2ηoptρ
2, κ2η = 1 + κ2ηoptρ

2, κ2ηopt = 14,

α2η = 0.06 + σ1η, and σ2ηopt = 4/150π�x.

These optimum parameters are empirically chosen to reach the
lowest reflection.

As seen in Fig. 4 and Table II, it can be observed that
the 1st- and 2nd DZT-based SC and UPMLs have better
absorption with the increasing of time steps and much more
reduction in the late-time reflection than the other PMLs based
on ADE, BZT, and MZT.

Furthermore, as presented in Table II, the 1st-order DZT-
CFS-UPML not only requires much less CPU time and mem-
ory than the 2nd-order DZT-CFS-UPML but also obtains very
good absorption accuracy, although higher absorption accu-
racy can be reached using the 2nd-order one. Therefore, the
1st-order DZT-CFS-UPML can be treated as the preferable
choice when solving 3-D FDTD problems.

Fig. 4. Relative reflection errors versus time steps for the 1st- and 2nd-order
DZT-CFS-UPMLs.

TABLE II

PERFORMANCES FOR DIFFERENT PML IMPLEMENTATIONS

IV. CONCLUSION

So far, the validities and stabilities of the proposed 1st- and
2nd-order DZT-CFS-UPMLs have been illustrated. Addition-
ally, for the relevant FDTD cases, we can judge and determine
which one is the best choice between 1st- and 2nd-order
DZT-CFS-UPMLs, in terms of the tradeoff among CPU time,
memory requirement, and absorption accuracy. In a word, due
to introducing the DZT techniques, the proposed 1st- and
2nd-order CFS-UPMLs can not only achieve better accuracies
than those based on ADE, BZT, and MZT but also provide
alternative choices of DZT-based UPML implementations and
make themselves easily mastered and used.
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